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Abstract

The optimization problem for conjunctive queries

has been studied extensively. Unfortunately, this

research almost invariably assumes set-theoretic

semantics (i.e., duplicates are eliminated). In

contrast, SQL queries have bag-theoretic seman-

tics (i.e., in general duplicates are not elimi-

nated). In this paper we study the optimiza-

tion problems for conjunct ive queries under bag-

theoretic semantics. We show that optimization

techniques from the set-theoretic setting do not

carry over to the bag-theoretic setting.

1 Introduction

Techniques to optimize relational queries are

based on transforming a given query into a query

that is semantically equivalent but less expen-

sive to evaluate. Thus, deciding equivalence of

queries is one of the most fundamental questions

in query optimization. In general, equivalence of

relational queries is undecidable, so research has

focused on certain classes of relational queries. A

class that has attracted a significant amount of

attention is the class of conjunctive queries, since

a large number of queries that arise in practice

fall into this class.
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The optimization problem for conjunctive

queries has been studied extensively [ASU79A,

ASU79B, CM77, DBS90]; see [U89](Chapter 14).

The focus of this research is the minimization of

the number of conjuncts, which corresponds to

minimizing the number of joins. As a result of

this research, the optimization problem for con-

junctive queries is very well understood. We

know how to minimize conjunctive queries and

we know what the computational complexity of

such minimiz at ion is.

There is a difficulty, however, in applying the

results of the research on optimization of con-

junctive queries to query optimization in real-life

database management systems. The above men-

tioned research almost invariably assumes set-

theoretic semantics; relations, either database

relations or results of queries are sets, that is,

they do not contain duplicate tuples. In con-

trast, SQL, the query language used in commer-

cial databases, has bag-theoretic semantics; rela-

tions are bags (another term is rnultisets), that is,

duplicate tuples are not eliminated unless elim-

ination is explicitly requested. This is done for

two reasons. First, duplicate elimination might

be computationally expensive. Second, aggregate

functions (such as COUNT) are sensitive to the

multiplicity of tuples.

The change in the underlying semantics makes

it necessary to re-examine the optimization prob-

lem for conjunctive queries in the bag-theoretic

setting. Do the known results about optimiza-

tion of conjunctive queries carry over from the

set-theoretic setting to the bag-theoretic setting?

As we shall know, the results do not carry over.

Equivalence of conjunctive queries is typically

approached via the notion of containment. In

co



the set-theoretic setting, we say that a query is

contained in another if the answer to the former

is always a subset of the answer to the latter.

Two queries are equivalent if they are contained

in each other. Inthebag-theoretic setting, we say

that a query is contained in another if the answer

to the former is always a subbag of the answer to

the latter, and again equivalence can be expressed

in terms of cent ainment. We thus start our in-

vestigation by considering conjunctive query con-

tainment under bag-theoretic semantics.

Containment of conjunctive queries in the bag-

theoretic setting seems to be harder than con-

tainment in the set-theoretic setting. The latter

problem is known to be NP-complete [ASU79A,

ASU79B, CM77]. In contrast, while we do have

some sufficient and some necessary conditions for

containment, we do not even know whether con-

tainment under bag-theoretic semantics is decid-

able. We prove that the problem is 11~-hard.

II; is at the second level of the polynomial hi-

erarchy, while NP(= X;) is at the first level of

the polynomial-time hierarchy [St77]. Since the

polynomial-time hierarchy is believed to be strict,

this indicates that the change of the underlying

semantics does increase the computational com-

plexity of the problem.

Since key concept for query optimization is

equivalence (rather than containment), we then

examine the equivalence problem in the bag-

theoretic semantics. Here surprisingly, the prob-

lem seems to be easier. While equivalence un-

der set-theoretic semantics is still NP-complete

[ASU79A, ASU79B, CM77], equivalence under

bag-theoretic semantics has the same complex-

ity as the graph-isomorphism problem, which is

in NP but is not known to be NP-hard [GJ79].

In fact, we show that two conjunctive queries

are equivalent under bag-theoretic semantics pre-

cisely when the queries are isomorphic. An im-

portant consequence of this result is that under

bag-theoretic semantics no optimization of con-

junctive queries by removal of conjuncts is pos-

set-theoretic semantics, containment and equiv-

alence of union of conjunctive queries reduces

to containment and equivalence, respectively, of

conjunctive queries [SY8 1]. We show that this re-

sult does not hold under bag-theoretic semantics.

