
Notes for ECS 289F: Foundations of Relational Databases

Winter 2010

Revision: March 6, 2010

1 Monday, 1/4/10 (scribe: Sven)

Introduction/Administrivia

Webpage:

http://www.cs.ucdavis.edu/~green/courses/cse289f

Textbook (optional, use as reference): Foundation of Databases by Abiteboul, Hull, and Vianu

Historical Background

(see handout from 1975 book by Date)

Hierarchical Approach

Problem: Redundancy, awkward when data not hierarchical, strong distinction between records and links,
low-level query languages

Network Model

Problem: More flexible, but links are still seperate elements

Relational Approach

Everything (links, records) modeled as relations. High-level, declarative query language based on first-order
logic.

2 Wednesday, 1/6/10 (scribe: Sarah)

Review: Syntax and Semantics of First-Order Logic (FO)

Definition 1. A relational schema σ is a collection of predicate symbols (relations) (denoted P1, P2, . . .)
each with an associated arity (number of columns).

A σ-instance I is a collection of interpretations of predicate symbols, one for each Pi in σ. i.e., if Pi is a
k-ary predicate symbol then P Ii (the contents of Pi) ⊆ Dk where D is the domain of the database and P Ii is
finite.

More generally, this is a structure/model where the vocabulary is a schema and the structure is an instance
of a table (see below definitions).

1

Definition 2. A vocabulary σ is a collection of constant symbols (denoted c1, c2, . . .), relation or predicate
symbols (P1, P2, . . .), and function symbols (f1, f2, . . .). Each relation and function symbol has an associated
arity.

A σ-structure (also called a model)

A = 〈A, {cAi }, {PA
i }, {fA

i }〉

consists of a universe A together with an interpretation of

• each constant symbol ci from σ as an element cAi ∈ A;

• each k-ary relation symbol Pi from σ as a k-ary relation on A; that is, a set PA
i ⊆ Ak; and

• each k-ary function symbol fi from σ as a function fA
i : Ak → A.

Next, we define first-order (FO) formulae, free and bound variables, and the semantics of FO formulae.

Definition 3 (Syntax of FO). We assume a countably infinite set of variables {x1, x2, . . . }. We inductively
define terms and formulae of the first-order predicate calculus over vocabulary σ as follows:

A term is defined as either:

• a variable x;

• a constant c;

• f(t1, t2, . . . tk) where ti is a term for all i.

A formula is defined as either:

• t1 = t2 where t1, t2 are terms;

• P (t1, t2, . . . tk) where all ti are terms and P is a predicate;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 or ¬ϕ1 where ϕ1, ϕ2 are formulae;

• ∃xϕ or ∀xϕ where ϕ is a formula.

Note: ϕ→ ψ means ¬ϕ ∨ ψ (implication)
Note: a formula of no free variables is called a sentence. (ex: ∀xP1(x) ∨ ¬P2(x)).

Definition 4 (Semantics of FO). Given a σ-structure A, we define inductively for each term t with free
variables (x1, . . . , xn) the value tA(ā), where ā ∈ An, and for each formula ϕ(x1, . . . , xn), the notion of
A |= ϕ(ā) (i.e., ϕ(ā) is true in A), read A satisfies ϕ(ā).

For terms:

• if t is a constant c, then tA = cA;

• if t is a variable x, then tA(ā) is ai;

• if t = f(t1, t2, . . . tk), then tA(ā) = fA(tA1 (ā), tA2 (ā), . . . tAk (ā));

For formulae:

• if ϕ is (t1 = t2), then A |= ϕ(ā) iff tA1 (ā) = tA1 (ā);

• if ϕ is P (t1, t2, . . . tk), then A |= ϕ(ā) iff (tA1 (ā), tA2 (ā), . . . tAk (ā)) ∈ PA;

• if ϕ is ϕ1 ∧ ϕ2, then A |= ϕ(ā) ∧ ϕ(ā) iff A |= ϕ1(ā) AND A |= ϕ(ā); (etc for ∨ and ¬.)

• if ϕ is ∃yϕ, then A |= ∃yϕ(y, ā) iff A |= ϕ(a′, ā) for some a′ ∈ A. (etc for ∀.)

2

Definition 5 (Relational calculus query.). A k-ary relational calculus query over schema σ is a mapping
Q : σ-instances→ Dn given by an expression of the form

{(x1, . . . , xn) | ϕ(x1, . . . , xn)}

where ϕ(x1, . . . , xn) is a FO formula. The evaluation [[Q]]I of Q on σ-instance I is

[[Q]]I def= {(a1, . . . , an) ∈ Dn | I |= ϕ(a1, . . . , an)}

3 Friday, 1/8/10 (scribe: Anand)

Examples of relational calculus queries

Let us consider a schema having 3 relations: a ternary Class relation (first column “class ID”, second column
“class name”, third column “room number”), a binary Student relation (first column “student ID”, second
column “student name”), and a binary Takes relation (first column “student ID”, second column “class ID”).
We also assume constants for names, IDs, etc.

Example 6. Q1: Find names of all students taking a class meeting in Wellman 201.

{(x) | ∃s∃c∃n Student(s, x) ∧ Takes(s, c) ∧ Class(c, n, “Wellman 201”)}

Example 7. Q2: Find all pairs of students not taking a class together.

{(x, y) | ∃s, s′ Student(s, x) ∧ Student(s′, y) ∧ ¬∃c(Takes(s, c) ∧ Takes(s′, c))}

Review of first-order logic, continued

• Satisfaction of FO formulae (with free variables): A |= ϕ(x̄) means A |= ϕ(ā) for all ā ∈ Ak

• If Γ be a set of FO sentences, then say Γ |= ϕ holds if any structure A satisfying Γ also satisfies ϕ

• Validity: |= ϕ means A |= ϕ for any structure A (i.e., ϕ is valid)

• ` means “provable”; Γ ` ϕ means ϕ is provable from Γ.

Theorem 8 (Gödel’s Completeness Theorem).

Γ |= ϕ iff Γ ` ϕ

As a corollary, we have:
{(Γ, ϕ) | Γ |= ϕ}is r.e.

In particular, taking VALID to be the set of all valid FO sentences

VALID def= {ϕ | |= ϕ},

we have

Corollary 9. VALID is r.e.

Even better would be if we could actually decide validity of FO sentences. However, a negative answer
was provided to this question was Church and Turing:

Theorem 10 (Church-Turing Undecidability Theorem). VALID is undecidable.

3

In database theory, however, we are not concerned with validity over all structures, but rather validity
over finite structures (i.e., over all databases).

FIN-VALID def= {ϕ | A |= ϕ for all finite A}

Unforunately, this language turns out to be undecidable as well:

Theorem 11 (Trakhtenbrot’s Theorem). FIN-VALID is undecidable.

In fact, FIN-VALID is not even r.e.! This is easy to see since FIN-VALID is clearly co-r.e. (to check
whether a sentence ϕ is not in FIN-VALID, it suffices to just enumerate finite structures A checking A |= ϕ
until a counterexample is found).

Definition 12. Relational calculus queries Q,Q′ are equivalent if for any database instance I, we have
[[Q]]I = [[Q′]]I . As a homework exercise, we will prove that equivalence is undecidable as a consequence of
results above.

Proof. (of Church-Turing Theorem) By reduction from the String Rewriting Problem (SRP). We know that
SRP is undecidable. So if we can show that SRP ≤ VALID then we can prove VALID is undecidable as well.

We will describe the total computible function that performs the reduction SRP ≤ VALID by the program
which computes it. The input to this program is of the form (R, u, v) where R is a finite set of string rewrite
rules over an alphabet Σ and u, v are strings over Σ. The reduction produces as output an FO sentence Φ.

For this to be a many-one reduction, we need to show that u
R
� v iff |= Φ.

First the reduction has to construct the FO vocabulary over which Φ is built. This contains: a binary
predicate symbol Rew; a unary function symbol fα for each α ∈ Σ; and a single constant symbol c.

Next, for each rewrite rule rεR
r : α1 · · ·αm → β1 · · ·βn

the reduction will construct a sentence

ϕr
def= Rew(fα1(. . . fαm

(x) · · ·), fβ1(. . . fβn
(x) · · ·))

and then if R = {r1, . . . , rk}, the reduction will construct

ϕR
def= ϕr1 ∧ · · · ∧ ϕrk

.

Now, if u = δ1 · · · δp and v = ε1 · · · εq, the reduction will construct

ϕu,v
def= Rew(fδ1(· · · fδp

(c) · · ·), fε1(· · · fεq (c) · · ·))

Next, we need to some add some assertions that specify that Rew behaves like a rewrite relation:

ϕRew
def= (∀x Rew(x, x) ∧ (∀x, y, zRew(x, y) ∧ Rew(y, z)→ Rew(x, z))∧∧

αεΣ

(∀x, yRew(x, y)→ Rew(fα(x), fα(y)))

Finally, the reduction will construct
Φ def= (ϕR ∧ ϕRew)→ ϕu,v

It remains to show that u
R
� v iff |= Φ. For proof of this claim, see the Friendly Logics notes.

