
Chapter 2

MODELS FOR INCOMPLETE AND

PROBABILISTIC INFORMATION

Todd J. Green
Department of Computer and Information Science

University of Pennsylvania

tjgreen@cis.upenn.edu

Abstract We discuss, compare and relate some old and some new models for incomplete
and probabilistic databases. We characterize the expressive power of c-tables
over infinite domains and we introduce a new kind of result, algebraic comple-
tion, for studying less expressive models. By viewing probabilistic models as
incompleteness models with additional probability information, we define com-
pleteness and closure under query languages of general probabilistic database
models and we introduce a new such model, probabilistic c-tables, that is shown
to be complete and closed under the relational algebra. We also identify funda-
mental connections between query answering with incomplete and probabilistic
databases and data provenance. We show that the calculations for incomplete
databases, probabilistic databases, bag semantics, lineage, and why-provenance
are particular cases of the same general algorithms involving semi-rings. This
further suggests a comprehensive provenance representation that uses semi-rings
of polynomials. Finally, we show that for positive Boolean c-tables, containment
of positive relational queries is the same as for standard set semantics.

Keywords: Incomplete databases, probabilistic databases, provenance, lineage, semi-rings

1. Introduction

This chapter provides a survey of models for incomplete and probabilistic
information from the perspective of two recent papers that the author has writ-
ten with Val Tannen [28] and Grigoris Karvounarakis and Val Tannen [27]. All
the concepts and technical developments that are not attributed specifically to
another publication originate in these two papers.

10 MANAGING AND MINING UNCERTAIN DATA

The representation of incomplete information in databases has been an im-
portant research topic for a long time, see the references in [25], in Ch.19
of [2], in [43], in [48, 36], as well as the recent [45, 42, 41, 4]. Moreover,
this work is closely related to recently active research topics such as incon-
sistent databases and repairs [5], answering queries using views [1], data ex-
change [20], and data provenance [9, 8]. The classic reference on incomplete
databases remains [30] with the fundamental concept of c-table and its restric-
tions to simpler tables with variables. The most important result of [30] is the
query answering algorithm that defines an algebra on c-tables that corresponds
exactly to the usual relational algebra (RA). A recent paper [41] has defined
a hierarchy of incomplete database models based on finite sets of choices and
optional inclusion. We shall give below comparisons between the models [41]
and the tables with variables from [30].

Two criteria have been provided for comparisons among all these mod-
els: [30, 41] discuss closure under relational algebra operations, while [41]
also emphasizes completeness, specifically the ability to represent all finite in-
complete databases. We point out that the latter is not appropriate for tables
with variables over an infinite domain, and we describe another criterion,RA-
completeness, that fully characterizes the expressive power of c-tables.

We outline a method for the study of models that are not complete. Namely,
we consider combining existing models with queries in various fragments of
relational algebra. We then ask how big these fragments need to be to obtain
a combined model that is complete. We give a number of such algebraic
completion results.

Early on, probabilistic models of databases were studied less intensively
than incompleteness models, with some notable exceptions [10, 6, 39, 34, 17].
Essential progress was made independently in three papers [22, 33, 47] that
were published at about the same time. [22, 47] assume a model in which
tuples are taken independently in a relation with given probabilities. [33] as-
sumes a model with a separate distribution for each attribute in each tuple. All
three papers attacked the problem of calculating the probability of tuples occur-
ring in query answers. They solved the problem by developing more general
models in which rows are annotated with additional information (“event ex-
pressions,” “paths,” “traces”), and they noted the similarity with the conditions
in c-tables.