This leaves open the possibility of meaningful op-

timization for unions of conjunctive queries. We

also consider the situation where the database re-

lations are known to be sets (i.e., no duplicates

are allowed). Intuitively, this situation represents

the middle ground between set-theoretic and bag-

theoretic semantics. We show that in this case

some optimization is possible.

2 Bag-Theoretic Semantics

A bag is a set of annotated elements; the annota-

tion of an element, also called the multiplicity of

the element, is a positive integer. Intuitively, a

bag may contain duplicate occurrences of an ele-

ment; the multiplicity of an element indicates the

number of duplicates for the element in the set.

The multiplicity of an element a in a bag B will

be denoted by lal~ (or simply Ial, when B is clear

from the context). A relat ton is a bag of tuples

of some fixed arity. A database is an assignment

of relations to relation names.

Example 2.1: Let the relation PART consists of

the following annotated tuples:

{(engine, Seattle; [2]), (flap, Seattle; [1]),

(wing, Portland; [1])}

where “;” marks the end of the tuple and the

multiplicity is indicated in square brackets. This

means that PART contains two copies of the tuple

(engine, Seattle), but only one copy of each of

the other tuples. That is, I(engine, Seattle)l = 2,

~~~, Seattle)l = 1, and I(wing, Portland)l =

sible; any optimization must be restricted to re-
We say that a bag B is a subbag of B’ if each el-

ordering the conjuncts in the query.
ement of B is contained also in B! with a greater

The above result seems to paint a fairly bleak than or equal multiplicity. We will define the sub-

picture for practical optimization of conjunctive bag relationship by ~b. The subset relationship

queries. We present, however, two results that will be denoted by ~.. The equality relationship

indicate that perhaps not all is lost. First, we between two bags (resp., sets) will be denoted by

consider unions of conjunctive queries. Under the =b (=.).
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Example 2.2: In this example, B ~b B’.

B = {(engine, Seatt/e; [1])}

B’ = {(engine, Seattle; [2]), (flap, Seattle; [1]),

(wing, Portland; [1])}

We will also define the bag unton operator. The

bag union of two bags is obtained by adding the

multiplicity factors for each tuple in either of the

bags. The bag union will be denoted by U.

Example 2.3: Let us consider the bags B and

B’ in Example 2.2. The B U B’ k the bag:

{(engine, Seattle; [3]), (flap, Seattle; [1]),

(wing, Portland; [1])}

3 Conjunctive Queries

In this section we describe the bag-theoretic se-

mantics of conjunctive queries. Since our moti-

vation is the optimization of “real-life” queries,

we start with the description of SQL conjunctive

queries.

3.1 SQL Conjunctive Queries

An SQL conjunctive query is an SQL query of

the following form:

SELECT coluxnnlist

FROM rellist

WHERE equal itylist

where columnist is the list of relation attributes

to be selected, rellist is the list of relation

(called table in SQL) names (possibly with tu-

ple variables), and equalit ylist is a conjunc-

tion of equalities among relation attributes. (For

the complete syntax of SQL, we refer the reader

to [D87].)

Example 3.1: The following is an example of a

conjunctive query.

SELECT SUPPLIER . ID , PART. ID

FROM SUPPLIER , PART

WHEItE SUPPLIER . CITY = PART. CITY

The operational semantics of SQL conjunctive

queries is defined as follows (see [D87] for the

operational semantics of SQL). First, the cross

product of the relations in rellist is taken.

Next, we apply each of the selection conditions

in equalitylist to each tuple obtained in the

cross product. Finally, the qualifying tuples

are projected on the attributes that are among

colunmlist. The details will be described in the

full paper.

Example 3.2: Let us consider the conjunctive

SQL query in Example 3.1. Let us assume that

the relation for SUPPLIER consists of the tuple

{(Boeing, Seattle; [1])}

and the relation for PART consists of the tuples:

{(engine, Seatt/e; [2]), (wing, Portland; [1]),

(flap, Seattle; [1])}

Therefore, the cross product of the relations re-

sults in the relation:

{(Boeing, Seattle, engine, Seattle; [2]),

(Boeing, Seattle, wing, Portland; [1]),

(Boeing, Seattie, flap, Seattle; [1])}

After application of the condition in the

