
Containment of Conjunctive Queries
on Annotated Relations

Todd J. Green
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

tjgreen@cis.upenn.edu

ABSTRACT
We study containment and equivalence of (unions of) con-
junctive queries on relations annotated with elements of a
commutative semiring. Such relations and the semantics of
positive relational queries on them were introduced in a re-
cent paper as a generalization of set semantics, bag seman-
tics, incomplete databases, and databases annotated with
various kinds of provenance information. We obtain pos-
itive decidability results and complexity characterizations
for databases with lineage, why-provenance, and provenance
polynomial annotations, for both conjunctive queries and
unions of conjunctive queries. At least one of these results
is surprising given that provenance polynomial annotations
seem “more expressive” than bag semantics and under the
latter, containment of unions of conjunctive queries is known
to be undecidable. The decision procedures rely on interest-
ing variations on the notion of containment mappings. We
also show that for any positive semiring (a very large class)
and conjunctive queries without self-joins, equivalence is the
same as isomorphism.

1. INTRODUCTION
K-relations, which are relations whose tuples are annotated
with elements from a commutative semiring K, were intro-
duced in a recent paper [19] as a generalization of sets, bags,
the Boolean c-tables used in incomplete databases [22, 20],
probabilistic databases [15, 34], databases with lineage [13]
or why-provenance [4] information, and other kinds of anno-
tated relations. The semantics of positive relational algebra
queries extends to K-relations via definitions in terms of
the abstract “+” and “·” operations of K. For K = B, the
Boolean semiring, this specializes to the usual set semantics,
while for K = N, the semiring of natural numbers, it is bag
semantics.

The introduction of annotations on relations presents new
challenges in query reformulation and optimization, how-
ever, as queries that are semantically equivalent when posed
over ordinary relations may become inequivalent when posed

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
ICDT 2009, March 23–25, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-423-2/09/0003 ...$5.00

over K-relations. Indeed, this phenomenon was already ob-
served for the case of bag semantics [8, 23], where, e.g.,
adding a “redundant” self-join to a query actually changes
the query’s meaning. The need to compare query equiva-
lence for different kinds of provenance annotations was also
emphasized from early on in [4, 5] and reiterated in [3]. A
central theme of this paper is to compare different provenance-
annotated semantics among themselves and with the stan-
dard set and bag semantics. The comparison is done w.r.t. con-
tainment1 and equivalence of conjunctive queries (CQs) and
unions of conjunctive queries (UCQs), leading to four differ-
ent hierarchies among these semantics. Whether the steps
in these hierarchies are strict or not is always informative
and sometimes surprising.

We consider in this paper five different kinds of provenance
information that can be captured using semiring annota-
tions. These range from the very simple data warehous-
ing lineage of [13], in which a tuple in the output is an-
notated with a set of tuple ids of all “contributing” source
tuples, to the why-provenance of [4], in which output tuples
are annotated with a set of sets of contributing source tu-
ples, to the provenance polynomials N[X] of [19], in which
the annotations are polynomial expressions over the source
tuple ids which fully “document” how an output tuple is
produced in the result of a query. Provenance polynomials
are as “general” as any other commutative semiring, hence
this is the most informative form of provenance annota-
tions. N[X]-relations are not just of theoretical interest,
but also have practical applications as the foundation of
trust policies and incremental maintenance algorithms in
systems for collaborative data sharing [18]. We also consider
a new form of provenance, the Boolean provenance polyno-
mials B[X], as well as the form of lineage used in the Trio
project [30], which we show can also be captured using a
semiring. These two forms of provenance are intermediate
between why-provenance and N[X].

To illustrate, for the source database R and query Q

A B C

a b c p
d b e r
f g e s

Q(R)
def
= πAC

`
πABR 1 πBCR ∪
πACR 1 πBCR

´
(where p, r, and s are the tuple ids) the data warehousing
lineage of (d, e) in the output is {r, s}, the why-provenance

1We define inclusion of K-relations by the natural order
present in the semirings of interest to us (see Section 4).

of (d, e) is {{r}, {r, s}}, the B[X]-provenance is r2 + rs,
the Trio-style lineage is r + rs, and the N[X]-provenance
is 2r2 + rs. Thus, lineage tells us which source tuples were
involved in producing a given output tuple; why-provenance
tells us which sets of source tuples were involved in pro-
ducing the output tuple; B[X] tells us which bags of source
tuples were involved; Trio-style lineage tells us how many
times a given set of source tuples was involved; and N[X]-
provenance tells us exactly how the tuple was produced from
the source tuples. Note also that by “plugging in” numeric
values for the variables (e.g., p = 2, r = 3, s = 1) and eval-
uating the N[X]-provenance of an output tuple, we obtain
the multiplicity of the tuple under bag semantics (e.g., 15
for (d, e)).

Another central theme of this paper is to establish the com-
plexity of containment and equivalence of CQs/UCQs for
various semirings. For the semirings B and N this corre-
sponds to set, respectively bag semantics and the questions
were studied in the past [6, 29, 8] as was the case of bag-set
semantics [28, 11] (In section 7.5 we discuss the relation-
ship between the latter and our results.) Results for an en-
tire class of semirings (the distributive lattices) have already
been established in [16, 19]. This paper focuses primarily on
the provenance semirings.

A priori, it is not clear that containment and equivalence
for queries on relations with provenance annotations should
even be decidable, as bag containment is known to be un-
decidable for UCQs [23], and N[X] seems related to bags.
Nevertheless, we are able to show that containment is decid-
able for all the forms of provenance annotations we consider,
for both CQs and UCQs (with the exception of containment
of UCQs with Trio-style lineage, which we leave open). We
also establish interesting connections with the same prob-
lems for bag semantics. In particular our contributions are:

• We show that the various forms of provenance anno-
tations we consider are related by surjective semiring
homomorphisms, which yields easy bounds on their rel-
ative behavior with respect to query containment.

• We show that for UCQs, N[X]- containment impliesK-
containment for any semiring K, and for any positive
K (a very large class that includes all the semirings we
consider in this paper, see Section 4), K-containment
implies containment under the usual set semantics.

• For the case of CQs without self-joins, we show that
for any positive K, K-equivalence is the same as iso-
morphism, and thus its complexity is complete for the
class gi of problems polynomial time reducible to graph
isomorphism.2

• We show that containment of CQs and UCQs is decid-
able for lineage, why-provenance, B[X], and N[X] an-
notations. The decision procedures involve interesting
variations on the concept of containment mappings, or
(in the case of N[X]-containment of UCQs) establish-
ing a small counterexample property (see Section 7.4).

2Graph isomorphism is known to be in np, but is not known
or believed to be either np-complete or in ptime, see [25].

We also identify the complexity in each case as np-
complete (with the exception of N[X]-containment of
UCQs, where we give a pspace upper bound).

• We show that for why-provenance, B[X], and N[X],
equivalence of CQs implies isomorphism, and the com-
plexity is therefore somewhat lower than for contain-
ment (gi-complete). N[X]-equivalence of UCQs is also
shown to be the same as isomorphism and gi-complete.
Lineage-equivalence of CQs and why-prov. and B[X]-
equivalence of UCQs are shown to remain np-complete.

• We show that for CQs, why-prov. containment im-
plies bag-containment, and bag-containment implies
lineage-containment. We also show that for UCQs
N[X]-equivalence is the same as bag equivalence hence
providing a proof that the latter is the same as isomor-
phism and therefore GI-complete.

Figure 1 summarizes the complexity results mentioned above
(for completeness we include previously known results in the
shaded boxes). Figure 2 summarizes the logical relationships
for containment/equivalence among the various semirings we
consider.

The rest of this paper is organized as follows. We define K-
relations and the semantics of queries on them in Section 2.
We define the various semirings for provenance in Section 3;
we also establish there the existence of semiring homomor-
phisms relating the various models. We define containment
of queries on K-relations in terms of the natural order in Sec-
tion 4 and discuss the connections with semiring homomor-
phisms. We review the background concepts of containment
mappings and canonical databases in Section 5. We derive
the bounds on containment based on surjective semiring ho-
momorphisms in Section 6. We present the main results
on containment and equivalence in Section 7. We discuss
related work in Section 8. Finally, we conclude with some
ideas for future work in Section 9.

