Processing XML Streams with Deterministic
Automata

Todd J. Green', Gerome Miklau?, Makoto Onizuka?, and Dan Suciu?

! Xyleme SA, Saint-Cloud, France todd.green@xyleme.com
2 University of Washington Department of Computer Science
{gerome,suciu}@cs.washington.edu
3 NTT Cyber Space Laboratories, NT'T Corporation, oni@acm.org

Abstract. We consider the problem of evaluating a large number of
XPath expressions on an XML stream. Our main contribution consists
in showing that Deterministic Finite Automata (DFA) can be used effec-
tively for this problem: in our experiments we achieve a throughput of
about 5.4MB/s, independent of the number of XPath expressions (up to
1,000,000 in our tests). The major problem we face is that of the size of
the DFA. Since the number of states grows exponentially with the num-
ber of XPath expressions, it was previously believed that DFAs cannot
be used to process large sets of expressions. We make a theoretical analy-
sis of the number of states in the DFA resulting from XPath expressions,
and consider both the case when it is constructed eagerly, and when it
is constructed lazily. Our analysis indicates that, when the automaton
is constructed lazily, and under certain assumptions about the structure
of the input XML data, the number of states in the lazy DFA is man-
ageable. We also validate experimentally our findings, on both synthetic
and real XML data sets.

1 Introduction

Several applications of XML stream processing have emerged recently: content-
based XML routing [24], selective dissemination of information (SDI) [36//9],
continuous queries [7], and processing of scientific data stored in large XML
files [T325]19]. They commonly need to process large numbers of XPath expres-
sions (say 10,000 to 1,000,000), on continuous XML streams, at network speed.

For illustration, consider XML Routing [24]. Here a network of XML routers
forwards a continuous stream of XML packets from data producers to consumers.
A router forwards each XML packet it receives to a subset of its output links
(other routers or clients). Forwarding decisions are made by evaluating a large
number of XPath filters, corresponding to clients’ subscription queries, on the
stream of XML packets. Data processing is minimal: there is no need for the
router to have an internal representation of the packet, or to buffer the packet
after it has forwarded it. Performance, however, is critical, and [24] reports very
poor performance with publicly-available tools.

Our contribution here is to show that the lazy Deterministic Finite Automata
(DFA) can be used effectively to process large numbers of XPath expressions, at

D. Calvanese et al. (Eds.): ICDT 2003, LNCS 2572, pp. 173-{I89] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Nein
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

174 T.J. Green et al.

guaranteed throughput. The idea is to convert all XPath expressions into a sin-
gle DFA, then evaluate it on the input XML stream. DFAs are the most efficient
means to process XPath expressions: in our experiments we measured a sustained
throughput of about 5.4MB/s for arbitrary numbers of XPath expressions (up
to 1,000,000 in our tests), outperforming previous techniques [3] by factors up
to 10,000. But DFAs were thought impossible to use when the number of XPath
expressions is large, because the size of the DFA grows exponentially with that
number. We analyze here theoretically the number of states in the DFA for
XPath expressions, and consider both the case when the DFA is constructed
eagerly, and when it is constructed lazily. For the eager DFA, we show that the
number of label wild cards (denoted * in XPath) is the only source of exponential
growth in the case of a single, linear XPath expression. This number, however,
is in general small in practice, and hence is of little concern. For multiple XPath
expressions, we show that the number of expression containing descendant axis
(denoted // in XPath) is another, much more significant source of exponential
growth. This makes eager DFAs prohibitive in practice. For the lazy DFA, how-
ever, we prove an upper bound on their size that is independent of the number
and shape of XPath expressions, and only depends on certain characteristics of
the XML stream, such as the data guide [I1] or the graph schema [I/5]. These
are small in many applications. Our theoretical results thus validate the use of
a lazy DFA for XML stream processing. We verify these results experimentally,
measuring the number of states in the lazy DFA for several synthetic and real
data sets. We also confirm experimentally the performance of the lazy DFA, and
find that a lazy DFA obtains constant throughput, independent of the number
of XPath expressions.

The techniques described here are part of an open-source software packag.

Paper Organization. We begin with an overview in Sec. Pl of the architec-
ture in which the XPath expressions are used. We describe in detail processing
with a DFA in Sec. B, then discuss its construction in Sec. @land analyze its size,
both theoretically and experimentally. Throughput experiments are discussed in
Sec. Bl We discuss implementation issues in Sec. [f], and related work in Sec [7l
Finally, we conclude in Sec. [§.

2 Overview

2.1 The Event-Based Processing Model

We start by describing the architecture of an XML stream processing system [4],
to illustrate the context in which XPath expressions are used. The user specifies
several correlated XPath expressions arranged in a tree, called the query tree.
An input XML stream is first parsed by a SAX parser that generates a stream
of SAX events (Fig. [Il); this is input to the query processor that evaluates the
XPath expressions and generates a stream of application events. The application
is notified of these events, and usually takes some action such as forwarding the

! Described in [4] and available at xmltk.sourceforge.net.

Processing XML Streams with Deterministic Automata 175

packet, notifying a client, or computing some values. An optional Stream Index
(called SIX) may accompany the XML stream to speed up processing [4]: we do
not discuss the index here.