We go beyond the problem of individual tuples in query answers by defin-
ing closure under a query language for probabilistic models. Then we describe
probabilistic c-tables which add to the c-tables themselves probability distri-
butions for the values taken by their variables. Here is an example of such
a representation that captures the set of instances in which Alice is taking a
course that is Math with probability 0.3; Physics (0.3); or Chemistry (0.4),
while Bob takes the same course as Alice, provided that course is Physics or

Models for Incomplete and Probabilistic Information 11

Chemistry and Theo takes Math with probability 0.85:

Student Course Condition

Alice x
Bob x x = phys ∨ x = chem
Theo math t = 1

x =

math : 0.3
phys : 0.3
chem : 0.4

t =

{
0 : 0.15
1 : 0.85

The concept of probabilistic c-table allows us to solve the closure problem by
using the same algebra on c-tables defined in [30].

We also give a completeness result by showing that probabilistic Boolean
c-tables (all variables are two-valued and can appear only in the conditions, not
in the tuples) can represent any probabilistic database.

An important conceptual point is that, at least for the models we consider,
the probabilistic database models can be seen, as probabilistic counterparts
of incomplete database models. In an incompleteness model a tuple or an at-
tribute value in a tuple may or may not be in the database. In its probabilistic
counterpart, these are seen as elementary events with an assigned probability.
For example, the models used in [22, 33, 47] are probabilistic counterparts
of the two simplest incompleteness models discussed in [41]. As another ex-
ample, the model used in [17] can be seen as the probabilistic counterpart of
an incompleteness model one in which tuples sharing the same key have an
exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for
probabilistic c-tables will allow us to solve the problem of calculating proba-
bilities about query answers for any model that can be defined as a probabilistic
counterpart of the incompleteness models considered in [30, 41].

Besides the models for incomplete and probabilistic information, several
other forms of annotated relations have appeared in various contexts in the
literature. Query answering in these settings involves generalizing RA to per-
form corresponding operations on the annotations.

In data warehousing, [14] and [15] compute lineages for tuples in the output
of queries, in effect generalizing RA to computations on relations annotated
with sets of contributing tuples. For curated databases, [9] proposes decorating
output tuples with their why-provenance, essentially the set of sets of contribut-
ing tuples. Finally, RA on bag semantics can be viewed as a generalization to
annotated relations, where a tuple’s annotation is a number representing its
multiplicity.

We observe that in all of these cases, the calculations with annotations are
strikingly similar. This suggests looking for an algebraic structure on anno-
tations that captures the above as particular cases. It turns out that the right
structure to use for this purpose is that of commutative semi-rings. In fact,

12 MANAGING AND MINING UNCERTAIN DATA

one can show that the laws of commutative semi-rings are forced by certain ex-
pected identities inRA. Having identified commutative semi-rings as the right
algebraic structure, we argue that a symbolic representation of semi-ring calcu-
lations is just what is needed to record, document, and trackRA querying from
input to output for applications which require rich provenance information. It
is a standard philosophy in algebra that such symbolic representations form
the most general such structure. In the case of commutative semi-rings, just
as for rings, the symbolic representation is that of polynomials. This strongly
suggests using polynomials to capture provenance.

The rest of this chapter is organized as follows:

We develop the basic notions of representation systems for incomplete
information databases, and we give several examples (Section 2).

We define two measures of expressive power for representation systems,
RA-Completeness and finite completeness. RA-com-pleteness charac-
terizes the expressiveness of c-tables, and finite completeness the expres-
siveness of a restricted system which we call finite c-tables (Section 3).

We examine the related notion of closure of representation systems un-
der relational operations (Section 4).

We define the notion of algebraic completion, and we give a number of
results showing, for various representation systems not closed under the
full relational algebra, that “closing” them under (certain fragments of)
the relational algebra yields expressively complete representation sys-
tems (Section 5).

We develop the basic notions of probabilistic representation systems
(Section 6) and present probabilistic counterparts of various represen-
tation systems for incomplete databases (Sections 7 and 8).

We observe patterns in the calculations used in incomplete and proba-
bilistic databases, bag semantics, and why-provenance which motivate
the more general study of annotated relations (Section 9).

We define K-relations, in which tuples are annotated (tagged) with ele-
ments from K. We define a generalized positive algebra on K-relations
and argue that K must be a commutative semi-ring (Section 10).