4 Monday, 1/11/10 (scribe: TJ)

See the “Friendly Logics” notes, Section 4.

4

5 Wednesday, 1/13/10 (scribe: TJ)

See the “Friendly Logics” notes, Section 5.

6 Friday, 1/15/10 (scribe: TJ)

See the “Friendly Logics” notes, Section 6.

7 Wednesday, 1/20/10 (scribe: Vu)

Domain Independence

Recall that a relational calculus query (or FO query) has the form

q ≡ {x̄ | ϕ(x̄)}

The output of relational calculus queries might be infinite. For example, the output of relational calculus
query

{x | ¬R(x)}

is infinite since
[[{x | ¬R(x)}]]I = D−RI .

Another infinite-output query is {(x, y)|R(x) ∨ S(y)}.
More subtly, the output of query

{x|∀yR(x, y)}

is finite, but depends on the contents of D (and not just the contents of the predicates in the database
instance).

All the queries above are domain-dependent queries. Domain-dependence is generally considered an
undesirable property of query languages.

Let I is a structure with domain D. The active domain of database instance I is the set adom(I) of all
values from D occurring in an interpretation of some predicate P I . We have adom(I) ⊆ D. Likewise if Q is
a relational calculus query, then adom(Q) is the finite set of constants occurring in Q.

The restriction of a database instance I to the universe D ⊇ adom(I) is

I/D def= 〈D, {P I/Di }, ∅, {c}〉

where P I/Di = PDi .
A relational calculus query Q is domain-independent if for any database instance I and any D1, D2 such
that

adom(I) ∪ adom(Q) ⊆ D1 ⊆ D2 ⊆ D

we have

[[Q]]I/D1 = [[Q]]I/D2
(

= [[Q]]I = [[Q]]adom(I)∪adom(Q)
)

Theorem 13. Domain-Independence of a relational calculus query is undecidable.

Proof. Reduce FIN-VALID to Domain-Independence.

ϕ 7−→ q ≡ {x|¬ϕ ∧ ¬R(x)}

where R does not occur in ϕ.
Suppose ϕ ∈ FIN-VALID (and thus ¬ϕ is unsatisfiable) then

5

[[Q]]I = {}, for any I

Hence, Q is domain-dependent.
Suppose ϕ /∈ FIN-VALID then

∃A s.t. A |= ¬ϕ

Construct database instance I which in A along with interpretation of R

RI = {}

Then [[Q]]I = D.
Moreover, for any D s.t. adom(I) ⊆ D ⊆ D we have [Q]]I/D = D.
Thus Q is not domain-independent.

Relational Algebra

The relational algebra has operators P, {a}, σ, π,×,−. The semantics of a relational algebra expression E is
defined inductively as follows.

• Predicate P : [[P]]I = P I

• Constant {c}: [[{c}]]I = {c}

• Selection-1 σi=jE : [[σi=jE]]I = {x̄ | x̄ ∈ [[E]]I and xi = xj}

• Selection-2 σi=cE : [[σi=cE]]I = {x̄ |] x̄ ∈ [[E]]I and xi = c}

• Projection πi1,...,ikE : [[πi1,...,ikE]]I = {(xi1 , ..., xik) | x̄ ∈ [[E]]I}

• Cross Product E1 × E2 : [[E1 × E2]]I = {x̄, ȳ | x̄ ∈ [[E1]]I and ȳ ∈ [[E2]]I}

• Union E1 ∪ E2 : [[E1 ∪ E2]]I = {x̄ | x̄ ∈ [[E1]]I or x̄ ∈ [[E2]]I}

• Difference E1 − E2 : [[E1 − E2]]I = {x̄ | x̄ ∈ [[E1]]I and x̄ /∈ [[E2]]I}

Note that intersection is not included in the list above as it can be defined using cross product, selection,
and projection.

8 Friday, 1/22/10 (scribe: Zhongxian)

Paper Presentation

Students are going to present papers from the following four directions at the last two weeks.

• Data exchange (2) [Zhongxian, Vu]

• Bag semantics [Sarah]

• Probabilistic/incomplete databases (2) [Thanh, Mingming]

• Data provenance [Sven]

6

Data exchange

Assume we have a source database schema and a target database schema. How can we exchange data from
the source to the target. One approach is to use schema mappings(logical mappings).

Bag semantics

Bag semantics deal with the problem of duplicate rows generated by queries.

Probabilistic/incomplete database

Databases with not sure of null values in rows.

Data provenance

Data provenance studies unified formalism of data representation.

Relational algebra query captures domain independent FO query

We’d like to prove that :domain independent FO = RA.

Theorem 14. For any E(expression ∈ RA, we can compute an equivalent domain independent FO query.

proof (via structural reduction)

• case: P 7−→ {x̄|P (x̄)}, x̄ fresh

• case: c 7−→ {x|x = c}, x fresh

• case: Assuming E 7−→ {x̄|ϕ(x̄)}, σi=j(E) 7−→ {x̄|ϕ(x̄) ∧ xi = xj}

• case: Assuming E1 7−→ {x̄|ϕ(x̄)}, E2 7−→ {ȳ|ψ(ȳ)}, E1 × E2 7−→ {x̄, ȳ|ϕ(x̄) ∧ ψ(ȳ)}

• case: Assuming E 7−→ {x̄|ϕ(x̄)}, πi1,..,ik(E) 7−→ {y1, ..., yk|ϕ(x̄) ∧ y1 = x1 ∧ ... ∧ yk = xk}

• case: Assuming E1 7−→ {x̄|ϕ(x̄)}, E2 7−→ {ȳ|ψ(ȳ)}.E1 ∪ E2 7−→ {x̄|ϕ(x̄) ∨ ψ(x̄)}

• case: Assuming E1 7−→ {x̄|ϕ(x̄)}, E2 7−→ {ȳ|ψ(ȳ)}.E1 − E2 7−→ {x̄|ϕ(x̄) ∧ ¬ψ(x̄)}

Now, we prove the other direction: Domain independent FO query can be expressed using relational
algebra. We use two steps to prove that.

Step 1: For any FO query Q, can compute a RA query E over schema σ of Q extended with a unary
predicate D, such that for any database instance I, we have [[Q]]I/D

I

= [[E]]I .

Step 2: Recall Q is domain independent, then [[Q]]I = [[Q]]I/adom(I)∪adom(Q). Plugin adom(I)∪adom(Q) =
DI . Observe that adom(I) ∪ adom(Q) can be computed using a RA query Ead.

Say σ = {R(,), S(, ,)} and adom(Q) has constants a,b. Then define

Ead
def
= π1(R) ∪ π2(R) ∪ pi1(S) ∪ pi2(S) ∪ pi3(S) ∪ {a} ∪ {b}.

7

proof (step 1, by induction on query)

• case: {x1, ..., xn|xi = c} 7−→ σi=c(D ×D × ...×D)(ntimes)

• case: {x1, ..., xn|¬ϕ(x1, ..., xn)} 7−→ Dn − E

• case: Assuming {x̄|ϕ(x̄)} 7−→ E1, {x̄|ψ(x̄)} 7−→ E2, {x̄|ϕ(x̄) ∧ ψ(x̄)} 7−→ E1 ∧ E2

• case: Assuming without losing generosity, all variables are distinct, {x1, ..., xn|P (x1, ..., xn)} 7−→ P

• case: Assuming {x1, ..., xm, z, y1, ..., yn|ϕ(...)} 7−→ E, {x1, ..., xm, y1, ..., yn|∃z, ϕ(x1, ...xm, z, y1, ...yn)} 7−→
π1,...,m,m+2,..,m+n+1(E)

Theorem 15. Equivalence of RA query is undecidable. So do satisfiability and validity of RA query.

9 Monday, 1/25/10 (scribe: Mingmin)

Model-checking problem

Given ψ and A, to check if A |= ψ

Definition 16. (recognition problem) Given an FO query Q, database instance I, and an output tuple a, is
a ∈ [[Q]]I?

Theorem 17. If Q is domain-independent, then the recognition problem is LOGSPACE (data complexity)
PSPACE-complete (combined complexity). Then we no longer have to encode size of universe in representa-
tion of I.

Conjunctive queries

Essentially, FO queries of the form
{x | ∃y ψ(x, y)}

where ψ is a conjunction of atoms(relational or equality).
↙ ↘

predicate, P(x,y) x=y or x=c

Example 18. {(x, z) | ∃yR(x, y) ∧ z = y ∧ S(y, x))}
{(x, y) | R(x)} or {(x, y) | ∃z R(x) ∧ y = z)} → needs to be ruled out(via range-restriction).

Conjunctive queries in SQL

SELECT-FROM-WHERE fragment of SQL
select R1,S2
from R,S
where R1=c and S1=R1 and R3=S2

conjunction of equalities.

Definition 19. A tableau T is a set of atoms (rel. or eq.) that is range-restricted i.e. for any variable
x∈vars(T), either T`x=c or T`x=x′ where x′ occurs in a relational atom in T.

eg {R(y), y = z, z = x} ` y = x

8

Definition 20. A conjunctive query is given by a pair
〈
u,T
〉

where u is a tuple (the “output” tuple), T is
a tableau, and vars(u)⊆vars(T).
T={A1 . . . An}, {u — A1 ∧ . . . ∧An}.