equalitylist only the following tuples qualify:

{(Boeing, Seattle, engine, Seattle; [2]),

(Boeing, Seattle, flap, Seattle; [1]), }

Finally, the application of the selection list results

in the following relation as answer to the query

in Example 3.1.

{(Boeing, engine; [2]), (Boeing, flap; [1]))

3.2 Logical Conjunctive Queries

In this subsection, we describe the logical syntax

of conjunctive queries and their denotational se-

mantics. The two approaches (of this section and

the previous section) are then shown to be equiv-

alent (for a detailed semantical account of SQL,

see [NPS91]; see also [MPR90]).
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A logical conjunctive query is a rule of the form:

Query(X) :-Cl (Xl), . . . . C~(X~)

where X and the Xi’s are tuples of variables, and

the Cj’s are relation names. Query(X) is the

head of the query and C’l(X1), . . . . C~(X~) is the

body of the query (we will sometimes look upon

a query itself as the bag or set of literals in the

body). Note that there are no explicit equalities

in this representation; rather, equalities are cap-

tured by multiple occurrences of variables. The

head variables X are the selected variables, and

will be called distinguished van’ables.

Example 3.3: The query in Example 3.2 can be

expressed as:

Query (s-id, p.id) : –

Supplier(s-id, c-id), Part(p.icl, c-id)

The denotational semantics of logical conjunc-

tive queries is defined in terms of assignment

mappmgs. An assignment mapping of a conjunc-

tive query Q as above into a database D is an

assignment of data values in D to the variables

of Q such that every conjunct in the body of Q is

mapped to a tuple in D. Let @be an assignment

mapping of Q into database D, and let X be a

variable in Q. We denote by O(X) the data value

to which O maps X, and we denote by L9(C;(X;))

the tuple to which Ci (Xi) is mapped.

Example 3.4: Let us consider the query in Ex-

ample 3.3 and database in Example 3.2. The

mapping where s-id is mapped to Boeing, c-id

to Seattle and p-id to engine, is an assignment

mapping. 9

We can now define the tuple derived by a

query due to an assignment mapping 0. Let

rni = 10( Ci(Xi))l, i = 1, . . . ,n. The result due

to 0 of Q over D is the tuple (O(X); [m]) with

the multiplicity m = ml m2 . . . mn.

Example 3.5: Consider Example 3.4. The re-

sult due to the assignment mapping there is

{(Boeing, engine; [2])} 1

The result of a query Q over a database D,

denoted Q(D), is given by 1-1oro, where O is any

assignment mapping of Q into D and re is the

result due to 0. That is, Q(D) is obtained by tak-

ing the bag union over all assignment mappings

of the results due to these assignment mappings

over D.

Example 3.6: Let us consider the query in Ex-

ample 3.3 and database in Example 3.2. There

are two assignment mappings that are possible:

(a) s-id mapped to Boeing, c-id to Seattle and

p_id to engine; (b) Same as (l), except that p-id

is mapped to wing. The result of assignment (a)

is given in Example 3.5. The result of assign-

ment (b) is {(Boeing, wing; [1])}. Therefore, the

evaluation results in the bag:

{(Boeing, engine; [2]), (Boeing, wing; [1])}

3.2.1 Logical vs. SQL Conjunctive

Queries

In this section, we briefly sketch a transformation

from the SQL syntax to logical syntax of conjunc-

tive queries.

We will use the canonical form of SQL con-

junctive query as introduced in the beginning of

Section 3. For simplicity, we assume that no rela-

tion name is repeated more than once in rellist.

The following sequence of steps generate the log-

ical syntax.

1. For every attribute of every relation in

rellist, introduce a distinct variable.

2. For every relation in rellist introduce a

corresponding conjunct with the variables

in the same order as the attributes in the

schema information.

3. Since every attribute corresponds to a dis-

tinct variable, for each equality predicate

in equalit ylist, there is a corresponding

equality among variables such as X = Y.

These equalities induces an equivalence rela-

tion on the variables. We select a represent a-

tive from each equivalence class, and replace

each variable by its representative.
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4. The distinguished variables in the head are

the representatives of the variables that cor-

respond to the attributes in the colundist.