For provenance semi-rings we use polynomials with integer coeffi-
cients, and we show that positive algebra semantics for any commutative
semi-rings factors through the provenance semantics (Section 11).

Models for Incomplete and Probabilistic Information 13

We consider query containment w.r.t. K-relation semantics and we
show that for unions of conjunctive queries and when K is a distribu-
tive lattice, query containment is the same as that given by standard set
semantics (Section 12).

2. Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [25], in Ch. 19
of [2], and in [43]. A database that provides incomplete information consists
of a set of possible instances. At one end of this spectrum we have the con-
ventional single instances, which provide “complete information.” At the other
end we have the set of all allowable instances which provides “no information”
at all, or “zero information.”

We adopt the formalism of relational databases over a fixed countably infi-
nite domain D. We use the unnamed form of the relational algebra. To simplify
the notation we will work with relational schemas that consist of a single rela-
tion name of arity n. Everything we say can be easily reformulated for arbitrary
relational schemas. We shall need a notation for the set of all (conventional)
instances of this schema, i.e., all the finite n-ary relations over D:

N := {I | I ⊆ D
n, I finite}

Definition 2.1 An incomplete(-information) database

(i-database for short), I, is a set of conventional instances, i.e., a subset
I ⊆ N .

The usual relational databases correspond to the cases when I = {I}. The
no-information or zero-information database consists of all the relations:
N .

Conventional relational instances are finite. However, because D is infinite
incomplete databases are in general infinite. Hence the interest in finite, syn-
tactical, representations for incomplete information.

Definition 2.2 A representation system consists of a set (usually a syn-
tactically defined “language”) whose elements we call tables, and a function

Mod that associates to each table T an incomplete database Mod(T).

The notation corresponds to the fact that T can be seen as a logical assertion
such that the conventional instances inMod(T) are in fact the models of T (see
also [38, 44]).

The classical reference [30] considers three representation systems: Codd
tables, v-tables, and c-tables. v-tables are conventional instances in which

14 MANAGING AND MINING UNCERTAIN DATA

variables can appear in addition to constants from D. If T is a v-table then1

Mod(T) := {ν(T) | ν : Var(T)→ D is a valuation for the variables of T}

Codd tables are v-tables in which all the variables are distinct. They correspond
roughly to the current use of nulls in SQL, while v-tables model “labeled” or
“marked” nulls. c-tables are v-tables in which each tuple is annotated with
a condition — a Boolean combination of equalities involving variables and
constants. The tuple condition is tested for each valuation ν and the tuple is
discarded from ν(T) if the condition is not satisfied.

Example 2.3 A v-table and its possible worlds.

R :=
1 2 x
3 x y
z 4 5

Mod(R) =

8
<
:

1 2 1
3 1 1
1 4 5

,
1 2 2
3 2 1
1 4 5

, . . . ,
1 2 77
3 77 89
97 4 5

, . . .

9
=
;

Example 2.4 A c-table and its possible worlds.

S :=
1 2 x
3 x y x = y ∧ z 6= 2
z 4 5 x 6= 1 ∨ x 6= y

Mod(S) =

1 2 1
3 1 1

,
1 2 2
1 4 5

, . . . ,
1 2 77
97 4 5

, . . .

ff

Several other representation systems have been proposed in a recent pa-
per [41]. We illustrate here three of them and we discuss several others later.
A ?-table is a conventional instance in which tuples are optionally labeled
with “?,” meaning that the tuple may be missing. An or-set-table looks like a
conventional instance but or-set values [31, 37] are allowed. An or-set value
〈1, 2, 3〉 signifies that exactly one of 1, 2, or 3 is the “actual” (but unknown)
value. Clearly, the two ideas can be combined yielding another representation
systems that we might (awkwardly) call or-set-?-tables.2

Example 2.5 An or-set-?-table and its possible worlds.