Rule-based, Prolog-style syntax for CQs. (Datalog-style)

Q(x, y) : −R(x, z), x = c, S(x, y, z) −→ Q(c, y) : −R(c, z), S(c, y, z)

↓ ↓

output tuple or head tableau or body

This can always be done, provided the query is satisfiable, i.e. it is not the case that T` c1 = c2 for
distict constants c1, c2.

Can define sem. of CQs via translation to FO queries. But can define (equivalent) semantics directly via
notion of valuations.

Definition 21. Given tableau T, d.b. instance I, a valuation for T in I is a mapping β: vars(T) → D,
extended to map constants to themselves. We say that β satisfies T in I if

* for any atom R(x) in T, β(x) ∈ RI

* for any atom e=e′ in T, we have β(e) = β(e′)

Proposition 22. For any CQ Q=
〈
u, T

〉
, and d.b. instance I.

[[Q]]I = {β(u) | valuateion β satisfies T}

Q is viewed as FO query.

10 Wednesday, 1/27/10 (scribe: Thanh)

Property 23. A conjuntive querry Q =< ū, T > is satisfiable iff for all ci, cj if T ` ci = cj then ci = cj

We give a sketch proof by an example.

Example 24. We prove the querry < (x, c), {R(x, c), S(x, y), S(y, z)} > is satisfiable.
Database instance I: R S

cx c cx cy
cy cz

then valuate (cx, c) ∈ [[Q]]I .

Theorem 25. The expression (and combined) complexity of recognition problem for CQs is NP-complete.
(Recall for FO, PSPACE-complete).

Proof: We have two staments to show:
1. Combined complexity in NP: use as witness satisfying valuation β : vars(Q)→ D .
2. Expression complexity is NP-hard: we use reduction from 3-coloring problem.

Useful fact of Graph theory:
A directed graph G = (V,E) is k-colorable iff there exists a graph homomorphism h : G→ Ck where Ck is
the complete graph on k vertices.
Given G = (V,E) and G′ = (V ′, E′). A mapping is called a graph homomorphism if for all u, v ∈ V

9

(u, v) ∈ E ⇒ (h(u), h(v)) ∈ E′

Proof: Given G = (V,E). Construct CQ Q =< (), {P (u, v)|(u, v) ∈ E} > and a database instance I defined:

P I = {(r, g), (g, r), (b, r), (g, b), (b, g)}

Claim: () ∈ [[Q]]I iff G is 3-colorable (iff exists graph homomorphism h : G→ C3).
SPC () in input
Then have set valuation β : vars(Q)→ D .

Theorem 26. CQs and SPC queries are expressively equivalent.

Proof: (Sketch)
CQs→ SPC

Illustrate by example:

Q =< (x, d), {R(x, y), S(y, c, z)} >
Normal form: π2,1({d} × σ4=c(σ2=3(R× S)))

SPC → CQs
Using HW2 and HW3 can always put SPC querry in normal form the ”read” as CQ.

Definition 27. A querry Q is contained in another querry Q’, written Q v Q′ if for any database instance
I, we have [[Q]]I ⊆ [[Q′]]I . Moreover, Q and Q’ are equivalent, written Q ≡ Q′ if

∀I [[Q]]I = [[Q′]]I

(Note that Q ≡ Q′ if Q v Q′ and Q′ v Q).
We’ll show for CQs, Q v Q′ is decidable (and NP-complete).

Definition 28. Given CQs Q =< ū, T > and Q′ =< v̄, T ′ >, a containment mapping h : Q′ → Q is a
mapping h : vars(T ′)→ D, extended to map any constant to itself and such that:

* h(V̄) = ū
* for any relational atom P (ē) in T’, we have P (h(ē)) ∈ T .

Example 29. Q =< (x, y), R(x, y, c), R(x, z, c) >
Q′ =< (u, v), R(u, v, c) >
h : Q′ → Q : u→ x

v → y
c→ c

Lemma 30. 1. The identity mapping is a containment mapping id Q→ Q
2. Containment mappings compose:

h : Q→ Q′, g : Q′ → Q′′

g ◦ h : Q→ Q′′

Definition 31. If Q =< ū, T > is a CQ, the canonical database denoted can(Q) for Q is the database
instance obtained b viewing T as a database instance.

Example 32. T = {R(x, y), S(y, z, c)}
can(Q) = R S

x y y z c
”frozen” variables

Theorem 33 (Chandra and Merlin, 1977). For CQs Q,Q’ the following statements are equivalent:
1. Q v Q′
2. There is a containment mapping h : Q′ → Q
3. [[Q]]can(Q) ⊆ [[Q′]]can(Q)

10

11 Friday, 1/29/10 (scribe: Sarah)

proof: of Chandra and Merlin (1)⇒ (3) : is self-evident.
(3)⇒ (2) : suppose ū ∈ [[Q′]]can(Q), then ∃ a satisfying valuation β : vars(Q′)→ D, ie β(v̄) = ū.

For every atom P (v̄) ∈ T ′ we have β(v̄) ∈ P can(Q). Now we can view β as a containment mapping
β : Q′ → Q.

(2)⇒ (2) : suppose we have a containment mapping h : Q→ Q′. Consier an arbitrary I and ā. If
ā ∈ [[Q]]I then we have a satisfying valuation β : vars(Q)→ D, so β ◦ h is also a satisfying valuation,
β ◦ h : vars(Q)→ D. ∴ h(v̄) = ū, β(ū) = ā, β ◦ h(v̄) = ā
∴ P (v̄) ∈ T ′, P (h(v̄)) ∈ T, β(h(barv)) ∈ P I .
corollary: testing Q v Q′ is NP-complete. proof: (sketch) Guessing a containment mapping h is NP,
and hard because it is essentially a recognition problem, ie is ā ∈ [[Q]]I? let I 7→ T , so consider I a
“frozen query.” let ā 7→ ū where Q′ =< ū, T >. Q′ v Q iff ū ∈ [[Q]]can(Q′) and iff ā ∈ [[Q]]I

Query Minimization

Example 34. Q(x.y) : −R(x, y), R(x, z) ↓ Q′(x, y) : −R(x, y)

Definition 35. Given a conjunctive query Q =< ū, T >, a subquery is a conjunctive query of the form:
QS =< ū, S > where S ⊆ T .

note: if QS is a subquery of Q, then Q v QS because we can define h : QS → Q as a containment
mapping. This seems backwards, so here’s an example:

Example 36. Q(x, y) : −R(x, z), R(z, u), S(z, y) ↓ QS(x, y) : −R(x, z), S(z, y)
note the original query is more restrictive and wants a more specific part of the database. It is therefore

contained by the less restrictive subquery.

We are interested in cases where QS v Q because we can use this to infer Q ≡ QS .

Definition 37. A locally minimal conjunctive query Q =< ū, T > has no strict subquery QS such that
QS ≡ Q.

Lemma 38. Let h be a containment mapping from < ū, T > to < v̄, T ′ >. Then:

• if h is injective (ie one-to-one) on variables, then it is injective on atoms.

• if h is surjective (ie onto) on atoms, then it is surjective on variables.

Note that the converses of these statements need not hold.

Definition 39. An isomorphism is a containment mapping that is bijective on variables and atoms. (ie, a
renaming of variables)

Lemma 40. A conjunctive query Q is locally minimal iff any containment mapping h from Q to itself is
an isomorphism.

proof: (of converse) Consider QS =< ū, S > a subquery of Q =< ū, T > such that QS ≡ Q. Since QS v Q,
we have a containment mapping h : Q→ QS . We can also write h : Q→ Q since Q and QS are equivalent,
so T = H(T). Now T ⊆ S because of containment, and S ⊆ T because of the subset, so S = T and
Q = QS , hence Q is locally minimal. (of lemma) Let h : Q→ QS be a containment mapping, and
Q′ =< ū, h(T) > be a conjunctive query, where Q′ is a subquery of Q. Because of h we know Q′ v Q, and
Q′ ≡ Q. Since Q is locally minimal, Q = Q′. So h must be a surjection T → T and var(T)→ var(T).
Since T and vars(T) are finite, a surjection from T to itself or vars(T) to itself is also injective, ie an
isomorphism ∴ h is also an isomorphism.

11

12 Monday, 2/1/10 (scribe: Daniel)

Proposition 41. If a CQ Q is locally minimal then any containment mapping h : Q→ Q is an
isomorphism.

Theorem 42. Consider a CQ Q. Any locally minimal CQ Q′ equivalent to Q is isomorphic to some
subquery of Q.

Proof. Let Q =< ū, T >, Q′ =< ū, T ′ >. Since Q ≡ Q′, we have containment mappings h : Q→ Q′ and
h : Q′ → Q. Moreover, h ◦ g : Q′ → Q′ is a containment mapping, in fact by Prop. 41, it is an isomorphism.
Since h ◦ g is an isomorphism, g has to be injective (on variables and atoms).
Now, consider Qs =< ū, g(T ′) >, a subquery of Q. We claim, g is an isomorphism from Q′ to Q′. This is
true, since (1) g is a containment mapping, (2) g is injective on atoms and variables, (3) g is surjective on
atoms by construction, and (4) due to Lemma 38, also surjective.