The query tree, @), has nodes labeled with variables and the edges with linear
XPath expressions, P, given by the following grammar:

P:=/N|//N|PP N = E| A| text(S) | + (1)

Here F, A, and S are an element label, an attribute label, and a string con-
stant respectively, and * is the wild card. The function text (S) matches a text
node whose value is the string S. While filters, also called predicates, are not
explicitly allowed, we show below that they can be expressed. There is a distin-
guished variable, $ R, which is always bound to the root. We leave out from our
presentation some system level details, for example the fact that the application
may specify under which application events it wants to receive the SAX events.
We refer the reader to [4] for system level details.

Ezample 1. The following is a query tree (tags taken from [19]):

$D IN $R/datasets/dataset $H IN $D/history
$T IN $D/title $TH IN $D/tableHead
$N IN $D//tableHead//* $F IN $TH/field

$V IN $N/text("Galaxy")

Fig.[2 shows this query tree graphically. Fig.Blshows the result of evaluating
this query tree on an XML input stream: the first column shows the XML stream,
the second shows the SAX events generated by the parser, and the last column
shows the application events.

Filters. Currently our query trees do not support XPath expressions with
filters (a.k.a. predicates). One can easily implement filters over query trees in a
naive way, as we illustrate here on the following XPath expression:

$X IN $R/catalog/product [@category="tools"] [sales/@price > 200]/quantity

First decompose it into several XPath expression, and construct the query tree
Q in Fig.[Next we use our query tree processor, and add the following actions.
We declare two boolean variables, b1, b2. On a $Z event, set bl to true; on a
$U event test the following text value and, if it is > 200, then set b2 to true. At
the end of a $Y event check whether b1=b2=true. This clearly implements the
two filters in our example. Such a method can be applied to arbitrary filters and
predicates, with appropriate bookkeeping, but clearly throughput will decrease
with the number of filters in the query tree. Approaches along these lines are
discussed in [3J6)9]. More advanced methods for handling filters include event
detection techniques [20] or pushdown automata [21].

The Event-based Processing Problem. The problem that we ad-
dress is: given a query tree (), preprocesses it, then evaluate it on an in-
coming XML stream. The goal is to maximize the throughput at which we
can process the XML stream. A special case of a query tree, @, is one

176 T.J. Green et al.

XML Parser Variable
Stream SAX Events Events
s <datasets> ||start(datasets) [[start($R)

dataset> [[start(dataset) |[start($D)
history> start (history) start ($H)

777777777777 SIX Manager Tree Patien
ax A
Stream skip(k)

- date> start(date)
SAX Paser Query Processor Application
by 10/10/59 |[text("10/10/59")
Stream SAX Events Application Events / date> end(date)
/history> |[end(history) end (§H)
title> start (title) start (§T)

Fig. 1. System’s Architecture

subtitle> |[start(subtitle)
Study text (Study)
/subtitle> |[end(subtitle)
/title> end(title)

/datasets/dataset

end (§T)

/dataset> [[end(dataset) end ($D)
SAX SAX
Jtext("Gallaxy") field

v /datasets>||end(datasets) end ($R)

Fig. 2. A Query Tree Fig.3. Events generated by a

Query Tree

in which every node is either the root or a leaf node, i.e. has the form:
$X1 in SR/ey,$X5 in $R/ey, ... ,8X; in $R/e, (each e; may start with // instead
of /): we call @Q a query set, or simply a set. Each query tree @) can be rewritten
into an equivalent query set Q’, as illustrated in Fig. @

Q: Q’:

$Y IN $R/catalog/product $Y IN $R/catalog/product

$Z IN $Y/@category/text("tools") $Z IN $R/catalog/product/@category/text("tools")
$U IN $Y/sales/@price $U IN $R/catalog/product/sales/@price

$X IN $Y/quantity $X IN $R/catalog/product/quantity

Fig.4. A query tree Q and an equivalent query set Q’.

3 Processing with DFAs

3.1 Background on DFAs

Our approach is to convert a query tree into a Deterministic Finite Automaton
(DFA). Recall that the query tree may be a very large collection of XPath
expressions: we convert all of them into a single DFA. This is done in two steps:
convert the query tree into a Nondeterministic Finite Automaton (NFA), then
convert the NFA to a DFA. We review here briefly the basic techniques for both
steps and refer the reader to a textbook for more details, e.g. [I4]. Our running
example will be the query tree P shown in Fig. B(a). The NFA, denoted A,, is
illustrated in Fig. B(b). Transitions labeled # correspond to % or // in P; there

Processing XML Streams with Deterministic Automata 177

is one initial state; there is one terminal state for each variable ($X, $Y, ...);
and there are e-transitions[d. Tt is straightforward to generalize this to any query
tree. The number of states in A,, is proportional to the size of P.

Let X denote the set of all tags, attributes, and text constants occurring in
the query tree P, plus a special symbol w representing any other symbol that
could be matched by x or //. For w € X* let A, (w) denote the set of states in A,
reachable on input w. In our example we have X' = {a,b,d,w}, and A4, (¢) = {1},
A, (ab) = {3,4,7}, Ay (aw) = {3,4}, A, (b) = 0.