Example 3.7: Consider the SQL query in Ex-

ample 3.1. Assume that the schema has ID and

CITY as the first and the second attributes of the

SUPPLIER and the PART relations. In the first

step, we introduce the variables s-id, c-id for at-

tributes of SUPPLIER and variables p-id and cl-id

for the attributes of Part. In the second step of

the transformation, we create the body

Suppiier(s-id, c-id), Part(p-id, cl-id).

In the third step, we apply the equality c-id =

cl.-id to obtain the body

Suppiier(s-id, c.id), Part(p.id, c-id).

We add the head Query (s-id, p-id) in the fourth

step. The result is:

Query (s-id, p-id) : –

Supplier(s-id, c.id), Part (p-id, c-id)

1

Let us assume that Z’ransform(Q) denotes the

conjunctive query obtained from an SQL query Q

by the above transformation.

Theorem 3.8: Let Q be an SQL conjunctive

query. Then the results of applying Q and

Transform(Q) to any database D are equal.

It will be easier to state and prove our results

about the containment and equivalence problems

in terms of the logical syntax and semantics.

Therefore, for the rest of this paper, we use the

latter.

4 Containment of Conjunc-

tive Queries

4.1 Basic Definitions and Results

A query Q is bag contained in another query Q’,

denoted by Q <b Q’, if Q(D) ~b Q’(D) over any

database D. In contrast, set containment of Q in

Q’ will be denoted by Q ~. Q’.
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An important observation is that bag contain-

ment for conjunctive queries is a strictly stronger

relationship than set containment for conjunctive

queries.

Proposition 4.1:

(a) For any two conjunctive queries Q and Q’,

ifQ <b Q’ holds, then also Q <. Q’.

(b) There exist conjunctive queries Q and Q’,.,
such that Q <, Q’ holds, but

not hold.

We illustrate Proposition 4.l(b)

ing example.

Example 4.2: Let us consider

queries:

Q <b Q’ does

by the follow-

the following

Q(X) :- P(X), q(X)

Q’(X) :- p(x)

Clearly, Q S, Q’. Let us consider, however, a

database with the tuples {(p(a); [1]), (q(a); [2])}.

Then, the (bag) result of Q has two tuples,

whereas the (bag) result of Q’ has exactly one

tuple. Therefore, Q ~b Q’. B

4.2 Conditions for Containment

We have seen in the previous subsection that bag

containment is strictly stronger than set contain-

ment. Thus, one would expect a characteriza-

tion of bag containment would be obtained by

strengthening the known characterization of set

containment in terms of cent ainment mappings.

A containment mapping from a query Q’ to a

query Q is a mapping u of variables of Q’ to vari-

ables of Q such that u maps each conjunct in the

body of Q’ into a conjunct in the body of Q. The

mapping is required to be an identity mapping

for the distinguished variables. It is known that

Q <s Q’ precisely when there is a containment

mapping from Q to Q (see [CM77]).

How can we strengthen this characterization to

get a characterization of bag containment? The

next proposition provides a clue.

Proposition 4.3: Let Q and Q’ be conjunctive

queries.



(a) If Q <h Q’, then for any relation name p,

the number ofp-conjuncts in the query Q’ is

no less than the corresponding number in the

query Q.

(b) If Q <h Q’, then for every conjunct 1 in Q,

there M a containment mapping u from Q’

to Q such that 1 E u(Q’).

The above proposition brings out a basic dif-

ference between set containment and bag con-

tainment. If Q <, Q’, then the body of Q’ is

less constraining than the body of Q. Thus, the

fewer conjuncts there are in Q’, the “easier” it

is for Q to be contained in Q’. Fewer conjuncts

in Q’, however, would means that there would

be fewer assignment mappings, and consequently

Q’ would result in tuples of lower multiplicity.

To get bag containment, we need to ensure that

Q’ yields t uples with high enough multiplicity,

and that means that Q’ should have enough con-

juncts. As Proposition 4.3 shows, that requires

‘(coverage” of the conjuncts in Q by the conjuncts

in Q. We riow show that a strong enough notion

of “coverage” yields a sufficient condition for bag

containment.

A containment mapping u from Q to Q is onto

if Q ~b a(Q’).

Proposition 4.4: Let Q and Q’ be conjunctive

queries. If there is a containment mapping from

Q’ onto Q, then Q <h Q’.

Example 4.5: Consider the following three

queries:

Q(X, Y) :- s(X, Z), t(iV, Y), t(Z, W’)

Q’(X, Y) :- s(X, Z), t(Z, Y)