Corollary 43. If two CQs Q and Q′ are locally minimal and equivalent, then they are isomorphic.

Proof. By theorem 42, Q is isomorphic to some subquery of Q′; but Q′ is locally minimal and thus this
subquery has to be Q′, thus Q isomorphic to Q′.

Optimization Procedure:
Given CQ Q =< ū, T >

Set Qs := Q
While exists a containment mapping from Qs to a strict subquery Q′s of Qs

Set Qs := Q′s
Return Qs.

Definition 44. A CQ is said to be globally minimal if it has the smallest number of atoms of any CQ
equivalent to it.

Proposition 45. A CQ is locally minimal iff it is globally minimal.

Example 46 (CQ Minimization).

Q(x, y, z) : −R(x, y2, z2), R(x1, y, z1), R(x2, y2, z), R(x, y1, z1), R(x2, y1, z)

We guess that a good containment mapping h : Q→ Q would be one that changes z2 7→ z1 and y2 7→ y1.
With this, Q′ would be:

Q′(x, y, z) : −R(x, y1, z1), R(x1, y, z1), R(x2, y1, z), R(x, y1, z1), R(x2, y1, z)

The last two atoms are redundant as they already occur in Q′. Also, each of the atoms in Q′ is present in
Q, so h actually was a containment mapping. Without the redundant atoms we get:

Q′′(x, y, z) : −R(x, y1, z1), R(x1, y, z1), R(x2, y1, z)

Through exhaustive search, we can verify that this query is actually minimal.

For a query Q, a minimal query Q′ is also called the core of Q. This terminology comes from graph theory.

Integrity Constraints

A commonly used constraint is a key constraint : Given a relational schema R(A,B,C), we say “A is a key
for R”, if the value of A identifies the tuple, i.e., if there is a functional dependency A→ B,C. Keys can
also contain two or more attributes: A,B → C or “A,B is a superkey (or compound key) of R”.
A further constraint type is a foreign key constraint : Given R(A,B,C) and S(C,D) we say “C is a foreign
key in S referencing R” if for every tuple (a, b, c) ∈ R, there exists a tuple (c, d) ∈ S for some d.

12

We will see that under constraints, non-equivalent queries can become equivalent. This will lead to further
optimization opportunities. Consider Q(x, y, z) : −R(x, y, z) and Q′(x, y, z) : −R(x, y, z), S(z, u). These are
clearly not equivalent; however under the constraint that the first column in S is a foreign key referencing
the third column in R, the queries are equivalent.
Dependencies in general, are FO logical assertions, i.e., sentences of various forms.

Definition 47. An embedded dependency (ed) is a FO sentence of the form

∀x̄ϕ(x̄)→ ∃ȳψ(x̄, ȳ),

where ϕ is a conjunction of relational atoms, and ψ is a conjunction of relational atoms or equality atoms.

Example 48.
“A is key in R(A,B,C)” would be ∀x, y, z, y′, z′R(x, y, z) ∧R(x, y′, z′)→ y = y′ ∧ z = z′.
“C is a foreign key in S(C,D) referencing R(A,B,C)” would be ∀x, y, z R(x, y, z)→ ∃uS(z, u).

Definition 49. A conjunctive containment dependency (ccd) is an assertion of the form:

Q v Q′,

where Q,Q′ are conjunctive queries.

Proposition 50. Embedded dependencies and conjunctive containment dependencies are equally expressive.

Proof. Sketch. (1) Given an ed d = ∀x̄ϕ(x̄)→ ∃ȳψ(x̄, ȳ). Let Q =< x̄, ϕ > (where ϕ is viewed as a
tableau, i.e., as a set of atoms). Let further Q′ =< x̄, ϕ ∪ ψ > (again, with ϕ and ψ viewed as sets of
atoms). We now claim that for any database instance I: I |= d iff [[Q]]I ⊆ [[Q′]]I .
(2) Given a ccd Q v Q′ with Q =< ū, T > nd Q′ =< ū, T ′ >. Let cont(Q,Q′) be the embedded
dependency. Further, let z̄ be the variables in T but not in ū and let z̄′ be the variables in T ′ but not in ū.
Now,

cont(Q,Q′) def= ∀ū∀z̄ T → ∃ū′∃z̄′ T ′ ∧ ū = ū′

where T and T ′ are viewed as conjunctions of atoms. We now claim that for any database instance I:
[[Q]]I ⊆ [[Q′]]I iff I |= cont(Q,Q′).

Corollary 51. Testing whether an ed or a ccd holds in all instances is NP complete.

13 Wednesday, 2/3/10 (scribe: Mingmin)

Example 52. Consider a CQ
Q(y, z) : − R(x, y, z′), R(x, y′, z)

As is, Q is minimal. But suppose we assume the (key) dependency

∀x, y, z, y′, z′R(x, y, z) ∧R(x, y′, z′)→ y = y′ ∧ z = z′

Then, assuming dependency holds, Q is equivalent to

Q′(y, z) : − R(x, y, z) .

Example 53. Consider a CQ
Q(x, y) : − R(x, y), S(x, z)

As is, Q is minimal. But if we assume the (foreign key) dependency

∀x, yR(x, y)→ ∃zS(x, z)

Then, we can minimize Q to
Q′(x, y) : − R(x, y) .

13

Main Technique: the chase

Example 54. Consider a CQ (in relational calculus notation)

Q = {x̄ | ∃ȳψ(x̄, ȳ)}

and an e.d.
d = ∀x̄, ȳψ(x̄, ȳ)→ ∃z̄ϕ(x̄, ȳ, z̄)

then a chase step from Q with d, written Q
d−→ Q′, produces CQ

Q′ = {x̄ | ∃ȳ∃z̄ψ(x̄, ȳ) ∨ ϕ(x̄, ȳ, z̄)}

Definition 55. A homomorhisim of tableaux is a mapping h:T → T ′ s.t. if atom A∈ T, then h(A)∈T′.
R(x,y)⇒R(h(x),h(y))∈T′, i.e. they are just c.m.s, minus the requirement to map output tuple to output
tuple.

Definition 56. Consider the e.e. d
def
= ∀x̄ψ(x̄)→ ∃ȳϕx̄, ȳ and a tableau T, we say that the chase is

applicable to T if there exists a homomorphism h:ψ → T that cannot be extended to map ψ ∪ ϕ→ T , i.e.
there does not exist a homomorphism h′ : ψ ∪ ϕ→ T , where h′=h on ψ where the chase is applicable the
result of one step of chase of T with d is the tableau T′

def
= T∪ψ[x̄ 7−→ h(x̄)].

Example 57. d
def
= ∀x, yR(x, y)→ ∃zS(x, z).

T={R(u,v)}
T d→T′ where T′ ={R(u,v),S(u,z))} S(x,z)[x7−→u]=S(u,z)
Note: In the definition, we assume vars in d and T are disjunct (always can be accomplished by renaming).

Definition 58. chase on CQs is defined in terms of their underlying tableau
i.e. if T→T′ and Q=< ū,T>, then Q d→Q′ where Q′=< ū, T ′ >.

Lemma 59. If the chase with d is not applicable to a (satisfiable) tableau T, then Inst(T)|=d.
Proof. exercise.

Lemma 60. If Q d→Q′, then d|=Q≡Q′

Proof. |=Q′ vQ easy since T⊆T′, so identity is a containment mapping Q→Q′.
Now, wts. d|=QvQ′, i.e. for any DB instance I s.t. d|=T, we have [[Q]]I ⊆ [[Q′]]I .
Let d=∀x̄ψ(x̄)→ ∃ȳϕ(x̄, ȳ). Let h:ψ →T be the hom. used in chase step. Hence T′=T∪ψ[x̄ 7−→ h(x̄)].
Since the output tuple is the same in Q and Q′, it suffices to show that any sat. val. for T in I can be
extended to a sat. val. for T′.
Let β:T→I be such a sat. val. It follows that β ◦ h: ψ →I satisfies ψ in I. And since d|=I, we can extend
β ◦ h to a sat. val. γ : ψ ∪ ϕ→I. Now, define β′:T′ →I as follows:

β′(z) =
{
γ(z) if z ∈ vars(ȳ)
β(z) otherwise

14

So β′ extends β, remains to show that β′ satisfies T′ in I.
Clearly, β′ satisfies the atoms that are also in T.
Now,suppose e.g. that R(h(x),y), where x∈ x̄ and y ∈ ȳ, is an atom in T′ →T, e.e., in ϕ[x̄ 7−→ h(x̄)].
We have (β′(h(x)), β′(y)) = (β(h(x)), γ(y)) = (γ(x), γ(y)) ∈ RI , since γ is a sat. val. for ϕ in I.
Similarily for eq. atoms.