T :=
1 2 〈1, 2〉
3 〈1, 2〉 〈3, 4〉
〈4, 5〉 4 5 ?

Mod(T) =

8
<
:

1 2 1
3 1 3
4 4 5

,
1 2 1
3 1 3

, . . . ,
1 2 2
3 2 4

9
=
;

3. RA-Completeness and Finite Completeness

“Completeness” of expressive power is the first obvious question to ask
about representation systems. This brings up a fundamental difference be-
tween the representation systems of [30] and those of [41]. The presence of

1We follow [2, 41] and use the closed-world assumption (CWA). [30] uses the open-world assumption
(OWA), but their results hold for CWA as well.
2In [41] these three systems are denoted byR?,RA andRA? .

Models for Incomplete and Probabilistic Information 15

variables in a table T and the fact that D is infinite means thatMod(T) may be
infinite. For the tables considered in [41],Mod(T) is always finite.

[41] defines completeness as the ability of a representation system to repre-
sent “all” possible incomplete databases. For the kind of tables considered
in [41] the question makes sense. But in the case of the tables with vari-
ables in [30] this is hopeless for trivial reasons. Indeed, in such systems there
are only countably many tables while there are uncountably many incomplete
databases (the subsets of N , which is infinite). We will discuss separately be-
low finite completeness for systems that only represent finite databases. Mean-
while, we will develop a different yardstick for the expressive power of tables
with variables that range over an infinite domain.
c-tables and their restrictions (v-tables and Codd tables) have an inherent

limitation: the cardinality of the instances inMod(T) is at most the cardinality
of T . For example, the zero-information database N cannot be represented
with c-tables. It also follows that among the incomplete databases that are rep-
resentable by c-tables the “minimal”-information ones are those consisting for
some m of all instances of cardinality up to m (which are in fact representable
by Codd tables with m rows). Among these, we make special use of the ones
of cardinality 1:

Zk := {{t} | t ∈ D
k}.

Hence, Zk consists of all the one-tuple relations of arity k. Note that Zk =
Mod(Zk) where Zk is the Codd table consisting of a single row of k distinct
variables.

Definition 3.1 An incomplete database I isRA-definable if there exists a
relational algebra query q such that I = q(Zk), where k is the arity of the
input relation name in q.

Theorem 3.2 If I is an incomplete database representable by a c-table T ,
i.e., I = Mod(T), then I isRA-definable.

Proof: Let T be a c-table, and let {x1, . . . , xk} denote the variables in T .
We want to show that there exists a query q in RA such that q(Mod(Zk)) =
Mod(T). Let n be the arity of T . For every tuple t = (a1, . . . , an) in T with
condition T (t), let {xi1 , . . . , xij} be the variables in T (t) which do not appear
in t. For 1 ≤ i ≤ n, define Ci to be the singleton {c}, if ai = c for some
constant c, or πj(Zk), if ai = xj for some variable xj . For 1 ≤ j ≤ k, define
Cn+j to be the expression πij (Zk), where xj is the jth variable in T (t) which
does not appear in t. Define q to be the query

q :=
⋃

t∈T

π1,...,n(σψ(t)(C1 × · · · × Cn+k)),

16 MANAGING AND MINING UNCERTAIN DATA

where ψ(t) is obtained from T (t) by replacing each occurrence of a variable xi
with the index j of the termCj in which xi appears. To see that q(Mod(Zk)) =
Mod(T), since Zk is a c-table, we can use Theorem 4.2 and check that, in fact,
q̄(Zk) = T where q̄ is the translation of q into the c-tables algebra (see the
proof of Theorem 4.2). Note that we only need the SPJU fragment ofRA.

Example 3.3 The c-table from Example 2.4 is definable as Mod(S) = q(Z3)
where q is the following query with input relation name V of arity 3: q(V) :=
π123({1} × {2} × V) ∪ π123(σ2=3,46=‘2’({3} × V)) ∪ π512(σ36=‘1’,36=4({4} ×
{5} × V)).