The DFA for P, A4, has the following set of states:

states(Aq) = {An(w) | w € X*} (2)

For our running example A is illustratedd in Fig. [l (c). Each state has unique
transitions, and one optional [other] transition, denoting any symbol in X
except the explicit transitions at that state: this is different from * in A,, which
denotes any symbol. For example [other] at state {3,4,8,9} denotes either a
or w, while [other] at state {2,3,6} denotes a,d, or w. Terminal states may be
labeled now with more than one variable, e.g. {3,4,5,8,9} is labeled $Y and $Z.

$X IN $R/a
$Y IN $X//*/b

$Z IN $X/b/* SR
$U IN $2/d a

° N (10) su Tother y

Fig. 5. (a) A query tree; (b) its NFA, A,,, and (c) its DFA, Ag.

2 These are needed to separate the loops from the previous state. For example if we
merge states 2, 3, and 6 into a single state then the * loop (corresponding to //)
would incorrectly apply to the right branch.

3 Technically, the state () is also part of the DFA, and behaves like a “failure” state,
collecting all missing transitions. We do not illustrate it in our examples.

178 T.J. Green et al.

3.2 The DFA at Run Time

Processing an XML stream with a DFA is very efficient. We maintain a pointer
to the current DFA state, and a stack of DFA states. SAX events are processed as
follows. On a start (element) event we push the current state on the stack, and
replace the state with the state reached by following the element transitio@; on
an end(element) we pop a state from the stack and set it as the current state.
Attributes and text (string) are handled similarly. No memory management is
needed at run time. Thus, each SAX event is processed in O(1) time, and we
can guarantee the throughput, independent of the number of XPath expressions.
The main issue is the size of the DFA, which we discuss next.

4 Analyzing the Size of the DFA

For a general regular expression the size of the DFA may be exponential [14]. In
our setting, however, the expressions are restricted to XPath expressions defined
in Sec. 23] and general lower bounds do not apply automatically. We analyze and
discuss here the size of the eager and lazy DFAs for such XPath expressions. We
shall assume first that the XPath expressions have no text constants (text(S))
and, as a consequence, the alphabet X is small, then discuss in Sec. [£4] the
impact of the constants on the number of states. As discussed at the end of
Sec2l we will restrict our analysis to query trees that are sets.

4.1 The Eager DFA

Single XPath Expression. A linear XPath expression has the form P =
po//p1// ---//px where each p; is Ny/Na/.../N,,,i=0,... ,k, and each N; is
given by (). We consider the following parameters:

k = number of //’s n; = length of p;, 1 =0,... ,k
m = max # of *’s in each p; n = length of P, Y ., n;
s = alphabet size =| X |

For example if P = //a/+//a/x/b/a/x/a/b, then k =2 (pg = €, p1 = a/*, ps =
a/+/b/a/x/a/b), s = 3 (¥ = {a,b,w}), n =9 (node tests: a, *,a, *,b,a,*,a,b),
and m = 2 (we have 2 *’s in ps). The following theorem gives an upper bound
on the number of states in the DFA, and is, technically, the hardest result in the
paper. The proof is in [12].

Theorem 1. Given a linear XPath expression P, define prefiz(P) = ng and
suffie(P) = k+k(n—mng)s™. Then the eager DFA for P has at most prefix(P)+
suffiz(P) states. In particular, when k = 0 the DFA has at most n states, and
when k > 0 the DFA has at most k + kns™ states.

4 The state’s transitions are stored in a hash table.
5 The stack is a static array, currently set to 1024: this represents the maximum XML
depth that we can handle.

Processing XML Streams with Deterministic Automata 179

(a) () (© ()

Fig. 6. The NFA (a) and the DFA (b) for //a/b/a/a/b. The NFA (c) and the DFA
(with back edges removed) (d) for //a/*/*//b: here the eager DFA has 2° = 32 states,
while the lazy DFA, assuming the DTD <!ELEMENT a (a*|b)>, has at most 9 states.

We first illustrate the theorem in the case where there are no wild-cards (m = 0);
then there are at most k+kn states in the DFA. For example, if p = //a/b/a/a/b,
then & = 1,n = 5: the NFA and DFA shown in Fig. [(a) and (b), and indeed
the latter has 6 states. This generalizes to //Ni/Na/ ... /N,: the DFA has only
n + 1 states, and is an isomorphic copy of the NFA plus some back transitions:
this corresponds to Knuth-Morris-Pratt’s string matching algorithm [g].

When there are wild cards (m > 0), the theorem gives an exponential upper
bound. There is a corresponding exponential lower bound, illustrated in Fig.
(c), (d), showing that the DFA for p = //a/x/*/*/b, has 2° states. It is easy
to generalize this example and see that the DFA for //a//.../*/b has 2m*2
statesﬁ, where m is the number of «’s.

Thus, the theorem shows that the only thing that can lead to an expo-
nential growth of the DFA is the maximum number of *’s between any two
consecutive //’s. One expects this number to be small in most practical applica-
tions; arguably users write expressions like /catalog//product//color rather
than /catalog//product/*/*/x/*/*/*/*/*/*/color. Some implementations
of XQuery already translate a single linear XPath expression into DFAs [15].

Multiple XPath Expressions. For sets of XPath expressions, the DFA also
grows exponentially with the number expressions containing //. We illustrate
first, then state the lower and upper bounds.