Q“(X, Y) :- s(X, Z), t(Z, Y), u(Y, W)

Observe that there is a containment mapping

from Q onto Q’ and a containment mapping from

Q to Q“. Thus, we have that Q’ <b Q and

Q“ ~, Q. On the other hand, there is no con-

tainment mapping from Q onto Q“. Indeed, it

also turns out that Q“ ~b Q. 1

The condition of Proposition 4.4 turns out to

be necessary and sufficient for a large class of

conjunctive queries.

Theorem 4.6: Let Q and Q’ be conjunctive

queries. IfQ has no two conjuncts with the same

relation name, then Q <b Q’ iff there M a con-

tainment mapping from Q’ onto Q.

Proposition 4.4 and Theorem 4.6 were discov-

ered independently in Ioannidis and Ramakrish-

nan [I R92].

In general, however, the existence of an onto

containment mapping is not a necessary condi-

tion for bag cent ainment. In the following exam-

ple, Q <~ Q’, but there is no onto containment

mapping from Q’ to Q.

Example 4.fi Let us consider the following two

queries.

Q’(X, Z) z p(X), q(U, Y), q(V, Y), r(Z)

Q(X, Z) a p(x), q(U, X), q(V, Z), T(Z)

It is easy to observe that there is no onto con-

tainment mapping from Q’ to Q. We can show,

however, that Q <b Q’.

H

The definition of containment involves quan-

tification over all databases. In the full paper,

we will show that this quantification can some-

times be replaced by quantification over a finite

number of databases, where the multiplicities are

given symbolically. While this does not yield a

decision procedure for bag containment, it does

provide a method to test bag containment in cer-

tain cases, such as the queries in Example 4.7.

4.3 Complexity of Containment

The complexity of set containment is known to

be NP-complete [CM77]. Since the condition of

Proposition 4.4 and Theorem 4.6 are closely re-

lated to the characterization of set containment,

it is not surprising that this condition has a sim-

ilar complexity.

Theorem 4.8: The problem of determining

whether there ts a conjunctive mapping from a

conjunctive query Q’ onto a conjunctive query Q

is NP-complete.

The suggestion of intractability of set con-

tainment given by the NP-completeness result if
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[CM77] is somewhat misleading, since the com-

plexity is in terms of the size of the queries, which

is typically much smaller than the size of the

database. To test if Q <, Q’, we simply have to

apply Q’ to the body of Q and see whether this

yields the goal tuple of Q. For many queries that

arise in practice, this algorithm is quite practical.

In the full paper we will describe a similar algo-

rithm for testing existence of onto containment

mappings.

Recall that the existence of onto containment

mapping is in general sufficient but not neces-

sary, so Theorem 4.8 tells us nothing about the

complexity of bag containment in general. We

now describe a lower bound for this problem

in terms of the polynomial-time hierarchy. The

polynomial-time hierarchy is defined in terms of

oracle Turing machines; the reader is referred to

[GJ79, St77] for details. The class II; is in the

second level of the hierarchy. It is believed that

NP is strictly contained in H;.

We can now state the lower bound for bag con-

tainment.

Theorem 4.9: The bag containment problem is

11~-hard.

Theorem 4.9 suggests that bag containment is

indeed harder than set containment. The pre-

cise complexity of bag containment is an open

problem. We do not even know if the problem is

decidable.

5 Equivalence of Conjunc-

tive Queries

The focus on containment stems from the fact

that equivalence is reducible to containment.

In the set-theoretic setting both equivalence

and containment of conjunctive queries are NP-

complete [CM77]. We saw, however, in Sec-

tion 4 that the containment problem in the bag-

theoretic semantics is quite difficult. This moti-

vates studying equivalence directly.

A query Q is bag equivalent to another query

Q’ iff over any database D, we have that Q(D) =,

Q’(D). If Q and Q’ are bag equivalent, we

will denote it by Q •~ Q’. In contrast, the

set equivalence of Q and Q’ will be denoted by

Q = Q’. clearly, Q -b Q’ holds precisely when
both Q <h Q’ and Q’ <~ Q hold.

It is straightforward to prove results, similar to

Lemma 4.1, showing that the equivalence of con-

junctive queries under bag-theoretic semantics is

a strictly stronger property than the equivalence