Remark 3.4 It turns out that the i-databases representable by c-tables are
also definable via RA starting from the absolute zero-information instance,
N . Indeed, it can be shown (Proposition 15.1) that for each k there exists
an RA query q such that Zk = q(N). From there we can apply Theo-
rem 3.2. The class of incomplete databases {I | ∃q ∈ RA s.t. I = q(N)}
is strictly larger than that representable by c-tables, but it is still countable
hence strictly smaller than that of all incomplete databases. Its connections

with FO-definability in finite model theory might be interesting to investigate.

Hence, c-tables are in some sense “no more powerful” than the relational
algebra. But are they “as powerful”? This justifies the following:

Definition 3.5 A representation system isRA-complete if it can represent
anyRA-definable i-database.

Since Zk is itself a c-table the following is an immediate corollary of the
fundamental result of [30] (see Theorem 4.2 below). It also states that the
converse of Theorem 3.2 holds.

Theorem 3.6 c-tables areRA-complete.

This result is similar in nature to Corollary 3.1 in [25]. However, the exact
technical connection, if any, is unclear, since Corollary 3.1 in [25] relies on the
certain answers semantics for queries.

We now turn to the kind of completeness considered in [41].

Definition 3.7 A representation system is finitely complete if it can repre-
sent any finite i-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other
systems is discussed in [41] where a finitely complete representation system
RAprop is also given (we repeat the definition in the Appendix). Is finite com-
pleteness a reasonable question for c-tables, v-tables, and Codd tables? In
general, for such tables Mod(T) is infinite (all that is needed is a tuple with

Models for Incomplete and Probabilistic Information 17

at least one variable and with an infinitely satisfiable condition). To facilitate
comparison with the systems in [41] we define finite-domain versions of tables
with variables.

Definition 3.8 A finite-domain c-table (v-table, Codd table) consists of a
c-table (v-table, Codd table) T together with a finite dom(x) ⊂ D for each

variable x that occurs in T .

Note that finite-domain Codd tables are equivalent to or-set tables. Indeed,
to obtain an or-set table from a Codd table, one can see dom(x) as an or-set
and substitute it for x in the table. Conversely, to obtain a Codd table from
an or-set table, one can substitute a fresh variable x for each or-set and define
dom(x) as the contents of the or-set.

In light of this connection, finite-domain v-tables can be thought of as a
kind of “correlated” or-set tables. Finite-domain v-tables are strictly more
expressive than finite Codd tables. Indeed, every finite Codd table is also a
finite v-table. But, the set of instances represented by e.g. the finite v-table
{(1, x), (x, 1)} where dom(x) = {1, 2} cannot be represented by any finite
Codd table. Finite-domain v-tables are themselves finitely incomplete. For ex-
ample, the i-database {{(1, 2)}, {(2, 1)}} cannot be represented by any finite
v-table.

It is easy to see that finite-domain c-tables are finitely complete and hence
equivalent to [41]’sRAprop in terms of expressive power. In fact, this is true even
for the fragment of finite-domain c-tables which we will call Boolean c-tables,
where the variables take only Boolean values and are only allowed to appear
in conditions (never as attribute values).

Theorem 3.9 Boolean c-tables are finitely complete (hence finite-domain
c-tables are also finitely complete).

Proof: Let I = {I1, . . . , Im} be a finite i-database. Construct a Boolean c-
table T such that Mod(T) = I as follows. Let ℓ := ⌈lgm⌉. For 1 ≤ i < m,
put all the tuples from Ii into T with condition ϕi, defined

ϕi :=
∧

j

¬xj ∧
∧

k

xk,

where the first conjunction is over all 1 ≤ j ≤ ℓ such that jth digit in the ℓ-
digit binary representation of i− 1 is 0, and the second conjunction is over all
1 ≤ k ≤ ℓ such that the kth digit in the ℓ-digit binary representation of i− 1 is
1. Finally, put all the tuples from Im into T with condition ϕm ∨ · · · ∨ϕ2ℓ .
Although Boolean c-tables are complete there are clear advantages to using
variables in tuples also, chief among them being compactness of representa-
tion.