Ezample 2. Consider four XPath expressions:

$X1 IN $R//book//figure $X2 IN $R//table//figure
$X3 IN $R//chapter//figure $X4 IN $R//note//figure

The eager DFA needs to remember what subset of tags of

5 The theorem gives the upper bound: 14 (m 4 2)3™.

180 T.J. Green et al.

{book, table, chapter,note} it has seen, resulting in at least 2% states.
We generalize this below.

Proposition 1. Consider p XPath expressions: $%; IN $R//ai//b ...
$X, IN S$R//ap//b where ai,... ,ap,b are distinct tags. Then the DFA has at
least 2P states

Theorem 2. Let Q be a set of XPath expressions. Then the number of states
in the eager DFA for Q is at most: 3 pc o (prefir(P)) + [[peq(1 + suffiz(P)) In
particular, if A, B are constants s.t. VP € Q, prefie(P) < A and suffir(P) < B,
then the number of states in the eager DFA is < p x A+ BP', where p' is the
number of XPath expressions P € Q that contain //.

Recall that suffiz(P) already contains an exponent, which we argued is small
in practice. The theorem shows that the extra exponent added by having multiple
XPath expressions is precisely the number of expressions with //’s. This result
should be contrasted with Aho and Corasick’s dictionary matching problem [2]
22|. There we are given a dictionary consisting of p words, {w1,... ,wp}, and
have to compute the DFA for the set Q = {//w1,...,//wy}. Hence, this is a
special case where each XPath expression has a single, leading //, and has no .
The main result in the dictionary matching problem is that the number of DFA
states is linear in the total size of Q. Theorem Rlis weaker in this special case, since
it counts each expression with a // toward the exponent. The theorem could be
strengthened to include in the exponent only XPath expressions with at least two
//’s, thus technically generalizing Aho and Corasick’s result. However, XPath
expressions with two or more occurrences of // must be added to the exponent,
as Proposition [[l shows. We chose not to strengthen Theorem B] since it would
complicate both the statement and proof, with little practical significance.

Sets of XPath expressions like the ones we saw in Example [2 are common in
practice, and rule out the eager DFA, except in trivial cases. The solution is to
construct the DFA lazily, which we discuss next.

4.2 The Lazy DFA

The lazy DFA is constructed at run-time, on demand. Initially it has a single
state (the initial state), and whenever we attempt to make a transition into a
missing state we compute it, and update the transition. The hope is that only a
small set of the DFA states needs to be computed.

This idea has been used before in text processing, but it has never been
applied to such large number of expressions as required in our applications (e.g.
100,000): a careful analysis of the size of the lazy DFA is needed to justify its
feasibility. We prove two results, giving upper bounds on the number of states

7 Although this requires p distinct tags, the result can be shown with only 2 distinct
tags, and XPath expressions of depths n = O(log p), using standard techniques.

Processing XML Streams with Deterministic Automata 181

in the lazy DFA, that are specific to XML data, and that exploit either the
schema, or the data guide. We stress, however, that neither the schema nor the
data guide need to be known in order to use the lazy DFA, and only serve for
the theoretical results.

Formally, let A; be the lazy DFA. Its states are described by the following
equation which should be compared to Eq.(d):

states(A;) = {An(w) | w € Lyata} (3)

Here Lg4:, is the set of all root-to-leaf sequences of tags in the input XML
streams. Assuming that the XML stream conforms to a schema (or DTD),
denote Lgchema all root-to-leaf sequences allowed by the schema: we have
‘cdata c ACschema c 2.

We use graph schema [1J5] to formalize our notion of schema, where nodes
are labeled with tags and edges denote inclusion relationships. Define a simple
cycle, ¢, in a graph schema to be a set of nodes ¢ = {zg,21,...,2Z,—1} which
can be ordered s.t. for every ¢ = 0,...,n — 1, there exists an edge from z; to
Zi+1 mod n- We say that a graph schema is simple, if for any two cycles ¢ # ¢/,
we have cN ¢ = ().

We illustrate with the DTD in Fig.[d, which also shows its graph schema [1].
This DTD is simple, because the only cycles in its graph schema (shown in Fig. [
(a)) are self-loops. All non-recursive DTDs are simple. For a simple graph schema
we denote d the maximum number of cycles that a simple paths can intersect
(hence d = 0 for non-recursive schemes), and D the total number of nonempty,
simple paths: D can be thought of as the number of nodes in the unfoldin&. In
our example d = 2, D = 13, and the unfolded graph schema is shown in Fig. [
(b). For a query set @, denote n its depth, i.e. the maximum number of symbols
in any P € @ (i.e. the maximum n, as in Sec.[4J]). We prove the following result
in [12):

Theorem 3. Consider a simple graph schema with d, D, defined as above, and
let Q be a set of XPath expressions of mazximum depth n. Then the lazy DFA
has at most 1 + D x (1 +n)¢ states.