2. QUERIES ON K-RELATIONS
Fix a countable domain D of constants. Let (K,+, ·, 0, 1)
be a commutative semiring, i.e., (K,+, 0) and (K, ·, 1) are
commutative monoids, · is distributive over + and ∀a, 0·a =
a · 0 = 0. An n-ary K-relation is a function R : Dn → K

such that its support defined by supp(R)
def
= {t : R(t) 6= 0}

is finite. A K-instance is a mapping from predicate symbols
to K-relations.

We use Datalog-style syntax for conjunctive queries and
unions of conjunctive queries. A conjunctive query (CQ)
is an expression of the form

Q(ū) :- R1(ū1), . . . , Rn(ūn)

where Q(ū) is the head of the query, denoted head(Q), the
multiset (bag) of atoms R1(ū1), . . . , Rn(ūn) is the body of the
query, denoted body(Q), ū is the tuple of distinguished vari-
ables and constants, ū1, . . . , ūn are tuples of variables and
constants whose arities are consistent with their associated
predicate symbols, and each variable appearing in the head
also appears somewhere in the body. We denote the set of
variables appearing in Q by vars(Q) and the set of constants

B PosBool(X) Lin(X) Why(X) Trio(X) B[X] N[X] N

CQs
cont np np np np np np np ? (Πp

2-hard)
equiv np np np gi gi gi gi gi

UCQs
cont np np np np ? np in pspace undec

equiv np np np np gi np gi gi

Figure 1: Complexity of containment and equivalence. Non-shaded boxes indicate contributions of this paper.
NP is short for NP-complete. GI is short for GI-complete (i.e., complete for the class of problems polynomial
time reducible to graph isomorphism).

B[X] ⇔ N[X]

⇓̀̀⇓
Why(X) ⇔ Trio(X)

⇓̀

N

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(a) CQ containment

B[X] ⇔ N[X]

m

N

m
Trio(X)

m
Why(X) ⇔

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(b) CQ equivalence

B[X] ⇐̀ N[X]

⇓̀
Trio(X)

⇓̀

⇐̀

N⇐̀

⇓̀
Why(X)

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(c) UCQ containment

N ⇔ N[X]

m
Trio(X)

⇓̀̀⇓
B[X]

⇓̀
Why(X)

⇓̀
Lin(X)

⇓̀
PosBool(X) ⇔ B

(d) UCQ equivalence

Figure 2: Logical implications of containment and equivalence. K1 ⇒ K2 indicates that K1-containment
(equivalence) implies K2-containment (equivalence). A ticked arrow “

´
⇒” indicates that the implication is

strict.

by consts(Q). When ū is empty we say that Q is a Boolean
conjunctive query; for these we will sometimes drop the
parentheses in the head and writeQ :- R1(ū1), . . . , Rn(ūn).
We say that a CQ has a self-join if some predicate symbol
appears more than once in the body of a CQ.

A union of conjunctive queries (UCQ) is a bag Q̄ = (Q1, . . . , Qn)
of CQs. The arities of the heads of the CQs in a UCQ must
all agree.

The semantics of CQs on K-relations is based on the notion
of valuations. A valuation is a function ν : vars(Q) → D
extended to be the identity on constants. Valuations operate
component-wise on tuples in the expected way. Let Q be a
CQ

Q(ū) :- R1(ū1), . . . , Rn(ūn)

and let I be a K-instance of the same schema. The result of
evaluating Q on I is the K-relation

Q(I)
def
= λt.

X
ν s.t.
ν(ū)=t

prodQν (I) (1)

where prodQν (I)
def
=
Qn
i=1Ri(ν(ūi)) and the sums and prod-

ucts are in K. A valuation ν which maps ū to t such that
prodQν (I) 6= 0 is called a derivation of t, and we say that it
justifies the associated product. The meaning of (1) is un-
changed if we assume the sum ranges only over derivations
of t.

We extend the semantics to UCQs as follows. If Q̄ = (Q1, . . . , Qn)
is a UCQ, then the result of evaluating Q̄ on a K-instance
I is the K-relation

Q̄(I)
def
= λt.

nX
i=1

Qi(I)(t)

For the commutative semiring (B,∨,∧, false, true) this spe-
cializes to the set semantics for UCQs. For (N,+, ·, 0, 1) it
is bag semantics. For (PosBool(X),∨,∧, false, true) (see Sec-
tion 3) it is the positive Boolean c-tables used in incomplete
databases [22].

A subtlety in the preceding definitions is that we allow the
same atom to appear multiple times in the body of a CQ
(and similarly, we allow the same CQ to appear multiple
times in a UCQ). With set semantics the distinction is imma-
terial, but for other K, where idempotence of multiplication
and addition may not hold, the distinction does matter. The
classic example is adding a “redundant” self-join to a query
in the case of K = N.

In contrast to repetitions, the order of atoms in the body of a
CQ (and order of CQs in a UCQ) is not important, since we
are considering only K-relations where K is commutative
(cf. Proposition 3.4 in [19]). Thus the body of a CQ can
be viewed a bag of atoms. When comparing the bodies of
CQs, we will use the notation body(P) ≤N body(Q) to mean

N[X]

B[X] Trio(X)

Why(X)

Lin(X) PosBool(X)

B

Figure 3: Provenance hierarchy. A path downward
from K1 to K2 indicates that there exists a surjective
semiring homomorphism h : K1 → K2.

bag containment of the query bodies. We will also identify
queries which are the same up to reordering of atoms in the
body, i.e., P = Q means head(P) = head(Q), body(P) ≤N
body(Q), and body(Q) ≤N body(P).

We use the notation P ∼= Q (P̄ ∼= Q̄) to denote that P and
Q (P̄ and Q̄) are isomorphic, i.e., syntactically identical up
to renaming of variables and reordering of terms (and, for
UCQs, reordering of CQs).

3. SEMIRINGS FOR PROVENANCE
In this section we define several kinds of provenance an-
notations that can be captured in the semiring framework.
We will also observe that the various models are related
by surjective semiring homomorphisms (see Appendix for
definition), as summarized in Figure 3. In Section 6, we
will use the existence of surjective semiring homomorphisms
to establish some basic relationships among the provenance
models with respect to query containment.

We fix a countable set X of variables, which can be thought
of as tuple identifiers, and parametrize all of the provenance
models by this set X.

The most informative form of provenance annotations in the
framework of K-relations is the semiring of provenance poly-
nomials [19]:

Definition 3.1 (Provenance Polynomials). The
provenance polynomials semiring for X is the semiring of
polynomials with variables from X and coefficients from N,
with the operations defined as usual: (N[X],+, ·, 0, 1).

The provenance polynomials are the“most informative”among
semiring annotation by dint of their universality: any func-
tion ν : X → K (call it a “valuation”) can be extended
uniquely to a semiring homomorphism Evalν : N[X] → K.
Intuitively, Evalν operates by assigning the value ν(x) to
each variable x in a polynomial expression, then evaluating
the resulting expression in K. Combined with the commu-
tation with homomorphisms property (cf. Proposition 6.1),
this allows the computations for any commutative semiring

K to factor through the computations for the provenance
polynomials (see [19]).

To illustrate, consider the N[X]-relation R in Figure 4(a)
and consider the UCQ Q̄ defined by

Q̄(x, z) :- R(x, y, u), R(v, y, z)

Q̄(x, z) :- R(x, u, z), R(v, y, z)

Figure 4(b) shows the result of Q̄ applied to R.

The second provenance model we consider is obtained from
the provenance polynomials by replacing natural number co-
efficients with Boolean coefficients:

Definition 3.2 (Boolean Provenance Polynomials).
The Boolean provenance polynomials semiring for X is the
semiring of polynomials over variables X with Boolean coef-
ficients: (B[X],+, ·, 0, 1).

Considering the same UCQ Q̄ as before, Figure 4(c) shows
the result of applying Q̄ to R, where R is interpreted as a
B[X]-relation. Note that the annotations in Figure 4(c) can
be obtained from those in Figure 4(b) by simply dropping
the numeric coefficients. In fact, one can check that the
operation f : N[X] → B[X] which “drops coefficients” (i.e.,
by replacing non-zero coefficients with true) is a surjective
semiring homomorphism.