18 MANAGING AND MINING UNCERTAIN DATA

Example 3.10 Consider the finite v-table {(x1, x2, . . . , xm)} where

dom(x1) = dom(x2) = · · · = dom(xm) = {1, 2, . . . , n}. The equivalent
Boolean c-table has nm tuples.

If we additionally restrict Boolean c-tables to allow conditions to contain
only true or a single variable which appears in no other condition, then we
obtain a representation system which is equivalent to ?-tables.

Since finite c-tables and RAprop are each finitely complete there is an ob-
vious naïve algorithm to translate back and forth between them: list all the
instances the one represents, then use the construction from the proof of finite
completeness for the other. Finding a more practical “syntactic” algorithm is
an interesting open question.

4. Closure Under Relational Operations

Definition 4.1 A representation system is closed under a query language if
for any query q and any table T there is a table T ′ that represents q(Mod(T)).

(For notational simplicity we consider only queries with one input relation
name, but everything generalizes smoothly to multiple relation names.)

This definition is from [41]. In [2], a strong representation system is defined
in the same way, with the significant addition that T ′ should be computable
from T and q. It is not hard to show, using general recursion-theoretic prin-
ciples, that there exist representation systems (even ones that only represent
finite i-databases) which are closed as above but not strong in the sense of [2].
However, the concrete systems studied so far are either not closed or if they are
closed then the proof provides also the algorithm required by the definition of
strong systems. Hence, we see no need to insist upon the distinction.

Theorem 4.2 ([30]) c-tables, finite-domain c-tables, and Boolean c-tables
are closed under the relational algebra.

Proof: (Sketch.) We repeat here the essentials of the proof, including most
of the definition of the c-table algebra. For each operation u of the relational
algebra [30] defines its operation on the c-table conditions as follows. For
projection, if V is a list of indexes, the condition for a tuple t in the output is
given by

π̄V (T)(t) :=
∨

t′∈T s.t. πV (t′)=t

T (t′)

where T (t′) denotes the condition associated with t′ in T . For selection, we
have

σ̄P (T)(t) := T (t) ∧ P (t)

where P (t) denotes the result of evaluating the selection predicate P on the
values in t (for a Boolean c-table, this will always be true or false, while for

Models for Incomplete and Probabilistic Information 19

c-tables and finite-domain c-tables, this will be in general a Boolean formula
on constants and variables). For cross product and union, we have

(T1 ×̄ T2)(t) := T1(t) ∧ T2(t)

(T1 ∪̄ T2)(t) := T1(t) ∨ T2(t)

Difference and intersection are handled similarly. By replacing u’s by ū we
translate any relational algebra expression q into a c-table algebra expression q̄
and it can be shown that

Lemma 4.3 For all valuations ν, ν(q̄(T)) = q(ν(T)).

From this,Mod(q̄(T)) = q(Mod(T)) follows immediately.
In Section 10, we shall see a generalization of the (positive) c-table algebra

and Lemma 4.3 in the context of annotated relations.

5. Algebraic Completion

None of the incomplete representation systems we have seen so far is closed
under the full relational algebra. Nor are two more representation systems
considered in [41],RsetsandR⊕≡ (we repeat their definitions in the Appendix).

Proposition 5.1 ([30, 41]) Codd tables and v-tables are not closed un-
der e.g. selection. Or-set tables and finite v-tables are also not closed under
e.g. selection. ?-tables,Rsets, andR⊕≡ are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see
before Definition 3.5) {Z1, Z2, . . .}, by relational algebra queries yields equiv-
alence with the c-tables. In this spirit, we will investigate “how much” of the
relational algebra would be needed to complete the other representation sys-
tems considered. We call this kind of result algebraic completion.