The result is surprising, because the number of states does not depend on
the number of XPath expressions, only on their depths. In Example 2l the depth
is n = 2: for the DTD above, the theorem guarantees at most 1 + 13 x 3% = 118
states in the lazy DFA. In practice, the depth is larger: for n = 10, the theorem
guarantees < 1574 states, even if the number of XPath expressions increases
to, say, 100,000. By contrast, the eager DFA has > 2100000 states (see Prop. [I)).
Fig. [(d) shows another example: of the 2° states in the eager DFA only 9 are
expanded in the lazy DFA.

8 The constant D may, in theory, be exponential in the size of the schema because of
the unfolding, but in practice the shared tags typically occur at the bottom of the
DTD structure (see [23]), hence D is only modestly larger than the number of tags
in the DTD.

182 T.J. Green et al.

Theorem Bl has many applications. First for non-recursive DTDs (d = 0) the
lazy DFA has at most 1 4+ D stated]. Second, in data-oriented XML instances,
recursion is often restricted to hierarchies, e.g. departments within departments,
parts within parts. Hence, their DTD is simple, and d is usually small. Finally,
the theorem also covers applications that handle documents from multiple DTDs
(e.g. in XML routing): here D is the sum over all DTDs, while d is the maximum
over all DTDs.

<!ELEMENT book (chapter*)>

<IELEMENT chapter (section®)> DTD DTD (DTD Data
<!ELEMENT section ((para|table|note|figure)*)> . .
<IELEMENT table ((table|text|note|figure)*)> Source Names Statlstlcs) size

<!ELEMENT note ((note|text)*)>

No. |Simple| MB

elms| 7
[synthetic] simple.dtd 12 Yes -
www.wapforum.org |prov.dtd 3 Yes -
www. ebxml . org ebBPSS.dtd 29 Yes -

pir.georgetown.edu |protein.dtd 66 Yes 684
xml.gsfc.nasa.gov |nasa.dtd 117 No 24
UPenn Treebank treebank.dtd| 249 No 56

Fig. 7. A graph schema for a DTD (a) Fig. 8. Sources of data used in experiments.
and its unfolding (b). Only three real data sets were available.

The theorem does not apply, however, to document-oriented XML data.
These have non-simple DTDs : for example a table may contain a table or
a footnote, and a footnote may also contain a table or a footnote (hence,
both {table} and {table,footnote} are cycles, and they share a node). For
such cases we give an upper bound on the size of the lazy DFA in terms of Data
Guides [11]. The data guide is a special case of a graph schema, with d = 0,
hence Theorem Bl gives:

Corollary 1. Let G be the number of nodes in the data guide of an XML stream.
Then, for any set Q of XPath expressions the lazy DFA for @ on that XML
stream has at most 1 + G states.

An empirical observation is that real XML data tends to have small data
guides, regardless of its DTD. For example users occasionally place a footnote
within a table, or vice versa, but do not nest elements in all possible ways
allowed by the schema. All XML data instances described in [16] have very small
data guides, except for Treebank [I7], where the data guide has G = 340,000
nodes.

Using the Schema or DTD. If a Schema or DTD is available, it is possi-
ble to specialize the XPath expressions and remove all *’s and //’s, and replace

9 This also follows directly from (E[) since in this case Lschema 1S finite and has 1 + D
elements: one for w = £, and one for each non-empty, simple paths.

Processing XML Streams with Deterministic Automata 183

them with general Kleene closures: this is called query pruning in [10]. For exam-
ple for the schema in Fig. [7] (a), the expression //table//figure is pruned to
/book/chapter/section/(table)+/figure. This offers no advantage to com-
puting the DFA lazily, and should be treated orthogonally. Pruning may increase
the number of states in the DFA by up to a factor of D: for example, the lazy
(and eager) DFA for //* has only one state, but if we first prune it with respect
to a graph schema with D nodes, the DFA has D states.

Size of NFA Tables. A major component of the space used by the lazy
DFA are the sets of NFA states that need to be kept at each DFA state. We call
these sets NFA tables. The following proposition is straightforward, and ensures
that the NFA tables do not increase exponentially:

Proposition 2. Let Q be a set of p XPath expressions, of maximum depths n.
Then the size of each NFA table in the DFA for Q is at most n X p.

Despite the apparent positive result, the sets of NFA states are responsible
for most of the space in the lazy DFA, and we discuss them in Sec.

4.3 Validation of the Size of the Lazy DFA

We ran experiments measuring the size of the lazy DFA for XML data for sev-
eral publicly available DTDs, and one synthetic DTD. We generated synthetic
data for these DTD{Y. For three of the DTDs we also had access to real XML
instances. The DTDs and the available XML instances are summarized in Fig.
four DTDs are simple, two are not; protein.dtd is non-recursive. We generated
three sets of queries of depth n = 20, with 1,000, 10,000, and 100,000 XPath
expression, with 5% probabilities for both the * and the //.

Number of DFA States - SYNTHETIC Data Number of DFA States - REAL Data
10000 100000,
@1k XPEs @1k XPEs
10000 m 10k XPEs 10000/— g 10k XPEs]
0100k XPEs 5100k XPEs
100¢ 1000 —
101 — 100) -
10| 10 — —
1 1 - -
simple prov ebBPSS protein nasa treebank protein nasa treebank

Fig. 9. Size of the lazy DFA for (left) synthetic data, and (right) real data. 1k means
1000 XPath expressions. For 100k XPath expressions for the treebank DTD with
synthetic data we ran out of memory.