Definition 61. Let Q be a CQ and D a set of e.d.s.
A terminating chase sequence of Q with D is a sequence of chase steps:

Q
d1→ Q1

d2→ . . .
dn→ Qn

where d1, . . . , dn ∈ D and no chase with deps from D is applicable to Qn.

Theorem 62. Let Q, Q′ ∈CQ and D is a set of e.d.s. Suppose exists a term chase sequence of Q with D
producing Qn. Then

D |= Q v Q′ iff Qn v Q′

14 Friday, 2/05/10 (scribe: Zhongxian)

Theorem 63. Let Q, Q′ be CQs and D a set of eds. Suppose Qn is the result of a terminating chase
sequence from Q with D. Then:

D |= Q v Q′ iff Qn v Q′

Proof. Sketch. “⇐” is immediate, since D |= Q ≡ Qn. (Lemma 59)
“⇒”: Suppose D |= Q v Q′, let Tn be the tableau underlying Qn.
Suppose Qn is unsatisfiable, then Qn v X or CQ X in particular Qn v Q′.
Assume Q =< ū, T >,Q′ =< ū′, T ′ >,Qn =< ūn, Tn >. Now suppose Qn is satisfiable. Assuming
Q,Q′, Qn do not contain equality atoms. Let In = Inst(Tn). According to Lemma 58, we have ū ∈ [[Q]]In ,
also In |= D, Since D |= Q v Q′, ū ∈ [[Q′]]In . Then there exists a satisfiable valuation β : Q′ → dom(In),
such that β(ū′) = ū. It’s easy to see that this yields the required containment mapping h : Q′ → Qn.

Essential Question: When does the Chase terminate ?
Example: d1

def
= ∀x, y,R(x, y)→ ∃zS(z, y)

d2
def
= ∀x, y, S(x, y)→ ∃zR(z, y).

Consider a tableau T = {R(u0, u1)}.
Chase Step yields

d1 S(u2, u1)
d2 R(u1, u3)
d1 S(u3, u4)
d2 R(u3, u5)
... ...

There is just one chase sequence (up to variable renaming, and it is infinite.

d3
def
= ∀x, y,R(x, y)→ x = y

d4
def
= ∀x, y, S(x, y)→ x = y

So, we have R{u0, u1}S{}
d3→ R{u0, u0}S{}

d1→ R{u0, u0}S{u1, u0}
d4→ R{u0, u0}S{u0, u0}. For given D and

T , we can have finite and infinite chases sequences.

Theorem 64. (Dentsch, Nash, Remel, 2008) Termination of the chase is undecidable.

15

Theorem 65. D |= Q v Q′ is undecidable.

Proof. Sketch. QE v Q′ is ccd, hence an ed. So D |= d is undecidable.

Several variants of the (classical) chase proposed, to make it “more deterministic”.
Culmilating in the core Chase(PNR 2008).
Idea: at each step of the classical chase, several (but finitely many) dependences apply, each with several
(but finitely many) associated tableau homomophisms. At each step of the core chases, do two things:

• “Fire” all applicable dependences in parallel, produce T ′.

• Minimize T ′ by computing its core.

Theorem 66. • Preserve equivalence with respect to D.

• Deterministic(up to renaming variables).

• If there is any terminating classical chase sequence from T with D, then the core chase with T and D
terminates.

15 Monday, 2/8/10 (scribe: Vu)

Definition 67. Given D, focus on tuple-generating dependencies in D (t.g.d.s).

∀x̄ϕ(x̄) =⇒ ∃ȳψ(x̄, ȳ)

where ψ contains only predicate atoms (no equality) (contrast to equality-generating dependencies
(e.g.d.s)).

∀x̄ϕ(x̄) =⇒ xi = xj

Fact: any e.d. can be expressed using just t.g.d.s and e.g.d.s.

Definition 68. Given set D of t.g.d.s, build the chase-flow graph for D as follows:

• vertices: for each predicate symbol of arity k in schema, G has a vertex (P, i) for each 1 ≤ i ≤ k.

• for each t.g.d. and each variable x that occurs in position i in an R-atom of the premise of the t.g.d.
and in position j in an S-atom in the conclusion, G has an edge from (R, i) to (S, j).

• for each t.g.d. and each vertex x that occurs in position i in a R-atom of the premise and x occurs
somewhere in the conclusion and each variable y that is existentially quantified in a S-atom at
position j of the conclusion, G has an edge from (R, i) to (S, j) labeled with a *.

We say D is weakly acylic iff its chase-flow graph has no cycle through an edge, marked *.
Note: t.g.d. ∀x̄ ϕ(x̄)︸︷︷︸

premise

=⇒ ∃ȳ ψ(x̄, ȳ)︸ ︷︷ ︸
conclusion

Theorem 69. (Deutsch, Popa, Tannen 2003) If D is weakly acylic, then chasing Q with D always
terminates (in a number of steps polynomial in |Q| and |D|, assuming fixed schema).

Definition 70. (Minimality under constraints) Given set D of e.d.s, a CQ Q is D-minimal if there are no
CQs S1, S2 where

• S1 is obtained from Q by replacing zero or more variables in Q with other variables of Q

• S2 is a strict subquery of S1 such that D |= Q ≡ S1 ≡ S2.

16

For example,

Q(x, y) : −R(z, x), R(z, y)
∀x, y, zR(x, y) ∧R(x, z) =⇒ y = z

Q(x, y) : −R(z, x), R(z, y), x = y

S1(x, y) := R(z, x), R(z, x)
S2(x, y) := R(z, x)

Definition 71. (Chase & backchase - Deutsch, Popa, Tannen 2003) Given a CQ Q, set D of e.d.s, assume
D is weakly acyclic.

1. (Chase): chase Q with D, producing U, the universal plan for Q.

2. (Backchase):
for each subquery Qs of U
if Qs is D-minimal, and QsD =⇒ Qs ≡ U (tested by chasing) then output Qs

Theorem 72. Chase and backchase output precisely the D-minimal rewriting of Q.
(If D |= Q′ ≡ Q and Q′ is D-minimal, then Q′ is isomorphic to a subquery of U)

Chase & backchase is interesting because it is a unifying and general technique for:

• optimizing queries using views

• answering queries using views

Given a CQ Q and a set of views definitions V, find an efficient plan to answer Q (possibly using views in
V). For example:

Q(x, y) : −R(x, u), R(u, v), R(y, y)
V (x, y) : −R(x, u), R(u, y)

=⇒ Q′(x, y) : −V (x, z), R(z, y)

Encode using e.d.s

∀x, y, zR(x, z) ∧R(z, y) =⇒ V (x, y)
∀x, yV (x, y) =⇒ ∃zR(x, z) ∧R(z, y)

16 Wednesday, 2/10/10 (scribe: Vu)

Example for chase & backchase

Q(x, y) : −R(x, y), R(x, z), S(y, u), S(z, u)

D

{
d1

def= ∀u, v, wR(u, v) ∧R(u,w) =⇒ v = w (e.g.d.)
d2

def= ∀u, vR(u, v) =⇒ ∃wS(v, w) (t.g.d.)

Step 1: Chase Q with D

Q
d1−→ Q1 : Q1(x, y) : −R(x, y), R(x, z), S(y, u), S(z, u), y = z

i.e.,
Q1(x, y) : −R(x, y), S(y, u)

17

And the chase terminates with Q1 as the universal plan.
Step 2: Backchase

Qs(x, y) : −R(x, y)

Qs
d2−→ Q′ : Q′(x, y) : −R(x, y), S(y, w)

and the chase terminates.
Since Q′ ∼= Q1, hence D |= Qs ≡ Q1 ≡ Q.
Output Qs as the minimal rewriting.
Another application for chase & backchase: answering queries with views.
Two flavors: Given CQ Q and CQ view V

1. Find rewriting of Q using any combination of source and view predicates - for performance.

2. Find rewriting of Q using only view predicates

Eg, when source database is remote/unavailable/non-existant.
Chase & backchase applies to both scenerios.
Given a CQ view

V (ū) : −ϕ(ū, v̄)

we can model the view using a pair of t.g.d.s.

∀ū, v̄ϕ(ū, v̄) =⇒ V (ū)
∀ūV (ū) =⇒ ∃v̄ϕ(ū, v̄)

For example,

Q(x, y) : −R(x, u), R(u, v), R(v, y)
V (u, v) : −R(u,w), R(w, v)

D

{
d1

def= ∀u, v, wR(u,w) ∧R(w, v) =⇒ V (u, v)
d2

def= ∀u, vV (u, v) =⇒ ∃wR(u,w) ∧R(w, v)

Step 1: chase Q with D

Q
d1−→ Q1 : Q1(x, y) : −R(x, u), R(u, v), R(v, y), V (x, v)

Q1
d1−→ Q2 : Q2(x, y) : −R(x, u), R(u, v), R(v, y), V (x, v), V (u, y)

and the chase terminates with Q2 as the universal plan.
Step 2: backchase: out put of backchase step will be

Q′(x, y) : −R(x, u), V (u, y)
Q′′(x, y) : −V (x, v), R(v, y)
Q′′′(x, y) : −R(x, u), R(u, v), R(v, y)

Backchase with

Q′
d2−→ Q′1 : Q′1(x, y) : −R(x, u), V (u, y), R(u,w), R(w, y)

Q′1
d1−→ Q′2 : Q2(x, y) : −R(x, u), V (u, y), R(u,w), R(w, y), V (x,w)

Note that Q′2 ∼= Q2, so D |= Q′ ≡ Q2 ≡ Q.
On the other hand, consider

Qbad(x, y) : −R(x, u), R(v, y)

18

Backchase terminates after 0 steps: Qbad 6∼= Q2, so D 6|= Qbad ≡ Q2

Consider the query TC which computes transitive closure of a graph G

TC(G) def= {(x, y)| there exists a path from x to y in G}

Theorem 73. (Compactness) A theory T (i.e., a set - possibly infinite set - of FO sentences) is consistent
(i.e., ∃A s.t. A |= T) iff every finite subset of T is consistent.
(A corollary of Godël’s Completeness Theorem)

Connectivity query:
conn(G) def= true iff G is connected

Ex: if TC is FO-expressible, then so is connectivity.