The third provenance model we consider, Trio(X), is inspired
by the form of lineage used in the Trio project [30]. Like
B[X], this semiring can be viewed as being obtained from
N[X], but instead of “dropping coefficients,” this time we
“drop exponents.” We formalize this using the notion of
quotient semirings (see Appendix for definition). Let f :
N[X] → N[X] be the mapping that “drops exponents,” e.g.,
f maps 2x2y + 3xy + 2z3 + 1 to 5xy + 2z + 1. Denote by

≈f the equivalence relation on N[X] defined by a ≈f b
def⇐⇒

f(a) = f(b). One can check that ≈f is a congruence relation
(see Appendix for definition). This justifies the following:

Definition 3.3 (Trio Semiring). The Trio semiring
for X is the quotient semiring of N[X] by ≈f , denoted Trio(X).

As an example, considering again the same UCQ Q̄, Fig-
ure 4(d) shows the result of applying Q̄ to R, where R
is interpreted as a Trio(X)-relation, and an annotation A
is understood to represent its equivalence class A/≈f in
≈f . Note that the mapping h : N[X] → Trio(X) defined by
h(A) 7→ A/≈f is a surjective semiring homomorphism.

The fourth provenance model we consider is the why-provenance
of [4]. The why-provenance of a tuple is the set of sets of
“contributing” source tuples, which is called the proof wit-
ness basis in [4]. This can be captured using a semiring [3]
(called the proof why-provenance semiring in [3]):

Definition 3.4 (Why-Provenance). The why-provenance

semiring for X is (Why(X),∪,d, ∅, {∅}) where Why(X)
def
=

a b c p
d b e r
f g e s

(a) Source R

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(b) N[X]

a c p2

a e pr
d c pr
d e r2 + rs
f e s2 + rs

(c) B[X]

a c 2p
a e pr
d c pr
d e 2r + rs
f e 2s+ rs

(d) Trio(X)

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}, {r, s}}
f e {{s}, {r, s}}

(e) Why(X)

a c p
a e p ∧ r
d c p ∧ r
d e r
f e s

(f) PosBool(X)

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}
(g) Lin(X)

Figure 4: Provenance Annotations

P(P(X)) and d denotes pairwise union: A d B
def
= {a ∪ b :

a ∈ A, b ∈ B}

Considering again the same query Q̄, we can interpret the
source relation in Figure 4(a) as a why-provenance rela-
tion by doubly-nesting the variables (e.g., p becomes {{p}}).
Figure 4(e) shows the query output and the resulting why-
provenance annotations. Note that these annotations can be
obtained from the B[X]-annotations by dropping exponents
(and writing the result as a set of sets rather than sum of
monomials). One can check that the corresponding opera-
tion g : B[X]→ Why(X) which “drops exponents” is in fact
a surjective semiring homomorphism. Note also that the an-
notations can be obtained from the Trio(X)-annotations by
dropping coefficients, and it is easy to verify that the corre-
sponding operation h : Trio(X) → Why(X) which does this
is also a surjective semiring homomorphism.

An interesting variation on the why-provenance semiring is
obtained by requiring that the witness basis for an output
tuple be minimal. Here the domain is irr(P(X)) the set of
irredundant subsets of P(X), i.e., W is in irr(P(X)) if for
any A,B in W neither is a subset of the other. We can
associate with any W ⊆ P(X) a unique irredundant subset
irr(W) by repeatedly looking for elements A,B such that
A ⊆ B and deleting B from W . Then we define a semiring
(irr(P(X)),+, ·, 0, 1) as follows:

I + J
def
= irr(I ∪ J) I · J def

= irr(I d J)

0
def
= ∅ 1

def
= {∅}

This is the semiring in which we compute the minimal wit-
ness basis [4]. It is a well-known semiring: the construction
above is the construction for the free distributive lattice gen-
erated by the set X. Moreover, it is isomorphic to the semir-
ing of positive Boolean expressions (PosBool(X),∨,∧, false, true)
used in incomplete databases [22].3 The domain of this
semiring is the set of all Boolean expressions over variables
X which are positive, i.e., they involve only disjunction, con-
junction, and constants for true and false.4

3This characterization of minimal witness basis and its re-
lationship to PosBool(X) are due to Val Tannen.
4Also, we identify those expressions that are equivalent mod-
ulo the axioms of Boolean algebra.

Containment of UCQs for PosBool(X) is known to coincide
with containment under the usual set semantics:5

Theorem 3.5 ([16]). If K is a distributive lattice then
for any UCQs P̄ , Q̄

P̄ vK Q̄ iff P̄ vB Q̄

PosBool(X) is a distributive lattice, so Theorem 3.5 justi-
fies the “⇔” between B and PosBool(X) in the diagrams in
Figure 2. Other interesting examples of annotations from
distributive lattices include the semiring of full Boolean ex-
pressions (including negation), the fuzzy semiring [19], and
finite total orders such as the semiring of security clearances
proposed in [14].

Taking again the same query Q̄ and applying it to the source
table in Figure 4(a) viewed as a PosBool(X)-relation, we
obtain the PosBool(X)-relation shown in Figure 4(f).

The last and simplest form of provenance information we
consider is the data warehousing lineage of [13]. In this
scheme, a tuple t in a query output is annotated with the
set of all contributing source tuples (its lineage). This can
be captured using the following semiring [3]:

Definition 3.6 (Lineage Semiring). The lineage semir-
ing for X is (P(X) ∪ {⊥},+, ·,⊥, ∅) where X is a set of
variables, ⊥ + S = S + ⊥ = S, ⊥ · S = S · ⊥ = ⊥, and
S + T = S · T = S ∪ T if S, T 6= ⊥.

We can interpret the source relation in Figure 4(a) as a
lineage annotated relation by nesting the annotations, e.g.,
p becomes {p}. Applying the same query Q̄ as before to this
relation, we obtain the lineage annotated relation shown in
Figure 4(g). Note that the lineage for an output tuple can be
obtained from the why-provenance of the tuple by flattening

5This result was claimed in [19], but Gösta Grahne recently
pointed out to the author that [16] had already proved this in
a more general form, for queries on relations annotated with
elements of a distributive bilattice. Related results have also
been established in the contexts of parametric databases [26]
and deterministic XML [4].

the set of sets, i.e., applying the function h : Why(X) →
Lin(X) defined by h(I) =

S
S∈I S. Once again, we can show

that h is a surjective semiring homomorphism.

4. THE NATURAL ORDER
We define containment of K-relations and queries over K-
instances in terms of the natural order. Let (K,+, ·, 0, 1) be

a semiring and define a ≤ b
def⇐⇒ ∃c a + c = b. When ≤

is a partial order we say that K is naturally-ordered. B,N,
PosBool(X), and all of the semirings for provenance from
Section 3 are naturally ordered. For PosBool(X) the natural
order corresponds to logical entailment: ϕ ≤ ψ iff ϕ |= ψ.
For B[X] we have a ≤ b iff every monomial in a also ap-
pears in b. For N[X] we have a ≤ b iff every monomial
in a also appears in b with an equal or greater coefficient.
Thus 2x2y ≤ 5x2y + 2z but x + 2y 6≤ 5x + 3y2. For lin-
eage and why-provenance the natural order corresponds to
set inclusion (n.b. for why-provenance, this is only set in-
clusion “at the outer level” – e.g., {{x}} ≤ {{x}, {y, z}} but
{{x}, {y, z}} 6≤ {{x, y}, {y, z}}).

Definition 4.1. Let K be a naturally-ordered semiring
and let R1, R2 be two K-relations. We define containment
of R1 in R2 by

R1 ≤K R2
def⇐⇒ ∀t R1(t) ≤ R2(t)

We define containment of queries P,Q with respect to K-
relation semantics by

P vK Q
def⇐⇒ ∀I P (I) ≤K Q(I)

When K is B (N) we get the usual notion of query contain-
ment with respect to set (bag) semantics. For PosBool(X),
we get the structural containment and structural equivalence
of [31].6

5. CONTAINMENT MAPPINGS
In characterizing K-containment of CQs we will use varia-
tions on the notion of containment mappings. Let P,Q be
conjunctive queries, and let h be a mapping h : vars(Q) →
vars(P) ∪ consts(P) extended to be the identity on con-
stants (we will typically use the shorthand h : Q → P).
We define h to operate component-wise on tuples, atoms,
and CQs by replacing each occurrence of a variable x with
h(x). We say that h : Q → P is a containment mapping
if h(head(Q)) = head(P) and for every atom Ri(ū) in the
body of Q the atom Ri(h(ū)) occurs in the body of P .