10 Using http://www.alphaworks.ibm.com/tech/xmlgenerator.
"1 We used the generator described in [9].

184 T.J. Green et al.

Fig. [0(a) shows the number of states in the lazy DFA for the synthetic data.
The first four DTDs are simple, or non-recursive, hence Theorem [3] applies.
They had significantly less states than the upper bound in the theorem; e.g.
ebBPSS.dtd has 1058 states, while the upper bound is 12,790 (D = 29, d =
2, n = 20). The last two DTDs were not simple, and neither Theorem [3] nor
Corollary [T applies (since synthetic data has large data guides). In one case
(Treebank, 100,000 expressions) we ran out of memory.

Fig. @(b) shows the number of states in the lazy DFA for real data. This
is much lower than for synthetic data, because real data has small dataguides,
and Corollary [applies; by contrast, the dataguide for synthetic data may be
as large as the data itself. The nasa.dtd had a dataguide with 95 nodes, less
than the number of tags in the DTD (117) because not all the tags occurred
in the data. As a consequence, the lazy DFA had at most 95 states. Treebank
has a data guide with 340,000 nodes; the largest lazy DFA here had only 44,000
states.

We also measured experimentally the average size of the NFA tables in each
DFA state and found it to be around p/10, where p is the number of XPath
expressions (see [12]). Proposition] also gives an upper bound O(p), but the
constant measured in the experiments is much lower than that in the Theorem.
These tables use most of the memory space and we address them in Sec.
Finally, we measured the average size of the transition tables per DFA state,
and found it to be small (less than 40).

4.4 Constant Values

Finally, we comment on the impact of constant values on the number of states
in the DFA. Each linear XPath expression can now end in a text(S) predicate,
see Eq.(I). For a given set of XPath expressions, @Q, let X denote the set of all
symbols in @, including those of the form text(S). Let X = X, U Xy, where 3,
contains all element and attribute labels and w, while Y'; contains all symbols of
the form text (S). The NFA for @) has a special, 2-tier structure: first an NFA
over Y, followed by some X-transitions into sink states, i.e. with no outgoing
transitions. The corresponding DFA also has a two-tier structure: first the DFA
for the X part, denote it A?, followed by X, transitions into sink states. All
our previous upper bounds on the size of the lazy DFA apply to A!. We now
have to count the additional sink states reached by text(S) transitions. For
that, let Xy = {text(S1),... ,text(Sq)}, and let Q;, ¢ = 1,...,q, be the set
of XPath expressions in @) that end in text(S;); we assume w.l.o.g. that every
XPath expression in @) ends in some predicate in X, hence Q = Q; U ... UQ,.
Denote A; the DFA for Q;, and A! its Yj-part. Let s; be the number of states
in AL, i = 1,...,q. All the previous upper bounds, in Theorem [I[] Theorem [3]
and Corollary [l apply to each s;. We prove the following in [12].

Theorem 4. Given a set of XPath expressions Q, containing q distinct constant
values of the form text (S), the additional number of sink states in the lazy DFA
due to the constant values is at most 3 ,_; . si.

Processing XML Streams with Deterministic Automata 185
5 Experiments

This section validates the throughput achieved by lazy DFAs in stream XML
processing. Our execution environment consists of a dual 750MHz SPARC V9
with 2048MB memory, running SunOS 5.8. Our compiler is gcc version 2.95.2,
without any optimization options.

We used the NASA XML dataset [19] and concatenated all the XML docu-
ments into one single file, which is about 25MB. We generated sets of 1k (= 1000),
10k, 100k, and 1000k XPath expression using the XPath generator from [9], and
varied the probability of * and // to 0.1%, 1%, 10%, and 50% respectively.
We report the throughput as a function of each parameter, while keeping the
other two constant. For calibration and comparison we also report the through-
put for parsing the XML stream, and the throughput of XFilter [3], which we
re-implemented, without list balancing.

Figure shows our results. In (a) we show the throughput as a function
of the number of XPath expressions. The most important observation is that in
the stable state (after processing the first 5-10MB of data) the throughput was
constant, about 5.4MB/s. Notice that this is about half the parser’s throughput,
which was about 10MB/s; of course, the XML stream needs to be parsed, hence
10MB/s should be seen as an upper bound on our platform. We observed in sev-
eral other experiments with other datasets (not shown here) that the throughput
is constant, i.e. independent on the number of XPath expressions. By contrast,
the throughput of XFilter decreased linearly with the number of XPath expres-
sions. The lazy DFA is about 50 times faster than XFilter on the smallest dataset,
and about 10,000 times faster than XFilter on the largest dataset. Figure[IT (b)
and (c) show the throughput as a function of the probability of *, and of the
probability of // respectively.

The first 5MB-10MB of data in Fig. [0 represent the warm-up phase, when
most of the states in the lazy DFA are constructed. The length of the warm-up
phase depends on the size of the lazy DFA that is eventually generated. For
the data in our experiments, the lazy DFA had the same number of states for
1k, 10k, 100k, and 1000k (91, 95, 95, and 95 respectively). However, the size
of the NFA tables grows linearly with the number of XPath expressions, which
explains the longer tail: even if few states remain to be constructed, they slow
down processing. In our throughput experiments with other datasets we observed
that the lengths of the warm-up phase is correlated to the number of states in
the lazy DFA.