Proposition 74. Connectivity over arbitrary (e.g., possibly infinite) graphs is not FO-expressible.

Proof. Assume towards a contradiction that it is expressible, via FO sentence Φ.
Vocabulary σ = {E, c1, c2}. Now for every n, let ψn be the FO sentence.

ψn
def= ¬(∃x1, ..., xn(E(c1, x1) ∧ E(x1, x2) ∧ ... ∧ E(xn, c2)))

i.e., ψn says there is no path of length n from c1 to c2.
Let T be the theory.

T = {ψn|n > 0} ∪ {¬(c1 = c2),¬E(c1, c2)} ∪ Φ

Claim: T is consistent.
By compactness, we need to show every finite T ′ ⊆ T is consistent. Let N be s.t. forall ψn ∈ T ′, n < N .
Then a connected graph in which the shortest path from c1 to c2 has length N + 1 is a model of T ′.
Since C is consistent, it has a model, say G |= T . G is connected, but has no path of any length from c1 to
c2 - a contradiction.

17 Friday, 2/12/10 (scribe: Thanh)

Compactness: Any theory T is consistent if every finite subset of T is consistent.

Proposition 75. Compactness fails for finite models, i.e, there exists a theory T which is unsatisfiable by
any finite model, but every finite subset of T is finitely satisfiable.

Proof: Let T = {λn|n > 0} where λn is defined (over vocabulary σ = Φ)
λn = ∃x1, x2, ..., xn ∧ xi 6= xj

i 6= j
λn says the universe has at least n distinct finite elements. Clearly, T is not finitely satisfiable. On the
other hand, any finite subset T ′ ⊂ T if stisfiable by a model with universe > N where N is max{i|λi ∈ T ′}

Ehrenfeucht-Fraisse Games (EF-games):

Two players, the spoiler and the duplicator. Given two finite structures, A and B. In each round,
1. Spoiler picks one of A or B and an element of that structure.
2. Duplicator picks an element of the other structure.
After n rounds, let (a1, a2, ..., an) and (b1, b2, ..., bn) be the elements chosen so far. We say that (ā, b̄) is
minimizing position for the duplicator if (ā, c̄A), (b̄, c̄B) is the partial isomomorphism between A and B (c̄
is the constansts in σ). We say that the duplicator was an n-round winning statergy if the duplicator can
play in a way that guarantee a winning position after n rounds (other wise the spoiler has an n-round
winning startergy).
If the duplicator has an n-round winning statergy we wrote A ≡n B (Note that A ≡n B ⇒ A ≡k B for
k ≤ n).

19

Definition 76. Let A,B be finite σ-structures, σ is relational and ā = (a1, a2, ..., an) and b̄ = (b1, b2, ..., bn)
two tuples over elements of A and B, repectively, then (ā, b̄) defines a partial isomomorphism between A
and B if following holds:

* For every i, j ≤ n ai = aj if bi = bj
* For every constant symbol c ∈ σ and every i ≤ n, ai = cA if bi = cB

* For every k-arry predicate symbol P ∈ σ and every sequence (i1, i2, ..., ik) of (not nesscessarily distinct)
number from [1,n]
(ai1 , ai2 , ..., aik) ∈ PA iff (bi1 , ..., bik) ∈ PB

Definition 77. The quantifier rank of a FO sentence φ is the depth of quantifier nesting qr(ϕ)
* If ϕ is atomic, qr(ϕ) = 0
* qr(φ ∧ ψ) = qr(ϕ ∨ ψ) = max(qr(ϕ), qr(∨))
* qr(¬ϕ) = qr(ϕ)
* qr(∀xϕ) = qr(∃xϕ) = qr(ϕ) + 1

Example 78. qr(∃x(∀yR(x))) ∨ ∃zP (z) = 2

Denote FO[k] is the fragment of FO sentences ϕ ∈ FO|qr(ϕ) ≤ k

Theorem 79. Let A,B be finite σ-structures, then the following are equivalent:
1. A and B agree on FO[k], i.e. for any ϕ ∈ FO[k], A |= ϕ iff B |= ϕ
2. A ≡k B
A property P of finite σ-structures is not expressible in FO iff for any k ∈ N, then exist two finite
σ-structures Ak and Bk such that

* Ak ≡k B
* Ak has property P, but Bk does not.

Proof: Supposes ϕ expresses P, k = qr(ϕ) and suppose have Ak, Bk such that Ak has P, Bk does not have P
but Ak ≡k Bk. Then, ϕ |= Ak iff ϕ |= Bk, a contradiction.

Example 80. games on sets vocabulary σ = Φ. Supposes |A|, |B| ≥ n. Then, A ≡n B.

Example 81. games on linear order. Let σ = {λ} interpreted as a linear oreder. Supposes L1, L2 are two
linear orders of size ≥ n. It is not true that L1 ≡n L2 even for n =2.
Let L1 = a < b < c
Let L2 = u < v First round, spoiler picks L1 and b. Duplicator picks u or v. Second round, if u picked,
spoiler picks a (if v then c).

Example 82. If L1 and L2 are linear orders of size at least 2k, then L1 ≡k L2

for: EVEN is not FO-expressible even if σ = {<} and ¡ is a linear order where EV ENA = true if |A| has
even number of elements.
Proof: Supposes ϕ ∈ FO expresses EVEN. Let k = qr(ϕ).

Pick L1 is linear order of size 2k

Pick L2 is linear order of size 2k+1

Then, L1 ≡k L2, a contradiction.

18 Wednesday, 2/15/10 (scribe: Mingmin)

Theorem 83. If L1 and L2 are linear orders (with σ={<}) of size ≥ 2k then L1 ≡k L2.

Proof. L1 = {1, . . . , n}, L2 = {1, . . . ,m} where n,m ≥ 2k.

Define distance between x and y d(x,y)
def
= |x-y|.

Assume the vocabulary σ has constants min and max.
We claim that the dup. has a strategy s.t. after round i:

20

* Let ā = (a−1, a0, a1, . . . , ai) and b̄ = (b−1, b0, b1, . . . , bi) be moves played in L1, L2 respectively.
a−1 = minL1 = 1, a0 = maxL1 = n; b−1 = minL2 = 1, b0 = maxL2 = m.

* Then for −1 ≤ j, l ≤ i
IH{
1. if d(aj , al) < 2k−i, then d(aj , al) = d(bj , bl).
2. if d(aj , al) ≥ 2k−i, then d(bj , bl) ≥ 2k−l.
3. aj ≤ al ⇐⇒ bj ≤ bl =⇒ the partial isomorphism condition.

Proof of claim: By induction on L:

base case: (i=0) immeiate since d(a−1, a0), d(b−1, b0) ≥ 2k by assumption.
induction case: Sps spoiler picks L1 in round i+1, plays ai+1 (case for L2 is symmetric)
case 1: ai+1 = aj for some j≤i⇒dup. responds with bj .
case 2: spoiler plays new point ai+1, falling into some interval, aj < ai+1 < al, s.t. no other
moves previously played in the same interval. By IH(3), the corresponding interval (bj , bl) also
does not contain any previously played elements.

There are two (sub)cases:

(a) d(aj , al) < 2k−i, dup. responds with the element bj+1 in interval (bj , bl) s.t. d(bj , bi+1) = d(aj , ai+1).

(b) d(aj , al) ≥ 2k−i. There are 3 cases:

* d(aj , ai+1) < 2k−(i+1) and d(bi+1, bl) ≥ 2k−(i+1).

* d(ai+1, al) < 2k−(i+1) and d(aj , ai+1) ≥ 2k−(i+1). Similar to first case.

* d(aj , ai+1), d(ai+1, al ≥ 2k−(i+1)).

Corollary 84. Graph connectivity (and also transitive closure) is not FO-expressible even over graphs with
a linearly-ordered domain.

Proof. Define a successor relation succ(x, y) ≡ x < y ∧ ∀z(z ≤ x ∨ z ≥ y).
Define γ(x, y) as the FO formula s.t. γ(x, y) holds iff one of the following is true:

* y is the succ. of the succ of x.