of conjunctive queries under set-theoretical se-

mantics.

Example 5.1: Consider the queries Q and Q’.

Q(X) :- P(X)

Q’(X) : – p(x), p(x)

Clearly, Q =, Q’. Let us consider the database

consisting of {(p(a); [2])}. Over this database, Q

returns two duplicates but Q’ returns four dupli-

cates. Therefore, Q #b Q’. ,

We saw in Section 4 that bag containment of

a conjunctive query Q in a conjunctive query

Q’ requires “coverage” of Q by Q’. We had

necessary conditions for such coverage (Proposi-

tion 4.3) and a sufficient condition for such cover-

age (Proposition 4.4). We now show that for bag

equivalence a simple coverage condition is neces-

sary and sufficient.

We say that two conjunctive queries Q and Q’

are zsomorphac iff there are one-to-one contain-

ment mappings from Q’ onto Q and vice versa.

Theorem 5.2: Let Q and Q’ be conjunctive

queries. Q ~b Q’ iff Q and Q’ are isomorphic.

Corollary 5.3: Bag equivalence of conjunctwe

querzes is polynomially equivalent to graph iso-

morphism.

Corollary 5.3 tells us that bag equivalence of

conjunctive queries is perhaps easier than set

equivalence of conjunctive queries. While the lat-

ter problem is NP-complete [CM77], graph iso-

morphism is known to be in NP, but it is not

known to be NP-complete [GJ79]. Focusing on

the complexity here, misses, however, the point.

The crux of the matter in optimizing conjunc-

tive queries in the set-theoretic setting is the re-

placement of a conjunctive query by an equiva-

lent conjunctive query with a smaller number of

conjuncts: it is known that for every conjunctive
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query Q there is a mmzmally equivalent conjunc-

tive query Q’, i.e., Q’ is equivalent to Q and no

other conjunctive query equivalent to Q has fewer

conjuncts than Q’ [CM77]. According to The-

orem 5.2, however, two conjunctive queries are

bag-equivalent precisely when they are identical

up to renaming and reordering. Thus, the bssic

optimization technique for conjunct ive queries in

the set-theoretic setting is simply not applicable

in the bag-theoretic setting. An interesting ques-

tion is whether Theorem 5.2 carry over to the

larger class of conjunctive queries with inequalz-

ttes [K88].

6 Union of Conjunctive

Queries

6.1 SQL Syntax and Semantics

SQL provides the ability to take union of the bags

obtained by evaluating individual queries. The

SQL statement for bag union is given by:

A UNION ALL B

where A and B are SQL statements and are union-

compatible, i.e., contains the same number of at-

tributes (the corresponding attributes are also re-

quired to be type compatible). For our purpose,

A and B are SQL conjunctive queries. Let us as-

sume that TA and TB are relations obtained by

evaluating A and B over a database. Then, the re-

lations for A UNION ALL B is obtained by taking

the bag union of TA and TB.

Example 6.1: Consider the SQL query given

below. The schema of the database consists of

three relations PART (ID, CITY), SUPPLIER (ID,

CITY) , CAPITAL (CITY, COUNTRY).

SELECT PART . ID

FROM PART , SUPPLIER

WHERE PART . CITY = SUPPLIER. CITY

ALL UNION

SELECT PART . ID

FROM PART , COUNTRY

WHERE PART . CITY = COUNTRY. CAPITAL

—

Let us assume that the relation for SUPPLIER

has the tuple

{(Boeing, Seatt/e; [1])}

and the relation for PART has the following tuples:

{(engine, Seatfie; [1]), (~iap, Portland; [1]),

(engine, Seattle; [1]), (brake, Pittsburgh; [1])}

Then, the first SQL query yields the relations

{(engine; [2])}.

The second SQL query yields the relation

Therefore,

I

{Uk [11)}

the combined query results in

{(engine; [2]), (.fiap; [1])}.

6.2 Logical Syntax and Semantics

A union U of conjunctive expressions is an ex-

pression of the form

Q1(X) u . . . UQn(X),

where each Qi is a conjunctive query and all

the Qi’s has the same arity and the same set of

distinguished variables. The result of U over a

database D is U1<i<nQi(D). The equivalence be-

tween the SQL a~p~oach and the logical approach

for conjunctive queries can be easily extended to

equivalence for union of conjunctive queries.

Example 6.2: We can represent the SQL query

given in Example 6.1 by QI (1) U Q2(I),

Q~(l):-part(l, C), supplier(l, C)

QZ(l):-part(l, C), capita/(C, N)

9

where

6.3 Equivalence and Containment

Sagiv and Yannakakis [SY81] have shown that