Definition 5.2 If (T ,Mod) is a representation system and L is a query
language, then the representation system obtained by closing T under L is the
set of tables {(T, q) | T ∈ T , q ∈ L} with the function Mod : T × L → N
defined by Mod(T, q) := q(Mod(T)).

We are now ready to state the results regarding algebraic completion.

Theorem 5.3 (RA-Completion)

1 The representation system obtained by closing Codd tables under SPJU
queries isRA-complete.

2 The representation system obtained by closing v-tables under SP queries
isRA-complete.

20 MANAGING AND MINING UNCERTAIN DATA

Proof: (Sketch.) For each case we show that given a arbitrary c-table T one
can construct a table S and a query q of the required type such that q̄(S) = T .
Case 1 is a trivial corollary of Theorem 3.2. The details for Case 2 are in the
Appendix.

Note that in general there may be a “gap” between the language for which
closure fails for a representation system and the language required for comple-
tion. For example, Codd tables are not closed under selection, but at the same
time closing Codd tables under selection does not yield anRA-complete repre-
sentation system. (To see this, consider the incomplete database represented by
the v-table {(x, 1), (x, 2)}. Intuitively, selection alone is not powerful enough
to yield this incomplete database from a Codd table, as, selection operates on
one tuple at a time and cannot correlate two un-correlated tuples.) On the other
hand, it is possible that some of the results we present here may be able to be
“tightened” to hold for smaller query languages, or else proved to be “tight”
already. This is an issue which may be worth examining in the future.

We give now a set of analogous completion results for the finite case.

Theorem 5.4 (Finite-Completion)

1 The representation system obtained by closing or-set-tables under PJ
queries is finitely complete.

2 The representation system obtained by closing finite v-tables under PJ
or S+P queries is finitely complete.

3 The representation system obtained by closing Rsets under PJ or PU
queries is finitely complete.

4 The representation system obtained by closingR⊕≡ under S+PJ queries
is finitely complete.

Proof:(Sketch.) In each case, given an arbitrary finite incomplete data-base,
we construct a table and query of the required type which yields the incomplete
database. The details are in the Appendix.

Note that there is a gap between the RA-completion result for Codd tables,
which requires SPJU queries, and the finite-completion result for finite Codd
tables, which requires only PJ queries. A partial explanation is that proof of
the latter result relies essentially on the finiteness of the i-database.

More generally, if a representation system can represent arbitrarily-large i-
databases, then closing it under RA yields a finitely complete representation
system, as the following theorem makes precise (see Appendix for proof).

Theorem 5.5 (General Finite-Completion) Let T be a representa-
tion system such that for all n ≥ 1 there exists a table T in T such that

Models for Incomplete and Probabilistic Information 21

|Mod(T)| ≥ n. Then the representation system obtained by closing T under
RA is finitely-complete.

Corollary 5.6 The representation system obtained by closing ?-tables un-
derRA queries is finitely complete.

6. Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database
models we will assume that the domain of values D is finite. Infinite domains
of values are certainly interesting in practice; for some examples see [33, 45,
41]. Moreover, in the case of incomplete databases we have seen that they
allow for interesting distinctions.3 However, finite probability spaces are much
simpler than infinite ones and we will take advantage of this simplicity. The
issues related to probabilistic databases over infinite domains are nonetheless
interesting and worth pursuing in the future.

We wish to model probabilistic information using a probability space whose
possible outcomes are all the conventional instances. Recall that for simplicity
we assume a schema consisting of just one relation of arity n. The finiteness
of D implies that there are only finitely many instances, I ⊆ D

n.
By finite probability space we mean a probability space (see e.g. [18])

(Ω,F ,Pr[]) in which the set of outcomes Ω is finite and the σ-field of events
F consists of all subsets of Ω. We shall use the equivalent formulation of pairs
(Ω, p) where Ω is the finite set of outcomes and where the outcome probability
assignment p : Ω→ [0, 1] satisfies

∑
ω∈Ω p(ω) = 1. Indeed, we take Pr[A] =∑

ω∈A p(ω).