We will also make use of the notion of the canonical database
(or tableau) for a query. This is the instance can(Q) ob-
tained by viewing the body of a CQ Q as a database; i.e.,
can(Q) |= R(x̄) iff R(x̄) ∈ body(Q). In doing this we blur
the distinction between variables and domain values. When
a query has duplicate atoms in the body, this does not result
in duplicate tuples in the canonical database.

6There are reasonable alternatives to the natural order for
incomplete databases, such as considering various orders on
the sets of possible worlds they represent.

The classical result of [6] relates containment mappings,
canonical databases, and containment of CQs under set se-
mantics:

Theorem 5.1 ([6]). For CQs P,Q the following are equiv-
alent:

1. P vB Q

2. P (can(P)) ≤B Q(can(P))

3. there is a containment mapping h : Q→ P

We will also exploit the device of canonical databases, but
for the provenance models we will use various abstractly-
tagged versions. The abstractly-tagged version abK(R) of a
K-relation R is obtained by annotating each tuple in the
support of R with its own tuple id from X. For N[X], B[X],
and Trio(X) this is simply a fresh variable x from X. For
lineage the variable is nested in a singleton set, {x}, and
for why-provenance the variable is doubly-nested, {{x}}.
We will use the shorthand canK(Q) to mean abK(can(Q)).
Abstractly-tagged instances will also play a role outside of
the context of canonical databases (cf. Lemma 7.14).

6. BOUNDS FROM SEMIRING HOMOMOR-
PHISMS

In this section we establish some initial bounds on the “rela-
tive behavior” of the various provenance models w.r.t. query
containment and equivalence, based on surjective semiring
homomorphisms.

A function h : K → K′ can be made to transform a K-
relation R into a K′-relation h(R) by applying h to each tu-
ple annotation inR. Performing this transformation component-
wise on the K-relations of a K-instance I transforms it into
a K′-instance h(I). It was shown in [19] that semiring ho-
momorphisms work nicely with UCQs on K-relations:

Proposition 6.1 ([19]). Let h : K → K′ and assume
that K,K′ are commutative semirings. Then Q̄(h(I)) =
h(Q̄(I)) for all Q̄ ∈ UCQ and K-instances I iff h is a semir-
ing homomorphism.

The observations we have made in Section 3 about the ex-
istence of surjective semiring homomorphisms relating the
various provenance models turn out to yield some easy bounds
on their “relative behavior” with respect to query contain-
ment (and therefore also equivalence). We write K1 ⇒ K2

to mean that for all UCQs Q̄1, Q̄2, if Q̄1 vK1 Q̄2 then
Q̄1 vK2 Q̄2. Then we have the following:

Lemma 6.2. For naturally-ordered semirings K1,K2, if
there exists a surjective homomorphism h : K1 → K2, then
K1 ⇒ K2.

The proof is in the Appendix. Based on our previous ob-
servations, we can conclude the following about the “relative
behavior”of the semirings for provenance w.r.t. containment
(and therefore also equivalence) of UCQs:

Theorem 6.3. If there is a path downward from K1 to
K2 in Figure 3, then K1 ⇒ K2.

We shall see in Section 7 which of the implications are strict
(as indicated by the ticked arrows “⇒́” in Figure 2).

Finally, we note that using similar reasoning, it is possible
to establish bounds for containment/equivalence of UCQs
for arbitrary semirings:

Theorem 6.4. For all K, N[X] ⇒ K. For all positive
K, K ⇒ B.

Proof. See Appendix.

The definition of positive semiring is given in the Appendix.
This is a large class of semirings: B, N, PosBool(X), and all
of the semirings for provenance we have considered in this
paper are positive. For the special case of CQs containing no
self-joins, the bounds of Theorem 6.4 collapse to a uniform
condition for equivalence:

Corollary 6.5. If CQs P,Q contain no self-joins, then
for any positive K, we have P ≡K Q iff P ∼= Q.

Therefore, for conjunctive queries without self-joins, every
“⇒́” in Figure 2(b) becomes a “⇔”.

7. MAIN RESULTS
We are now ready to present our main results on contain-
ment and equivalence.

For all but the provenance polynomials, the decision proce-
dures for containment of CQs (and the accompanying com-
plexity results) extend easily to UCQs because of the fol-
lowing general fact which was first noted for the case of set
semantics in [29]:

Proposition 7.1. If a semiring K is idempotent (i.e.,
addition in K is idempotent), then for all UCQs P̄ , Q̄, we
have P̄ vK Q̄ iff for every CQ P in P̄ there is a CQ Q
in Q̄ such that P vK Q. As a consequence, checking K-
containment of UCQs is polynomially equivalent to checking
K-containment of CQs.

The semirings for lineage, why-provenance, minimal witness
provenance, and B[X]-provenance are all idempotent. N[X]
and Trio(X) are not idempotent, nor is the semiring of natu-
ral numbers used for bag semantics (and the failure of Propo-
sition 7.1 for bag semantics was noted in [8]).

We also note that for idempotent semirings, containment
and equivalence of UCQs are easily inter-reducible (and poly-
nomially equivalent). This again generalizes a well-known
fact for set semantics [29]:

Proposition 7.2. For UCQs Q̄1, Q̄2 and idempotent K
we have

1. Q̄1 vK Q̄2 iff Q̄1 ∪ Q̄2 ≡K Q̄2

2. Q̄1 ≡K Q̄2 iff Q̄1 vK Q̄2 and Q̄2 vK Q̄1

(The second item is just the definition of K-equivalence of
UCQs.)

7.1 Lineage
Theorem 7.3. For CQs P,Q the following are equiva-

lent:

1. P vLin(X) Q

2. P (canLin(X)(P)) ≤Lin(X) Q(canLin(X)(P))

3. for every atom A(x̄) ∈ body(P) there is a containment
mapping h : Q→ P with A(x̄) in the image of h

Proof. (Sketch) similar to the proof of Theorem 7.11.

It is easy to find examples of CQs P,Q such that there is a
containment mapping h : Q → P , but condition (3) above
is not satisfied, e.g.:

P (x, y) :- R(x, y) Q(x, y) :- R(x, y), R(x, z)

There is no containment mapping h : P → Q with R(x, z)
in the image of h, so P 6vLin(X) Q. However, one can find
containment mappings h′ : P → Q and h′′ : Q→ P in both
directions, so by Theorem 5.1, P ≡B Q. This justifies the
“⇒́”between lineage and PosBool(X)/B in Figures 2(a)–(d).

Note that the above example seems to contradict7 Theorem
4.8 of [13] which claims that P ≡Lin(X) Q iff P ≡B Q. In fact,
the contradiction is explained by the fact that the definition
of lineage given in that paper only makes sense for CQs with-
out self-joins. We have already seen (Corollary 6.5) that for
this class of queries, K-equivalence is the same as isomor-
phism, for any positive K (including the lineage semiring).

Also, condition (3) of Theorem 7.3 was identified previously
in [8] as a necessary (but not sufficient) condition for bag
containment of CQs. This justifies the “⇒́” between N and
lineage in Figure 2(a).

While the conditions for checking lineage containment and
set containment of CQs/UCQs are different, the complexity
turns out to be the same:

Corollary 7.4. Checking Lin(X)-containment or Lin(X)-
equivalence of CQs or UCQs is np-complete.

7.2 Why-Provenance
To characterize Why(X)-containment of CQs, we define the
concept of onto containment mappings. A mapping h : Q→
P is an onto containment mapping if it is a containment
mapping and body(P) ≤N h(body(Q)).

7The example and this observation are due to James Cheney
and Wang-Chiew Tan.

Theorem 7.5. For CQs P,Q the following are equiva-
lent:

1. P vWhy(X) Q

2. P (canWhy(X)(P)) ≤Why(X) Q(canWhy(X)(P))

3. there is an onto containment mapping h : Q→ P

Proof. (Sketch) Similar to the proof of Theorem 7.11.

The existence of an onto containment mapping is a strictly
stronger requirement than condition (3) of Theorem 7.3. For
example, consider the queries

P (x) :- R(x, y), R(x, x)
Q(u) :- R(u, v)

There is no onto containment mapping from Q to P , hence
P 6vWhy(X) Q, but one can find containment mappings sat-
isfying condition (3) of Theorem 7.3 in both directions, so
P ≡Lin(X) Q. This justifies the “⇒́” between why-prov. and
lineage in Figure 2(a)-(d).