for conjunctive queries, if Q <~ Ui Qi, then

there must exist some Qj in the union such that

Q <~ Qj. This suggests the following approach to

optimizing a union Ui Qi of conjunctive queries

in the set-theoretic setting:
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(a)

(b)

eliminate redundant conjunctive queries, i.e.,

eliminate Qi if Qi ~~ Qj for some j # i, and

then

replace each remaining conjunctive query by

a minimally equivalent conjunctive query.

Assume hypothetically that the result of Sa-

giv and Yannakakis did carry over to the bag-

theoretic setting. Could we then carry over the

optimization technique to the bag-theoretic set-

ting? The answers seems to be negative. First,

step (a) above is not applicable, since, even if

Qi <~ Qj , both Q~ and Qj contributes to the

multiplicity of the tuples in the answer. Second,

step (b) above is not applicable, since each con-

junctive query in the union is by itself not mini-

mizable according to Theorem 5.2.

It so happens, however, that the result of Sagiv

and Yannakakis does not carry over to the bag-

theoretic semantics.

Proposition 6.3: There are conjunctive queries

Q, Q’ and Q“ such that Q <h Q’ LIQ”, but Q -fb

Q’ and Q $b Q“.

Proof: The following queries satisfy the claims

of the proposition.

Q(X, Z) : -p(X), q(U, X), q(V, Z), r(Z)

Q’(X, Z) : -p(X), q(U, X), q(V, X), r(Z)

Q“(X, Z) : -p(X), q(U, Z), q(V, Z), r(Z)

I

The failure of Sagiv-Yannakakis’ Theorem

leaves open the possibility of meaningful opti-

mization for unions of conjunctive queries. A

first step in that direction would be to obtain

a characterization of bag equivalence for unions

of conjunctive queries.

7 Set-Valued Databases

We will use the term set-valued relation to refer

to a relation that is a set, i.e., a relation with

no duplicates. Set-valued databases are defined

analogously. An important special case of con-

tainment and equivalence arises when the rela-

tions in the database are set-valued. This case

arise often in practice,
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Example 7.1: Consider the following query,

which returns the age of all students. We can

assume that the STUDENT relation contains no du-

plicates and consists of the attributes ID and Age

respectively. However, duplicates may be gener-

ated due to projection. Observe that the dupli-

cates that are generated can be processed later by

an aggregate function such as COUNT or AVERAGE.

Q’(age) : –Student(id, age)

I

7.1 Containment

A query Q is bag-set contained in another query

Q’, denoted by Q Sbs Q’, if Q(D) Lb Q’(D) over

any set-valued database D. It turns out that bag-

set containment is an intermediate relationship

between bag containment and set containment.

Example 7.2 Consider a variant of the query in

Example 7.1. The query, given below, considers

only those students who are also employed.

Q(age) : –Student(id, age), Emp(id, jobtitle)

It is easy to see that Q <. Q’, but Q <~, Q’,

since a student may have multiple jobs. S

Example 7.3: Consider the following queries.

Q’(id) : – Student(id, age)

Q(id) :- Student(id, age), Female(id)

It is not hard to verify that Q <b$ Q’, but Q <b

Q’. 1

When the database relations are set-valued,

the condition of Proposition 4.3 has to be weak-

ened.

Proposition 7.4: Let Q and Q’ be conjunctive

queries. If Q <b, Q’, then for every vartable v in

Q, there is a containment mapping u from Q’ to

Q such that v E u(Q’).

Example 7.3 provides us with a clue to pro-

vide a sufficient condition for bag-set contain-

ment. The sufficient condition in Proposition 4.4

says that for if the containment mapping is onto

then Q <b Q’. Certainly, this is also a sufficient



condition for the restricted caee. However, we can

weaken the condition for the restricted case. A

containment mapping u from Q’ to Q is variable-

onto if V ~~ u(V’) where V And V’ are the set

of variables in the query Q and Q’ respectively.

Proposition 7.5: Let Q and Q’ be conjunctive

queraes. If there is a containment mapping from

Q’ variable-onto Q, then Q <b, Q’.

Example 7.6: Consider Example 7.3. Observe

that the only containment mapping from Q’ to

Q is variable-onto. Therefore, it follows from

Proposition 7.5 that Q <h$ Q’. ~

We note that it follows from Example 4.7 that

Proposition 7.5 is not a necessary condition for

bag-set containment.

7.1.1 Complexity of Containment