6 Implementation Issues

Implementing the NFA Tables. In the lazy DFA we need to keep the set
of NFA states at each DFA state: we call this set an NFA table. As shown in
Prop. Blthe size of an NFA table is linear in the number of XPath expressions p,
and about p/10 in our experiments. Constructing and manipulating these tables
during the warm-up phase is a significant overhead, both in space and in time.

186 T.J. Green et al.

Throughput for 1k, 10k, 100k, 1000k XPEs Throughput for prob(*) = 0.1%, 1.0%, 10.0%, 50.0% Throughput for prob(//) = 0.1%, 1.0%, 10.0%, 50.0%
[prob(*)=10%, prob(/)=10%] [100k XPEs, prob(//) = 10%] [100k XPEs, prob(*) = 10%]

[~=parsor
[=-lazyDFA(1K)
- lazyDFA(10k) | 10

YDFA(100k)

[~ parser 10

T lazyDFAQA%)

azyDFAC1000K s lazyDFA(1 0%)

v iter(1k) ! -lazyDFA(10.0%)

s~ xfilter(10k) / |===lazyDFA(50.0%)| o
<xfiter(0.1%) (0.1 | 0 1%)

= e R

[~ xfilter(10.0%) 1
... xfilter(50.0%) 0 figne SR ECR SVENEIV SRR

[reparser
e laZyDFAQ.1 %)
- 1aZyDFA(1.0%)

0.0001 : 0.001 0.001
5MB {OMB 15MB 20MB 25MB SMB 10MB 15MB 20MB 25MB SMB 10MB 15MB 20MB 25MB

Total input size Total input size

Total input size

Fig.10. Experiments illustrating the throughput of the DFA v.s. XFilter [3], as a
function of the amount of XML data consumed. (left) varying number of XPath ex-
pressions (1k = 1000). (middle) varying probability of *. (right) varying probability

of //.

We considered many alternative implementations for the NFA tables. There are
three operations done on these sets: create, insert, and compare. For example
a complex data set might have 10,000 DFA states, each containing a table of
30,000 NFA states and 50 transitions. Then, during warm-up phase we need to
create 50 x 10,000 = 500,000 new sets; insert 30,000 NFA states in each set;
and compare, on average, 500, 000 x 10, 000/2 pairs of sets, of which only 490,000
comparisons return true, the others return false. We found that implementing
sets as sorted arrays of pointers offered the best overall performance. An insertion
takes O(1) time, because we insert at the end, and sort the array when we
finish all insertions. We compute a hash value (signature) for each array, thus
comparisons with negative answers take O(1) in virtually all cases.

Optimizing Space. To save space, it is possible to delete some of the sets
of NFA tables, and recompute them if needed: this may slow down the warm-up
phase, but will not affect the stable state. It suffices to maintain in each DFA
state a pointer to its predecessor state (from which it was generated). When the
NFA table is needed, but has been deleted (a miss), we re-compute it from the
predecessor’s set; if that is not available, then we go to its predecessor, eventually
reaching the initial DFA state for which we always keep the NFA table.

Updates. Both online and offline updates to the set of XPath expressions
are possible. In the online update, when a new XPath expression is inserted we
construct its NFA, then create a new lazy DFA for the union of this NFA and the
old lazy DFA. The new lazy DFA is very efficient to build (i.e. its warm-up is fast)
because it only combines two automata, of which one is deterministic and the
other is very small. When another XPath expression is inserted, then we create
a new lazy DFA. This results in a hierarchy of lazy DFAs, each constructed from
one NFA and another lazy DFA. A state expansion at the top of the hierarchy
may cascade a sequence of expansions throughout the hierarchy. Online deletions
are implemented as invalidations: reclaiming the memory used by the deleted
XPath expressions requires garbage-collection or reference count. Offline updates
can be done by a separate (offline) system, different from the production system.
Copy the current lazy DFA, A;, on the offline system, and also copy there the new

Processing XML Streams with Deterministic Automata 187

query tree, P, reflecting all updates (insertions, deletions, etc). Then construct
the eager DFA, A,, for P, but only expand states that have a corresponding
state in A;, by maintaining a one-to-one correspondence from A4 to A; and only
expanding a state when this correspondence can be extended to the new state.
When completed, Ay is moved to the online system and processing resumes
normally. The idea is that A4 will be no larger than A; and, if there are only
few updates, then A; will be approximately the same as A;, meaning that the
warm-up cost for Ay is minimal.

7 Related Work

Two techniques for processing XPath expressions have been proposed. XFil-
ter [3], its successor YFilter [0] and XTrie [6] evaluate large numbers of XPath
expressions with what is essentially a highly optimized NFA. There is a space
guarantee which is proportional to the total size of all XPath expressions. An
optimization in XFilter, called list balancing can improve the throughput by
factors of 2 to 4. XTrie identifies common strings in the XPath expressions and
organizes them in a Trie. At run-time an additional data structure is maintained
in order to keep track of the interaction between the substrings. The throughput
in XTrie is about 2 to 4 times higher than that in XFilter with list balancing.