We note that the existence of onto containment mappings
was identified in [8] as a sufficient (but not necessary) con-
dition for bag containment of CQs. This justifies the “⇒́”
between Why(X) and N in Figure 2(a).

The existence of onto containment mappings in both direc-
tions leads to a simple characterization of Why(X)-equivalence
of CQs:

Theorem 7.6. For CQs P,Q, P ≡Why(X) Q iff P ∼= Q.

Proof. See Appendix.

It was shown in [8] that bag equivalence of CQs is also the
same as isomorphism, hence the“⇔”between N and Why(X)
in Figure 2(b). Also, note that there are Lin(X)-equivalent
CQs which are not isomorphic, for example:

P (x) :- R(x, y) Q(x) :- R(x, y), R(x, z)

Thus we have the “⇒́” between Why(X) and Lin(X) in Fig-
ure 2(b).

For UCQs P̄ , Q̄, we note that Theorem 7.6 does not imply
that for UCQs P̄ ≡Why(X) Q̄ iff P̄ ∼= Q̄ (and indeed this is
not the case).

Corollary 7.7. Checking Why(X)-containment for CQs
or UCQs and Why(X)-equivalence for UCQs is np-complete.
Checking Why(X)-equivalence for CQs is gi-complete.

7.3 B[X]-Provenance
To characterize B[X]-containment of CQs we will need an-
other variation on containment mappings, which we call ex-
act containment mappings. A mapping h : Q → P is an
exact containment mapping if h(Q) = P , i.e., h(head(Q)) =

head(P), and the bag of atoms h(body(Q)) is identical to
the bag of atoms body(P). Note that there is an exact con-
tainment mapping from Q to P iff P can be obtained from
Q (up to isomorphism) by unifying variables in Q.

Theorem 7.8. For CQs P,Q, the following are equiva-
lent:

1. P vB[X] Q

2. P (canB[X](P)) ≤B[X] Q(canB[X](P))

3. there is an exact containment mapping h : Q→ P

Proof. See Appendix.

Every exact containment mapping is also an onto contain-
ment mapping, but the converse is not true. For example,
the mapping h : Q → P which sends w to u, z to v, and
everything else to itself in

P (x, y) :- R(x, y), S(u, v)
Q(x, y) :- R(x, y), S(u, v), S(w, z)

is an onto containment mapping, but not an exact contain-
ment mapping. This justifies the “⇒́” between B[X] and
Why(X) in Figure 2(a),(c). To justify the“⇒́”between B[X]
and Why(X) in Figure 2(d), consider P,Q as above and de-
fine the UCQs P̄ = (P) and Q̄ = (P,Q). Then P̄ ≡Why(X) Q̄
but P̄ 6≡B[X] Q̄.

Like Why(X)-equivalence, B[X]-equivalence of CQs turns
out to be the same as isomorphism:

Theorem 7.9. For CQs P,Q, P ≡B[X] Q iff P ∼= Q.

This justifies the “⇔” between Why(X) and B[X] in Fig-
ure 2(b).

Checking for the existence of an exact containment mapping
turns out to have the same complexity as checking for the
existence of a containment mapping:

Corollary 7.10. Checking B[X]-containment of CQs or
UCQs, or B[X]-equivalence of UCQs, is np-complete. Check-
ing B[X]-equivalence of CQs is gi-complete.

Proof. See Appendix.

7.4 Provenance Polynomials
We now prove the results for N[X]-containment. For CQs,
this turns out to be the same as for B[X]-containment (thus
justifying the “⇔” between N[X] and B[X] in Figure 2(a)):

Theorem 7.11. For CQs P,Q the following are equiva-
lent:

1. P vN[X] Q

2. P (canN[X](P)) ≤N[X] Q(canN[X](P))

3. there is an exact containment mapping h : Q→ P

Proof. See Appendix.

Since N[X]-containment of CQs holds exactly when B[X]-
containment holds, the same is true for N[X]-equivalence:

Theorem 7.12. Let P,Q be two CQs. Then P ≡N[X] Q
iff P ∼= Q.

This justifies the“⇔”between N[X] and B[X] (and therefore
also Why(X) and N) in Figure 2(b).

Next we consider N[X]-containment of UCQs. Using similar
reasoning as in Theorem 7.11, it is not hard to see that
a weaker version of the Sagiv-Yannakakis property for set-
containment of UCQs [29] holds for N[X]:

Lemma 7.13. For UCQs P̄ , Q̄, if P̄ vN[X] Q̄, then for
every Pi ∈ P̄ there exists Qj ∈ Q̄ s.t. Pi vN[X] Qj.

Proof. (Sketch) Similar reasoning as in Theorem 7.11,
using the abstractly-tagged canonical database for P̄ .

A natural question to ask is whether the lemma above can
be strengthened to require that each Pi ∈ P̄ correspond to a
uniqueQj ∈ Q̄; as this is clearly also a sufficient condition for
containment, this would therefore yield a decision procedure
for containment. However, the strengthened version is not
true: consider the UCQs P̄ = (P1, P2) and Q̄ = (Q1, Q2)
where

P1 :- R(x, y), R(x, x) Q1 :- R(x, y), R(u, u)
P2 :- R(x, y), R(y, y) Q2 :- R(x, x), R(x, x)

Both P1 and P2 are N[X]-contained in Q1, but neither is
N[X]-contained inQ2; nevertheless, one can show that P̄ vN[X]

Q̄.

Another natural idea is to check containment of P̄ in Q̄
by evaluating both queries on the canonical database for
P̄ , in analogy with Theorem 7.11; unfortunately, one can
easily find counterexamples showing that this procedure is
unsound.

However, we are able to show that N[X]-containment of
UCQs is decidable, at least, by establishing a “small coun-
terexample” property. In particular we show that if P̄ 6vN[X]

Q̄, then P̄ (I) 6≤N[X] Q̄(I) for some I whose size is bounded
by the size of P̄ and Q̄.

When looking for such counterexamples, it is helpful to know
that it suffices to consider only abstractly-tagged instances:

Lemma 7.14. For any naturally-ordered semiring K, if
P̄ , Q̄ ∈ UCQ and P̄ (I) 6≤K Q̄(I) for some K-instance I,
then P̄ (abK(I)) 6≤N[X] Q̄(abK(I)).

Proof. Straightforward argument using Proposition 6.1,
the universality property of N[X], and Proposition A.2.

Of course, the lemma holds in particular for K = N[X]. We
now state our “small counterexample” result:

Theorem 7.15. P̄ 6vN[X] Q̄ iff P̄ (I) 6≤N[X] Q̄(I) for some
abstractly-tagged instance I containing at most k tuples, where
k is the maximum number of atoms in the body of a CQ in
Q̄.

Proof. See Appendix.

Theorem 7.15 leads immediately to a decision procedure for
checking N[X]-containment of UCQs: simply test P̄ (I) ≤N[X]

Q̄(I) for all instances I containing at most k tuples over, say,
the first nk values of the domain, where n is the maximum
arity of a relation in the schema. (If P̄ and Q̄ contain con-
stants, these must be included among the values considered
as well.) Moreover, one can check that this can be done
using only polynomial space:

Corollary 7.16. For UCQs P̄ , Q̄, checking P̄ vN[X] Q̄
is in pspace.

The exact complexity of the problem remains open.

Finally, what about N[X]-equivalence of UCQs? Theorem 7.15
tells us that it is decidable, but not much else. However, it
turns out we can use Theorem 7.11 along with Lemma 7.13
to show that, as with CQs, N[X]-equivalence of UCQs is the
same as isomorphism.

Theorem 7.17. For UCQs P̄ , Q̄, we have P̄ ≡N[X] Q̄ iff
P̄ ∼= Q̄.

In the proof we make use of the following simple proposition
which states that removing N[X]-equivalent CQs from N[X]-
equivalent UCQs yields N[X]-equivalent UCQs:

Proposition 7.18. Let P̄ , Q̄ ∈ UCQ and suppose P̄ ≡N[X]

Q̄. Then for all P ∈ P̄ , Q ∈ Q̄, if P ∼= Q, then P̄ ′ ≡N[X] Q̄
′,

where P̄ ′ (Q̄′) is the UCQ obtained from P̄ (Q̄) by removing
P (Q).