The complexity of determining whether there is a

variable-onto mapping from one query to another

is similar in nature to the problem of determining

whet her there is an onto cent ainment mapping.

Thus, the following result is not surprising.

Theorem 7.7: The problem of determining

whether there is a conjunctive mapping from a

conjunctive query Q’ variable-onto a conjunctive

query Q is NP-complete.

We observe that the condition of Theorem 7.7

is a sufficient condition and does not tell us about

the complexity of bag-set containment. The fol-

lowing Proposition establishes a connection be-

tween bag containment and bag-set containment.

Proposition 7.8: There is a polynomial reduc-

tion of bag containment to bag-set containment.

From Proposition 7.8 and Theorem 4.9 the fol-

lowing result follows.

Theorem 7.9 The bag-set containment problem

is 11~-hard.

As in the unrestricted case, the decision prob-

lem for bag-set containment remains open.

7.2 Equivalence

A query Q is bag-set equivalent to another query

Q’, denoted Q =h~ Q’, if we have that Q(D) =h

Q’(D) for any set-valued database D. As with

cent ainment, bag-set equivalence is an interme-

diate relationship between bag equivalence and

set equivalence.

Example 7.10: Observe that the following two

queries are set equivalent but not bag-set equiv-

alent.

Q(X, Y) : – l(x, -Z),P(X> v
Q(X, Y) :- P(X, Y)

A key difference between bag equivalence and

bag-set equivalence is that duplicate Iiterals are

redundant under bag-set equivalence, since each

database tuple has multiplicity one. We will say

that Q’ is a canonical representation of a query

Q if all duplicate literals are removed from Q.

Theorem 7.11: Let Q1 and Q2 be conjunctive

queries. QI ~b, Q2 iff Q; ~h Q; where Q; and

Q; are canonical representations of QI and Q2

respectively.

Corollary 7.12 Bag-set equivalence of conjunc-

tive queries is polynomzally equivalent to graph

isomorphism.

Theorem 7.11 shows that only very limited op-

timization, namely that of removing duplicate lit-

erals, is possible in the case where relations are

set-valued. In the full paper, we discuss optimiza-

t ion of conjunctive queries over databases where

only some of the relations are known to be set-

valued.

8 Related Work

Bag containment and equivalence for conjunc-

tive queries were first addressed by Dayal et

al. [D GK82]. These notions were also addressed

by Klausner [K86] 1 in the context of an ex-

tended relational algebra with additional control

1Klausner also corrected the earlier results by Dayal
et al..
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over duplicate elimination than SQL. As a result,

the query containment and equivalence problems

are harder than in our model, and the results ob-

tained by Klausner are weaker than our results.

Recently, Ioannidis and Ramakrishnan [IR92] in-

dependently addressed the problem of contain-

ment in the bag-theoretic setting and found some

sufficient conditions similar to ours. They do

not consider the equivalence problem, and nor

do they study the aspect of computational com-

plexity.

!3 Concluding

In this paper we studied

Remarks

the optimization prob-

lems for conjunctive queries under bag-theoretic

semantics. We showed that optimization tech-

niques from the set-theoretic setting do not carry

over to the bag-theoretic setting. We found that

bag containment of conjunctive queries seems

to be computationally harder than set contain-

ment of conjunctive queries. We found further

that in the bag-theoretic setting two conjunctive

queries are equivalent precisely when they are is~

morphic. As a consequence, unlike conjunctive

queries in the set-theoretic setting, it is not pos-

sible to minimize conjunctive queries in the bag-

theoretic setting by removal of conjuncts. This

is an a posteriori justification of the current em-

phasis on join ordering rather than on join elimi-

nation in commercial database management sys-

tems (See [S*79, JK84]).

We have shown that Sagiv-Yannakakis’ Theo-

rem [SY81] does not extend to the bag-theoretic

setting, leaving open the possibility of optimiza-

tion for unions of conjunctive queries. Finally,

we discussed the case of containment and equiva-

lence of queries in the bag-theoretic setting where

the database relations have no duplicates.
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