* x is the predecessor of the last element and y is the first element.

* x is the last element, and y is the succ. of the first element.

We can show that when underlying order is even, γ-graph is disconnected; odd, γ-graph is connected.
Now, sps connectivity is FO-expressible via sentence Φ over vocab. σ = {<,E}.
Take Φ replace every occurrence of E by γ
Call the result Ψ. But Ψ expresses EVEN, a contradiction.

Datalog:

T(x,y):- E(x,y) T(x,y):- E(x,z),T(z,y)

19 Friday, 2/17/10 and Monday, 2/20/10 (scribe: Bertram)

Reading. Sections 12.1–12.3, Foundations of Databases, Abiteboul, Hull, Vianu, 1995 (e-version
available).

21

Datalog Syntax. We already know conjunctive queries which can be expressed as rules r of the form

• A0(x̄0) :−A1(x̄1), . . . , An(x̄n)

Here each Ai(x̄i) is a logic atom, with Ai a k-ary relation symbol and x̄i a k-tuple of variables or constants.
All variables occurring in the head A0(x̄0) of r must also occur in the body (the rhs) of r.1

A finite set of rules P of the above form is called a Datalog program. The relations occurring only in the
body of rules of P are called edb-relations; those that occur in the head (and possibly in the body) are
called idb-relations. Thus, we can associate with a Datalog program P a schema sch(P) as follows:

• sch(P) = edb(P) ∪ idb(P).

As we shall see, at Datalog program P can be given a query semantics, i.e., it can be viewed as a mapping
from instances of edb(P) to instances of idb(P).

Example. Consider the following Datalog program Ptc with edb-relation G and idb-relation T :

T (x, y) :−G(x, y).
T (x, y) :−G(x, z), T (z, y).

It maps instances of the edge relation G/2 of a graph to instances of another relation T/2, the transitive
closure of G.

Model-theoretic Semantics of Datalog. We can view a Datalog program P as a set of first-order
logic formulas ΦP ; e.g. for Ptc we get2

• ΦPtc
= {∀x, y : T (x, y)← G(x, y), ∀x, y, z : T (x, y)← G(x, z) ∧ T (z, y)}.

We can ask ourselves: what are the models of ΦPtc , given a particular input instance of G/2? We can focus
our attention on Herbrand Models.

Herbrand Models. A (Herbrand) model M of a set of (closed) formulas Φ is a (Herbrand)
interpretation that satisfies all sentences in Φ, denoted M |= Φ. A Herbrand interpretation is one where
symbols are interpreted “syntactically”, i.e., they stand for themselves (in general, an interpretation maps
symbols from the syntactic domain to a semantic domain). Thus, a Herbrand interpretation is built over a
Herbrand universe, consisting of constants (and if function symbols are allowed: ground terms, i.e.,
function terms containing only constants as arguments, but no variables). Using constants (and other
ground terms), the Herbrand base BP of ground atoms is built.
To simplify the presentation, we sometimes denote by P a Datalog program together with a set of (ground)
facts, i.e., and instance of edb(P). For example we might have P =

T (x, y) :−G(x, y).
T (x, y) :−G(x, z), T (z, y).

G(a, b).
G(b, c).
G(c, d).

Here we have as set of constants C = {a, b, c, d} and relation symbols R = {G/2, T/2}. The Herbrand base
BP of P consists of all ground atoms that can be built using C and R; here:

1Later, when allowing negated literals ¬Bi(x̄i) in the body, we require that all variables in a rule appear in some positive
literal of the body. Such rules are called range-restricted ; this implies they are domain-independent.

2The arrow A ← B is just a shorthand for ¬B ∨ A. The ∀z in the second formula can be moved inside as follows:
∀x, y : T (x, y)← ∃z : G(x, z) ∧ T (z, y).

22

{G(a, a), G(a, b), . . . G(d, d), T (a, a), . . . , T (d, d)}. Since we consider only finite database instances, BP will
be finite as well.3

For Herbrand interpretations, we simply view constants symbols as distinct domain elements, and any
subset I ⊆ BP can be viewed as an interpretation assigning True to all ground atoms A(c̄) ∈ I and False to
all A(c̄) /∈ I .

Immediate Consequence Operator TP . Given a Datalog program (with edb) P and an interpretation
I ⊆ BP , we can compute the set of immediate consequences

TP (I) := {head(r) | I |= body(r), r ∈ ground(P)}

Here, ground(P) is the finite set of ground rules that can be obtained from P by substituting variables in
all possible ways by constants from C. So given I, we find the ground rules whose body is satisfied, then
derive the ground atom in the head of the rule.

Fact: An interpretation I is a model of P , denoted I |= P iff Tp(I) ⊆ I. To see this, note that if there
was a head atom A(c̄) derived by TP but not in I, then the corresponding ground rule would be violated
(the body of that rule must be true for the head to be derived; yet the head is not in I.)

Fact: BP is a (Herbrand) model of P (or of ΦP to be more precise). To see this, note that BP makes true
all heads of rules of P , for all possible ground instances of those rules.4

Clearly BP is usually not the desired model. In the example, it contains “unsupported” atoms such as
G(a, a). We can also “make up” models by adding “self-supporting” atoms to T/2, without the underlying
graph G/2 necessarily having a corresponding transitive path.

Minimal Model MP . Consider a Datalog program P (with edb). Let I ⊆ BP be any Herbrand
interpretation of P . We define MP as the intersection of all models of P , i.e.,

MP =
⋂
I⊆BP

{ A ∈ I | I |= P }

Note that MP is unique and minimal (no proper subset of MP is a model of P).

Fixpoint Semantics. Computing the intersection of a large (even if finite) set of interpretations is
highly inefficient. Instead we can compute the semantics of P bottom up using TP . First, note that TP is
monotone, i.e., I ⊆ J implies TP (I) ⊆ TP (J).5 With this, and the fact that BP is finite, we can see that
the following iteration reaches a fixpoint:

• T 0
P = ∅,

• Tn+1
P = TP (TnP).

Note: In the base step T 0
P , we already derive all facts (= edb-instance).

Theorem. The fixpoint TωP coincides with MP .

3Exercise:What is the size of BP ? Is it polynomially bounded by the size of the given edb?
4G/2 are viewed as implications of the form G(. . .)← true.
5This is no longer the case, if Datalog rules have negative literals ¬B in the body.

23

Proof-theoretic Semantics. The fixpoint semantics can be implemented in an obvious way in a
bottom-up, set-oriented way (example on blackboard).
There is an alternative, top-down and tuple-oriented way. For that, we view the rules of a Datalog program
P as inference rules. We start with a fact that we want to derive, e.g. T (a, d) in the example. We then
apply the rules “backwards” to obtain new proof obligations. This yields a proof-tree with leaves that are
either successful (we can fulfill our proof obligations using the given (edb) facts, or that fail (the fact we
need to assume is not in the edb). For details see [AHV95, Section 12.4].

Adding Negation

Datalog can express certain recursive queries, but not negation. First-order logic can express negation but
not recursion. The combination of “recursion through negation” can be problematic (and in fact has fueled
the research areas of KR and Nonmonotonic Reasoning and Logic Programming in the 1990). The
problems can be illustrated with ground (propositional) rules.

Syntax of Datalog¬. If we allow negated literals ¬A(x̄) in the body (not in the head!) of rules, we
obtain Datalog¬. We also require that every variable in a Datalog¬ rule appears positively in the body, i.e.,
we assume rules are range-restricted.
Note that for Datalog¬, TP is no longer monotone!
To illustrate the problems with negation, we can focus on propositional cases (after all, we can replace a
Datalog(¬) program with edb by its finite ground instantiated version.

Multiple Minimal Models (Stratified Case). Consider the program P1 = {p :− q, q :− ¬r}. It has
two different minimal models M1 = {p, q} and M2 = {r}. For M1 we can assume r to be false (there is no
fact or rule that could derive r), hence q and thus p must be true. This models seems to be the “right”
(intended) one. On the other hand, M2 is a minimal model, too: If r is true, then the body of the second
rule is false, so we do not have to derive q (and thus we don’t need to derive p either). So somehow we
want to say that M1 is preferred over M2. The notion of stratification will do the job (see below/later).

Multiple Minimal Models (Non-Stratified Case). Now consider the following program
P2 = {p :− ¬q, q :− ¬p}. Again we have two minimal models; here: M1 = {p} and M2 = {q}. But now we
cannot say that one model is “better” than the other (for they are complete symmetrical). The STABLE
semantics, assigns to any program a set of models. The stratified semantics excludes such programs from
consideration (because the program contains a negative cylic dependency). The well-founded model
semantics (WFM) assigns a third thruth value to atoms that are “ambiguous”. Here WFM would make p
and q undefined.

Stratified Datalog¬. A Datalog¬ program P is called stratified if its dependency graph G does not
contain negative cycles. The nodes of the dependency graph are the relation symbols of P . There is an
edge from R to S in G if there is a rule in P such that R occurs in the body and S occurs in the head. The
edge is called negative and labled with “¬” if R occurs under a negation symbol in the body.
It is easy to see that if a program P is stratified, then we can create a partition of rules P = P1 ∪ · · · ∪ Pn,
such that the different “layers” of rules Pi can be evaluated one after another. That is, the relations
defined by rules in Pi only depend on relations defined by Pj with j ≤ i, and only depend negatively on
relations pj with j < i (i.e., from lower strata).