Proof. (of Theorem 7.17) “⇐” is trivial. For “⇒” we ar-
gue by induction on |P̄ |+|Q̄|. In the base case, |P̄ |+|Q̄| = 0,
and the queries are trivially N[X]-equivalent and isomor-
phic. In the inductive case, consider P̄ = (P1, . . . , Pn) and
Q̄ = (Q1, . . . , Qm) with n+m > 0, and assume inductively
that for all P̄ ′, Q̄′ s.t. |P̄ ′|+ |Q̄′| < n+m, if P̄ ′ ≡N Q̄

′ then
P̄ ′ ∼= Q̄′. If P̄ ≡N Q̄, then using Lemma 7.13, one can show
that there exists some non-empty sequence i1, . . . , i2k such
that Pi1 vN[X] Qi2 vN[X] · · · vN[X] Pi2k−1 vN[X] Qi2k and
Qi2k vN[X] Pi1 . It follows that all the CQs in the sequence

are N[X]-equivalent, and hence (by Theorem 7.15) isomor-
phic. In particular, we have Pi1

∼= Qi1 . Denote by P̄ ′ the
UCQ obtained by removing Pi1 from P̄ , and denote by Q̄′

the UCQ obtained by removing Qi1 from Q̄. By Proposi-
tion 7.18, we have P̄ ′ ≡N Q̄

′. Using the induction hypothe-
sis, this implies P̄ ′ ∼= Q̄′. Since P̄ ′ ∼= Q̄′ and Pi1

∼= Qi1 , it
follows that P̄ ∼= Q̄ as required.

Since B[X] is idempotent, but N[X] is not, it is easy to find
examples of P̄ , Q̄ where P̄ ≡B[X] Q̄ but P̄ 6≡N[X] Q̄, e.g.,
P̄ = (P) and Q̄ = (P, P) where P is an arbitrary CQ. This
justifies the “⇒́” between N[X] and B[X] in Figure 2(c) and
Figure 2(d).

7.5 Bag Semantics
In this section, we discuss some further connections between
provenance annotations and bag semantics.

We note that by Theorem 6.4, N[X]-containment of UCQs
implies bag-containment. Since the former is decidable and
the latter is not, it follows that there exist UCQs for which
bag-containment holds but N[X]-containment does not. This
justifies the “⇒́” between N[X] and N in Figure 2(d). Also,
we can show that:

Proposition 7.19. For containment of UCQs, we have

1. N 6⇒ B[X] and B[X] 6⇒ N

2. N 6⇒Why(X) and Why(X) 6⇒ N

3. N ⇒́ Lin(X)

This justifies the “⇒́” between N and lineage in Figure 2(c)
and shows that N is incomparable there with B[X] and Why(X).

Next, the “⇔” between N and N[X] in Figure 2(d) follows
from the following result:

Theorem 7.20. For UCQs P̄ , Q̄ we have P̄ ≡N Q̄ iff
P̄ ≡N[X] Q̄

Proof. N[X] ⇒ N follows from Theorem 6.4. We prove
N⇒ N[X] by contrapositive. Suppose P̄ 6≡N[X] Q̄. Then for
some N[X]-instance I and tuple t, we have P̄ (I)(t) = A and
Q̄(I)(t) = B and A 6= B. Since A and B are non-identical
polynomials, one can always find a valuation ν : X → N
such that Evalν(A) 6= Evalν(B). By Proposition 6.1, we
have P̄ (ν(I)(t)) 6= Q̄(ν(I)(t)). Since ν(I) is an N-instance, it
follows that P̄ 6≡N Q̄. Therefore N[X] 6⇒ N, as required.

By Theorem 7.17 it follows from the above that bag equiva-
lence of UCQs is also the same as isomorphism. Prior to
receiving the reviews of this paper it seemed to us that
the community considers the decidability of equivalence of
UCQs under bag semantics an open problem. However, one
of the referees pointed out (as related work on bag-set se-
mantics) the papers [11, 12]. [11] stated the result that bag-
set equivalence of UCQs (called disjunctive queries there)

is the same as isomorphism, and added as an observation
that this also holds for bag semantics. The outline of the
proof of the bag-set semantics result is provided in [9] and al-
though bag semantics is not discussed further there we have
observed that, in fact, results on bag-set semantics do corre-
spond to results on bag semantics via the following transfer
lemma:

Lemma 7.21. There exists a mapping ϕ : CQ → CQ
(which we extend to UCQs by applying it componentwise on
CQs), a mapping f from bag instances to set instances, and
a mapping g from set instances to bag instances, such that
for any UCQ Q̄, bag instance I, and set instance J , we have:

1. Q̄(I) = ϕ(Q̄)(f(I))

2. ϕ(Q̄)(J) = P̄ (g(J))

Proof. See Appendix.

Lemma 7.21 implies that bag-containment (bag-equivalence)
of CQs/UCQs is polynomial time reducible to bag-set con-
tainment (bag-set equivalence). Moreover, for UCQs P̄ , Q̄,
the transformation ϕ defined in the proof of Lemma 7.21 sat-
isfies P̄ ∼= Q̄ iff ϕ(P̄) ∼= ϕ(Q̄). Thus Lemma 7.21 transfers
to bag semantics the isomomorphism results for equivalence
under bag-set semantics.

7.6 Trio
For CQs, Trio(X)-containment turns out to coincide with
Why(X)-containment:

Theorem 7.22. For CQs P,Q we have P vTrio(X) Q iff
P vWhy(X) Q.

Therefore, Theorem 7.5 (Theorem 7.6) applies to Trio(X)-
containment (Trio(X)-equivalence) as well, and we have a
“⇔” between Trio(X) and Why(X) in Figure 2(a) and Fig-
ure 2(b).

To establish the decidability of Trio(X)-equivalence of UCQs,
we note that:

Proposition 7.23. Trio(X)⇒ N

Combined with Theorem 7.20 this implies:

Theorem 7.24. For UCQs P̄ , Q̄ we have P̄ ≡Trio(X) Q̄ iff
P̄ ∼= Q̄.

This justifies the“⇔”between Trio(X) and N in Figure 2(d).

Finally, we note that one can find examples of UCQs show-
ing that N[X] ⇒́ Trio(X) and Trio(X) ⇒́ N, as indicated
in Figure 2(d). We leave open the decidability of Trio(X)-
containment of UCQs.

8. RELATED WORK
The seminal paper by Chandra and Merlin [6] introduced the
fundamental concepts of containment mappings and canon-
ical databases in showing the decidability of containment of
CQs under set semantics and identifying its complexity as
np-complete. The extension to UCQs is due to Sagiv and
Yannakakis [29]. We have built upon the techniques from
these papers.

The papers by Ioannidis and Ramakrishnan [23] and Chaud-
huri and Vardi [8] initiated the study of query containment
under bag semantics. Chaudhuri and Vardi showed that
bag-equivalence of CQs is the same as isomorphism, estab-
lished the Πp

2-hardness of checking bag-containment of CQs,
and gave partial conditions for checking bag-containment
(see Section 7 for further connections with our results)8.
Ioannidis and Ramakrishnan showed that bag-containment
of UCQs is undecidable and introduced a framework of an-
notations from algebraic structures similar in spirit to the
semiring annotations we consider.

In Section 7.5 we have discussed the results of Cohen et
al. [11] and Cohen [9] on bag equivalence and bag-set equiva-
lence of UCQs. The decidability of bag-containment of CQs
remains open. Recent progress was made on the problem
by Jayram et al. [24] who established the undecidability of
checking bag-containment of CQs with inequalities.

Semiring-annotated relations are also related to the lattice-
annotated relations used in parametric databases by Laksh-
manan and Shiri [26]. That paper also studied query con-
tainment and equivalence, giving a number of positive de-
cidability reults. None of our provenance models fall into
this framework (with the exception of PosBool(X), cf. The-
orem 3.5).

We have already mentioned in Section 3 the paper by Grahne
et al. [16], which studied containment and equivalence of
positive relational queries on bilattice-annotated relations.

Green et al. [17] proposes Z-relations, which are relations
whose tuples are annotated with integer counts (positive
or negative), and shows that Z-equivalence is decidable for
the full relational algebra (including difference). The proof
makes essential use of the earlier results for bag semantics [8,
11].