In [20] the authors describe a technique for event detection. Events are sets
of atomic events, and they trigger queries defined by other sets of events. The
technique here is also a variation on the Trie data structure. This is an efficient
event detection method that can be combined with lazy DFAs in order to process
XPath expressions with filters.

Reference [I5] describes a general-purpose XML query processor that, at
the lowest level, uses an event based processing model, and show how such a
model can be integrated with a highly optimized XML query processor. We were
influenced by [15] in designing our stream processing model. Query processors
like [I5] can benefit from an efficient low-level stream processor. Specializing
regular expressions w.r.t. schemes is described in [L0JI8].

8 Conclusion

The challenge in fast XML stream processing with DFAs is that memory require-
ments have exponential bounds in the worst case. We proved useful theoretical
bounds and validated them experimentally, showing that memory usage is man-
ageable for lazy DFAs. We also validated lazy DFAs on stream XML data and
found that they outperform previous techniques by factors of up to 10,000.

Acknowledgments. We thank Peter Buneman, AnHai Doan, Ashish Gupta,
Zack Ives, and Arnaud Sahuguet for their comments on earlier versions of this
paper. Suciu was partially supported by the NSF CAREER Grant 0092955, a
gift from Microsoft, and an Alfred P. Sloan Research Fellowship.

188 T.J. Green et al.
References
1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web : From Relations to

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Semistructured Data and XML. Morgan Kaufmann, 1999.
A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18:333-340, 1975.

. M. Altinel and M. Franklin. Efficient filtering of XML documents for selective

dissemination. In Proceedings of VLDB, pages 53-64, Cairo, Egypt, September
2000.

. L. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka, D. Raven, and D. Suciu.

XMLTK: An XML toolkit for scalable XML stream processing. In Proceedings of
PLANX, October 2002.

. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to un-

structured data. In Proceedings of the International Conference on Database The-
ory, pages 336-350, Delphi, Greece, 1997. Springer Verlag.

. C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML

documents with XPath expressions. In Proceedings of the International Conference
on Data Engineering, 2002.

. J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a scalable continuous

query system for internet databases. In Proceedings of the ACM/SIGMOD Con-
ference on Management of Data, pages 379-390, 2000.

. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

. Y. Diao, P. Fischer, M. Franklin, and R. To. Yfilter: Efficient and scalable fil-

tering of xml documents. In Proceedings of the International Conference on Data
Engineering, San Jose, California, February 2002.

M. Fernandez and D. Suciu. Optimizing regular path expressions using graph
schemas. In Proceedings of the International Conference on Data Engineering,
pages 14-23, 1998.

R. Goldman and J. Widom. DataGuides: enabling query formulation and opti-
mization in semistructured databases. In Proceedings of Very Large Data Bases,
pages 436—445, September 1997.

T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing xml streams with
deterministic automata. Technical Report 02-10-03, University of Washington,
2002. Available from www.cs.washington.edu/homes/suciu.

D. G. Higgins, R. Fuchs, P. J. Stoehr, and G. N. Cameron. The EMBL data library.
Nucleic Acids Research, 20:2071-2074, 1992.

J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and com-
putation. Addison-Wesley, 1979.

Z. Ives, A. Halevy, and D. Weld. An XML query engine for network-bound data.
Unpublished, 2001.

H. Liefke and D. Suciu. XMill: an efficent compressor for XML data. In Proceedings
of SIGMOD, pages 153—-164, Dallas, TX, 2000.

M. Marcus, B. Santorini, and M.A.Marcinkiewicz. Building a large annotated
corpus of English: the Penn Treenbak. Computational Linguistics, 19, 1993.

J. McHugh and J. Widom. Query optimization for XML. In Proceedings of VLDB,
pages 315-326, Edinburgh, UK, September 1999.

NASA’s astronomical data center. ADC XML resource page.
http://xml.gsfc.nasa.gov/.

20.

21.

22.

23.

24.

25.

Processing XML Streams with Deterministic Automata 189

B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on the
web. In Proceedings of the ACM SIGMOD Conference on Management of Data,
pages 437-448, Santa Barbara, 2001.

D. Olteanu, T. Kiesling, and F. Bry. An evaluation of regular path expressions
with qualifiers against XML streams. In Proc. the International Conference on
Data Engineering, 2003.

G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer Verlag,
1997.

A. Sahuguet. Everything you ever wanted to know about dtds, but were afraid to
ask. In D. Suciu and G. Vossen, editors, Proceedings of WebDB, pages 171-183.
Sringer Verlag, 2000.

A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing using XML.
In Proceedings of the 18th Symposium on Operating Systems Principles, 2001.

J. Thierry-Mieg and R. Durbin. Syntactic Definitions for the ACEDB Data Base
Manager. Technical Report MRC-LMB xx.92, MRC Laboratory for Molecular
Biology, Cambridge,CB2 2QH, UK, 1992.

	Introduction
	Overview
	The Event-Based Processing Model

	Processing with DFAs
	Background on DFAs
	The DFA at Run Time

	Analyzing the Size of the DFA
	The Eager DFA
	The Lazy DFA
	Validation of the Size of the Lazy DFA
	Constant Values

	Experiments
	Implementation Issues
	Related Work
	Conclusion