Beyond Stratified Datalog. There are certain queries that involve negation and recursion that cannot
be expressed in stratified Datalog¬ (or S-Datalog for short). There are several extensions that are strictly
more expressive:
Inflationary Datalog (I-Datalog) corresponds to IFP (inflationary fixpoint logic), which itself is
equivalent ot LFP. The idea of I-Datalog is to allow negation in the head of rules and evaluate this rules

24

similar to the TP iteration, but (somewhat artificially) keeping all previously derived facts
T ′P (I) = TP (I) ∪ I.
Non-inflationary Datalog (P-Datalog) corresponds to PFP (partial fixpoint logic). Again we allow
negation in the head (which is interpreted as “deletion”) but w allow the fixpoint iteration to diverge (we
use TP instead of T ′P).
I-Datalog and P-Datalog have been considered by the database and finite model theory community (as
syntactic variants of IFP and PFP) to study the expressive power and computational complexity of query
languages. For KR and NMR purposes, however, they have not gained traction. Instead, the
well-founded Datalog (WF-Datalog) semantics and the stable semantics (sets of stable models,
ST-Datalog) have been adopted by the KR, NMR, and LP communities.
A model M |= P is called stable if after replacing in ground(P) all atoms in the rule bodies with their
truth value in M , the resulting reduced program (now a program without negation!) has as its unique
minimal model exactly M . A program can have zero or more stable models (e.g. p :− ¬p has not stable
models, whereas P2 above has the indicated two stable models).
The WF-Datalog semantics, on the other hand, is a 3-valued model. It can be computed iteratively by an
alternating fixpoint construction. The basic idea is to keep track of two subsets of BP , i.e., those atoms
that are definitely true and those that are definitely false (or equivalently those that are true or undefined).
One can then define a fixpoint operator Γ2

P whose lfp and complement of gfp yield the definitely true and
definitely false facts, respectively; all remaining atoms are assigned the truth-value undefined.
The well-founded semantics yields the intended meaning of non-stratified programs such as

win(X) :−move(X,Y),¬win(Y)

In fact, it can be shown that all Fixpoint queries (LFP, IFP) can be expressed in the form of a win-move
game, i.e., with a quantifier-free FO formula for move and a single recursive rule

win(X̄) :−move(X̄, Ȳ),¬win(Ȳ)

and that this win-move game can even be reduced to a draw-free game (Flum, Kubierschky, Ludäscher,
ICDT’97).

20 Friday, 2/26/10 (scribe: Zhongxian)

Theorem 85. Containment/equivalence of Datalog program is undecidable.

• containment: (CGKV 1988, Shmueli 1987)

• equivalence: (Shmueli 1993)

Theorem 86. Equivalence of Datalog and NR-Datalog (non-recursive) is decidable, but complete for
3-EXPTIME (Chaudhuri and Vardi, 1992)

Theorem 87. Boundedness of Datalog program is undecidable. (GMSV 1993)

Theorem 88. WF-Datalog¬ + order captures PTIME. (Vardi 1982)

Theorem 89. (Fagin 1976)

• ∃SO = NP

• ∀SO = CO −NP

25

21 Monday, 3/01/10 (scribe: Thanh)

Bag-theoretic Sematics

Definition 90. a bag (or multiset) is a group of annotated elements

Example 91. {(CS140,Olsson);[2],(CS235,chen);[1]}
↑

multiplicity

Definition 92. A sub bag Bs of bag B (written ≤b) where:
1) every element b ∈ Bs is ∈ B
2) multiplicity of b —b— in B ≥ —b— in Bs
* This is more restrictive than subset *

Optimizing querries

- Containment:

Definition 93. Q is bag-contained in Q’ (writtten Q ≤b Q’) iff Q(I) ≤b Q′(I) for any bag database
instance I
* strictly stronger than set containment *

Proposition 94. 1) For any Q, Q’ if Q ≤b Q’ then Q ≤b Q’
2) ∃ CQs Q,Q’ s.t Q ≤s Q’ but Q �b Q’

Example 95. two relations {(R,x;[3]} and {(A,x;[2]),B,y;[1]),(c,x;[1])}
join: cross product
{(R,x,A,x;[6]), ..., (R,x,C,x;[3])}

Complexity: bag-containment is more complex, possibly undecidable.

Equivalence:

Definition 96. Two CQs Q is bag-equivalent to Q’ (written Q ≡b Q’) iff Q(I) =b Q’(I) for any
bag-database I, that is, Q ≤b Q’ and Q’ ≤b Q

Theorem 97. Q ≡b Q’ iff Q and Q’ are graph isomorphic.

Corollary 98. ≡b is polynomially equivalent to graph isomorphism (not to be known in NP-complete).

This means we can not reduce bag querries!
Complexity: NP, but not known NP-complete or in PTIME ?
UCQs: on SQL: A UNION ALL B

Definition 99. A bag union (t) B t B’ is: { unique elements of B} ∪ {unique elements of B’} ∪ {shared
elements b, |b| in B + |b| in B’ }

Proposition 100. ∃ CQs Q,Q’,Q” s.t
Q ≤b Q’ t Q” but
Q �b Q’ and Q �b Q”

Complexity:

Theorem 101. bag containment of UCQs is undecidable

Proof:

26

Definition 102. a Diophantine Equation is of the form: Λ(x1, x2, ..., xk) = Φ, a polynomial of variables
with no constant and integer cofficients

Solve for integer-vallues roots.

Theorem 103. the solution to Diophantine is undeciable rewritten as: ∀ x1, ..., xk) Φ1(x1, ..., xk) ≤
Φ2(x1, ..., xk) such that Φ1, Φ2 are positive

Example 104. 2x2y + yz ≤ x2y + 2xy + x3

take predicate P, constants a,b,c
Q() :- P(a), P(a), P(b)

:- P(a), P(a), P(b)
:- P(b), P(c)

Q’() :- P(a), P(a), P(b)
:- P(a), P(b)
:- P(a), P(b)
:- P(a), P(b), P(a)

∴ bag-containment of UCQ is undecidable

22 Wednesday, 3/03/10 (scribe: Mingmin)

Incomplete & Probabilistic information

Example 105. Codd table:

R
0 1 @
@ @ 1
2 0 @

where @ means null value

Definition 106. The incomplete database represented by a table defined as follows

rep(T) = {v(T) | v is a valuation of variables in T}

Definition 107. Consider a table T and a query q. For each I ∈ rep(T), q produces an answer q(I). The
set of all possible answer q(rep(T)) is an incomplete database.

Goal: For each representation T and a query q, there exists a representation. q(T) such that
rep(q(T)) = q(rep(T)).

Definition 108. If some representation system T has the property described for a query language L, then
we say that T is a strong representation system for L.

Definition 109. For a table T and a query q, the set of sure fact sure(q, T) is defined as

sure(q, T) =
⋂
{q(I)|I ∈ rep(I)}.

Example 110. sure(q, T) = ∅, q′ = Π1,2(R)
sure(q′(q(rep(T)))) = {< 2, 0 >}, q′(sure(q, T)) = ∅.

Definition 111. L is a query language, two incomplete DBs I, J are L equivalent, I ≡L J if for each q in
L we have ⋂

{q(I)|I ∈ I} =
⋂
{q(J)|J ∈ I}

Definition 112. A representation system is weak for L if for each T of a DB and each q in L, there exists
a representation q(T) s.t.

rep(q(T)) ≡L q(rep(T)).

27

Theorem 113. Codd tables form a weak representation system for selection-project

σcond(T) = {t|t ∈ T and cond(v(t)) holds for all valuations of vars in T}

Example 114. σ1=‘2′(T) = {(2, 0,@)}.

v-table:

R
0 1 x
x z 1
2 0 v

Theorem 115. A condition is conjunct of equality/inequality atoms, x=y,x=c,x 6=y,x6=c, where x,y are vars
and c constant..

Definition 116. Φ is condition, a valuation V satisfies Φ if its assignment of const. to var. makes the
form be true.

Definition 117. A condition table is triple (T,ΦT , ϕ)

- T is a v-table

- ΦT is global condition

- ϕ is a mapping over T that associates a local condition ϕt with each tuple t ∈ T

Theorem 118. For each c-table T and a relational algebra query q, one constant c-table q(T) such that
rep(q(T)) = q(rep(T)).

Proposition 119.

- [[E1 × E2]](t) = [[E1]](t) ∧ [[E2]](t)

- [[E1 ∩ E2]](t) = [[E1]](t) ∨ [[E2]](t)

- [[σi=‘c′E1]](t) = [[E1]](t) ∧ t[i] = ‘c′

- [[Πi1,i2,...,ikE1]](t) =
∨

t′ s.t. Πi1,i2,...,ik

E1(t′) = t[[E1]](t′)

28