Tan [33] showed that query containment is decidable for CQs
on relations with where-provenance information. Our results
here on why-provenance complement the where-provenance
results (why-provenance and where-provenance were intro-
duced together in [4]).

8Chaudhuri and Vardi [8] also introduced the study of bag-
set semantics, and showed that bag-set equivalence of CQs
(without repeated atoms in the body) is the same as isomor-
phism. This was essentially a rediscovery of a well-known
result in graph theory due to Lovász [27] (see also [21]),
who showed that for finite relational structures F,G, if
|Hom(F,H)| = |Hom(G,H)| for all finite relational struc-
tures H, where Hom(A,B) is the set of homomorphisms
h : A→ B, then F ∼= G. In database terminology, this says
that bag-set equivalence of Boolean CQs (without repeated
atoms in the body) is the same as isomorphism.

Green et al. [19] showed that when K is a distributive lattice,
K-containment of UCQs is the same as set containment of
UCQs. This was essentially a rediscovery of an earlier result
due to Buneman et al. [4] presented there in the context
of queries over tree-structured data with minimal witness
why-provenance (see Section 3). The result was generalized
to complex values and XML trees in [14].

Cohen [10] recently initiated the study of query optimization
under combined semantics, which generalizes bag semantics
and bag-set semantics by enriching the relational algebra
with a duplicate elimination operator. “Duplicate elimina-
tion” also makes sense for K-relations in the form of the
support operator:

supp(R)
def
= λt.

0 if R(t) = 0
1 otherwise

ForK = N, this is duplicate elimination; forK = PosBool(X)
it corresponds to the poss operator of [1] which returns the
“possible” tuples of an incomplete relation. It would be in-
teresting to see whether the decidability results presented
here can be extended to queries using supp.

Finally, the work in AI on soft constraint satisfaction prob-
lems [2] is closely related to the framework of K-relations.
Their constraints over semirings are in fact the same as our
K-relations and the two operations on constraints corre-
spond indeed to relational join and projection. The semir-
ings used in [2] are such that + is idempotent and 1 is a
top element in the resulting order. This rules out N, B[X],
N[X], and Trio(X).

9. CONCLUSION
We have mapped out some of the foundations of query opti-
mization for databases with provenance information, by giv-
ing positive decidability results and complexity characteriza-
tions for checkingK-containment/equivalence for CQs/UCQs,
for various semirings K used to track provenance informa-
tion. We also used these results to establish some necessary
and some sufficient conditions for K-containment of CQs for
any semiring K, and we showed that for the special case of
CQs without self-joins and positive K, K-equivalence is the
same as isomorphism. We also highlighted connections be-
tween query containment under set and bag semantics and
containment under the various provenance semantics.

Moving beyond UCQs, it would be interesting to consider
the same questions for Datalog programs onK-relations [19].
Unlike with UCQs, it is easy to see that N[X]-equivalence
of Datalog programs does not reduce to isomorphism, and
it seems likely that the undecidability results for set seman-
tics [32] will carry over to the forms of provenance informa-
tion we have considered here. On the other hand, the posi-
tive decidability results concerning containment/equivalence
of a Datalog program and a UCQ [7] might also carry over.
We conjecture that when K is a distributive lattice, K-
containment of Datalog programs holds exactly when the
same holds for ordinary set semantics.

We assumed a Datalog-style representation for UCQs, which
is expressively equivalent to the positive relational algebra
(RA+) on K-relations, but exponentially less concise. Un-
der set semantics, it is well-known [29] that checking con-

tainment of RA+ queries is correspondingly harder (Πp
2-

complete rather than np-complete). An obvious question
is how the move to an algebraic representation affects the
results presented here.

Finally, semiring annotations also make sense for a positive
version of XQuery on unordered XML data, as shown in [14].
It would be worthwhile to investigate how the same issues
of query containment and equivalence considered here play
out for annotated XML.

Acknowledgments
James Cheney, Zack Ives, Grigoris Karvounarakis, and Stijn
Vansummeren offered useful comments on earlier revisions
of this paper. Val Tannen suggested many of the semirings
and their constructions described in Section 3 and offered
guidance and encouragement in preparing this paper. We
thank the anonymous referees for bringing the papers [11,
12] and [27] to our attention, and we thank Gösta Grahne
for pointing out [16] and [26]. Our work is supported by
the National Science Foundation under grants IIS-0447972,
0513778, and 0629846.

10. REFERENCES
[1] L. Antova, C. Koch, and D. Olteanu. From complete

to incomplete information and back. In SIGMOD,
2007.

[2] S. Bistarelli. Semirings for Soft Constraint Solving and
Programming. Springer, 2004.

[3] P. Buneman, J. Cheney, W.-C. Tan, and
S. Vansummeren. Curated databases. In PODS, 2008.

[4] P. Buneman, S. Khanna, and W.-C. Tan. Why and
where: A characterization of data provenance. In
ICDT, 2001.

[5] P. Buneman, S. Khanna, and W. C. Tan. On
propagation of deletions and annotations through
views. In PODS, 2002.

[6] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC, pages 77–90, 1977.

[7] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive datalog programs. In
PODS, 1992.

[8] S. Chaudhuri and M. Y. Vardi. Optimization of real
conjunctive queries. In PODS, 1993.

[9] S. Cohen. Containment of aggregate queries. SIGMOD
Record, 34(1):77–85, 2005.

[10] S. Cohen. Equivalence of queries combining set and
bag-set semantics. In PODS, 2006.

[11] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In PODS, 1999.

[12] S. Cohen, Y. Sagiv, and W. Nutt. Equivalences among
aggregate queries with negation. ACM TOCL,
6(2):328–360, April 2005.

[13] Y. Cui, J. Widom, and J. L. Wiener. Tracing the
lineage of view data in a warehousing environment.
TODS, 25(2), 2000.

[14] J. N. Foster, T. J. Green, and V. Tannen. Annotated
XML: Queries and provenance. In PODS, 2008.

[15] N. Fuhr and T. Rölleke. A probabilistic relational
algebra for the integration of information retrieval and

database systems. TOIS, 14(1):32–66, 1997.

[16] G. Grahne, N. Spyratos, and D. Stamate. Semantics
and containment of queries with internal and external
conjunctions. In ICDT, 1997.

[17] T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable
differences. In ICDT, 2009.

[18] T. J. Green, G. Karvounarakis, Z. G. Ives, and
V. Tannen. Update exchange with mappings and
provenance. In VLDB, 2007.

[19] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, 2007.

[20] T. J. Green and V. Tannen. Models for incomplete
and probabilistic information. In IIDB, March 2006.

[21] P. Hell and J. Nešetřil. Graphs and Homomorphisms.
Oxford University Press, 2004.

[22] T. Imieliński and J. Witold Lipski. Incomplete
information in relational databases. J. ACM, 31(4),
1984.

[23] Y. E. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: Beyond relations as sets. TODS,
20(3):288–324, 1995.

[24] T. S. Jayram, P. G. Kolaitis, and E. Vee. The
containment problem for real conjunctive queries with
inequalities. In PODS, 2006.

[25] J. Köbler, U. Schöning, and J. Torán. The Graph
Isomorphism Problem: its Structural Complexity.
Birkhäuser Verlag, 1993.

[26] L. V. S. Lakshmanan and N. Shiri. A parametric
approach to deductive databases with uncertainty.
IEEE Trans. Knowl. Data Eng., 13(4):554–570, 2001.

[27] L. Lovász. Operations with structures. Acta
Mathematica Hungarica, 18(3–4):321–328, 1967.

[28] W. Nutt, Y. Sagiv, and S. Shurin. Deciding
equivalences among aggregate queries. In PODS, 1998.

[29] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. J. ACM, 27(4):633–655, 1980.

[30] A. D. Sarma, M. Theobald, and J. Widom. Exploiting
lineage for confidence computation in uncertain and
probabilistic databases. In ICDE, 2008.

[31] P. Senellart and S. Abiteboul. On the complexity of
managing probabilistic XML data. In PODS, 2007.

[32] O. Shmueli. Equivalence of datalog queries is
undecidable. J. of Logic Programming, 15, 1993.

[33] W.-C. Tan. Containment of relational queries with
annotation propagation. In DBPL, September 2003.

[34] E. Zimányi. Query evaluation in probabilistic
relational databases. TCS, 171(1-2), 1997.

APPENDIX
A. BACKGROUND

Definition A.1 (Semiring homomorphism). Let K1,K2

be semirings. A mapping h : K1 → K2 is called a semiring
homomorphism if h(0) = 0, h(1) = 1, and for all a, b ∈ K1,
we have h(a+ b) = h(a) + h(b) and h(a · b) = h(a) · h(b).

Proposition A.2. Let K1,K2 be naturally-ordered com-
mutative semirings. If h : K1 → K2 is a semiring homomor-
phism then for all a, b ∈ K1, a ≤K1 b =⇒ h(a) ≤K2 h(b).
If h is also surjective, then for all a, b ∈ K1, a ≤K1 b ⇐⇒
h(a) ≤K2 h(b).

Proof. Straightforward calculation.

Given a semiring K define † : K → B as follows:

†(0)
def
= false

†(a)
def
= true when a 6= 0

Proposition A.3. The following are equivalent:

1. † is a semiring homomorphism

2. K satisfies

(a) 0 6= 1

(b) a+ b = 0 implies a = 0 or b = 0

(c) ab = 0 implies a = 0 or b = 0

A semiring K is called positive if it satisfies either of the
(equivalent) statements in Proposition A.3.

Definition A.4 (Congruence relation). If K is a
semiring and ≈ is an equivalence relation on K, then we
say that ≈ is a congruence relation on K if a ≈ a′ and
b ≈ b′ implies a+ b ≈ a′ + b′ and a · b ≈ a′ · b′.

Definition A.5 (Quotient semiring). Let K be a semir-
ing and let ≈ be a congruence relation on K. If a ∈ K then
denote the equivalence class of a in ≈ by a/≈. Then the
quotient of K by ≈ is the semiring whose domain is the set

K/≈ of equivalence classes of ≈, 0
def
= 0K/≈, 1

def
= 1K/≈,

(a/≈) + (b/≈) = (a+ b)/≈, and (a/≈) · (b/≈)
def
= (a · b)/≈.

B. PROOFS
Proof. (of Lemma 6.2) Suppose that h : K1 → K2 is a

surjective semiring homomorphism and that Q̄1 vK1 Q̄2.
Consider an arbitrary K2-instance I. We want to show
that Q̄1(I) ≤K2 Q̄2(I). Since h is surjective, there exists
a K1-instance J such that I = h(J). Since Q̄1 vK1 Q̄2

we have that Q̄1(J) ≤K1 Q̄2(J). By Proposition A.2, this
implies h(Q̄1(J)) ≤K2 h(Q̄2(J)). But by Proposition 6.1,
h(Q̄1(J)) = Q̄1(h(J)) = Q̄1(I), and likewise, h(Q̄2(J)) =
Q̄2(h(J)) = Q̄2(I). It follows that Q̄1(I) ≤K2 Q̄2(I), as
required.

Proof. (of Theorem 6.4) N[X] ⇒ K follows from simi-
lar reasoning as in Proposition 6.2, but using the universal-
ity of the provenance polynomials rather than the existence
of surjective semiring homomorphisms to establish the rela-
tionship. K ⇒ B follows immediately from Proposition 6.2
using the definition of positive semiring.

Proof. (of Theorem 7.6) Clearly isomorphism implies
K-equivalence for any K, in particular for why-provenance.
In the other direction, if P ≡Why(X) Q by Theorem 7.5 there
must exist onto containment mappings h : Q → P and
g : P → Q. But since both mappings are surjective they
must also be injective. It follows that P ∼= Q.

Proof. (of Theorem 7.8) (1) ⇒ (2) is trivial, and (3) ⇒
(2) is straightforward to check.

For (2) ⇒ (3), we assume for simplicity that body(P) con-
tains no duplicate atoms (the argument can be extended to
work without this assumption). Now suppose

P (canB[X](P)) ≤B[X] Q(canB[X](P)).

Then in particular

P (canB[X](P))(ū) ≤ Q(canB[X](P))(ū),

where ū is the tuple of distinguished variables in head(P).
Also, the polynomial P (canB[X](P)))(ū) contains as a term
(i.e., with Boolean coefficient true) the product x1 · · ·xn of
all tuple ids x1, . . . , xn in canB[X](P)). Since containment
holds, the polynomial Q(canB[X](P)))(ū) must also contain
the same term. Working backwards, there must be some
valuation ν : vars(Q) → D justifying the term. Moreover,
in order to yield all variables x1, . . . , xn in the term, ν must
map the atoms of body(Q) surjectively onto the tuples of
canB[X](P)); and in order for all the exponents in the term to
equal one, the mapping of atoms to tuples must be injective.
It follows that ν is an exact containment mapping from Q
to P .

Proof. (of Corollary 7.10) (Sketch) It is clear that check-
ing for exact containment mappings is in np. As with con-
tainment mappings, the np-hardness of the problem can be
shown via a reduction from the graph 3-coloring problem.
The main difference is that instead of reducing an instance
of the 3-coloring problem for a graph (V,E) to one instance
of the exact containment mapping problem, we reduce it to
≤ n3 instances of the exact containment problem (where
n = |E|), one for each possible multiplicity of red, green,
and blue edges, and observe that there is a 3-coloring of the
graph iff there is an exact containment mapping for one of
the instances.

Proof. (of Theorem 7.11) (2)“⇒”(3) is exactly the same
as in Theorem 7.8. For (3) “⇒” (1) some additional care is
required because addition in N[X] is not idempotent. We
need to make sure that the coefficient of an arbitrary term
in the polynomial Q(I)(t), for some arbitrary N[X]-instance
I and tuple t, is at least as large as the coefficient of the same
term in the polynomial P (I)(t). To check this, it suffices to
observe that for any valuations ν, ν′ : vars(P)→ D justifying
a term in P (I)(t), the valuations ν ◦ h and ν′ ◦ h justify
the same monomial in Q(I)(t); and moreover (this is the
important part) if ν 6= ν′ then ν ◦ h 6= ν′ ◦ h. Hence every
justification for P (I)(t) corresponds to a unique justification
for Q(I)(t). Since addition in N is monotone this implies the
required inequality for the term coefficients.

Proof. (of Theorem 7.15) “⇐” is trivial. For “⇒”, sup-
pose P̄ 6vN[X] Q̄. Then for some N[X]-instance J , we have
P̄ (J) 6≤N[X] Q̄(J). By Lemma 7.14, we may assume that J is
abstractly-tagged. Choose some tuple t such that P̄ (J)(t) 6≤
Q̄(J)(t). There must be some term α in the polynomial
P̄ (J)(t) with coefficient m such that the same term α in the
polynomial Q̄(J)(t) has coefficient n and m > n. Now re-
strict J to contain only the source tuples identified in that

term (call the resulting instance I). I has at most k tu-
ples. Moreover, the coefficients for α in the polynomials
for P̄ (I)(t) and Q̄(I)(t) are unchanged. Hence P̄ (I)(t) 6≤
Q̄(I)(t), and therefore P̄ (I) 6≤N[X] Q̄(I).

Proof. (of Lemma 7.21) We first define ϕ : CQ → CQ,
as follows. Let Q be a CQ over schema Σ, and let Σ′ be
the schema obtained from Σ by replacing each n-ary rela-
tional predicate R with an n+ 1-ary relational predicate R′.
Then ϕ maps Q to the CQ over schema Σ′ obtained from
Q by replacing each join atom R(x1, . . . , xk) with an atom
R′(x1, . . . , xk, u) where u is a fresh variable. For example, if
Q is the CQ

Q(x, y):-R(x, y), R(y, z)

then ϕ(Q) is the CQ

ϕ(Q)(x, y):-R(x, y, u), R(y, z, v)

We extend ϕ to map UCQs to UCQs by applying it compo-
nentwise on CQs.

Next we define an encoding f of bag-instances over schema
Σ to bag-set instances over schema Σ′, and an encoding g of
bag-set instances over Σ′ to bag-instances over Σ, as follows:

• f maps a tuple t in relation R with multiplicity k to k
distinct tuples t′1, . . . , t

′
k in R′ each obtained from t by

appending a fresh constant in the last column

• g assigns to tuple t in R the multiplicity k where k is
the number of tuples t′ in R′ such that t and t′ agree
on all columns of t

It is straightforward to verify that ϕ, f , and g satisfy the
conditions required by the Lemma.