Definition 6.1 A probabilistic(-information) database (sometimes called
in this paper a p-database) is a finite probability space whose outcomes are
all the conventional instances, i.e., a pair (N , p) where∑I∈N p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealis-
tic because there are 2N possible instances, where N := |D|n, and we would
need that many (minus one) probability values. Thus, as in the case of incom-
plete databases we define probabilistic representation systems consisting of
“probabilistic tables” (prob. tables for short) and a functionMod that associates
to each prob. table T a probabilistic database Mod(T). Similarly, we define
completeness (finite completeness is the only kind we have in our setting).

To define closure under a query language we face the following problem.
Given a probabilistic database (N , p) and a query q (with just one input relation
name), how do we define the probability assignment for the instances in q(N)?

3Note however that the results remain true if D is finite; we just require an infinite supply of variables.

22 MANAGING AND MINING UNCERTAIN DATA

It turns out that this is a common construction in probability theory: image
spaces.

Definition 6.2 Let (Ω, p) be a finite probability space and let f : Ω → Ω′

whereΩ′ is some finite set. The image of (Ω, p) under f is the finite probability
space (Ω′, p′) where 4 p′(ω′) :=

∑
f(ω)=ω′ p(ω).

Again we consider as query languages the relational algebra and its sublan-
guages defined by subsets of operations.

Definition 6.3 A probabilistic representation system is closed under a query
language if for any query q and any prob. table T there exists a prob. table T ′

that represents q(Mod(T)), the image space of Mod(T) under q.

7. Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for proba-
bilistic models of databases [47, 22, 23, 16] (they are called the “independent
tuples” representation in [42]). Such tables are the probabilistic counterpart of
?-tables where each “?” is replaced by a probability value. Example 7.4 below
shows such a table. The tuples not explicitly shown are assumed tagged with
probability 0. Therefore, we define a p-?-table as a mapping that associates
to each t ∈ D

n a probability value p
t
. In order to represent a probabilistic

database, papers using this model typically include a statement like “every tu-
ple t is in the outcome instance with probability p

t
, independently from the

other tuples” and then a statement like

Pr[I] =
(∏

t∈I

p
t

)(∏

t6∈I

(1− p
t
)
)
.

In fact, to give a rigorous semantics, one needs to define the eventsEt ⊆ N ,
Et := {I | t ∈ I} and then to prove the following.

Proposition 7.1 There exists a unique probabilistic database such that the
events Et are jointly independent and Pr[Et] = p

t
.

This defines p-?-tables as a probabilistic representation system. We shall
however provide an equivalent but more perspicuous definition. We shall need
here another common construction from probability theory: product spaces.

Definition 7.2 Let (Ω1, p1), . . . , (Ωn, pn) be finite probability spaces. Their
product is the space (Ω1 × · · · × Ωn, p) where

5 we have:

p(ω1, . . . , ωn) := p1(ω1) · · · pn(ωn)

4It is easy to check that the p′(ω′)’s do actually add up to 1.
5Again, it is easy to check that the outcome probability assignments add up to 1.

Models for Incomplete and Probabilistic Information 23

This definition corresponds to the intuition that the n systems or phenom-
ena that are modeled by the spaces (Ω1, p1), . . . , (Ωn, pn) behave without “in-
terfering” with each other. The following formal statements summarize this
intuition.

Proposition 7.3 Consider the product of the spaces (Ω1, p1), . . . , (Ωn, pn).
Let A1 ⊆ Ω1, . . . , An ⊆ Ωn.

1 We have Pr[A1 × · · · ×An] = Pr[A1] · · ·Pr[An].

2 The eventsA1×Ω2×· · ·×Ωn,Ω1×A2×· · ·×Ωn, . . . ,Ω1×Ω2×· · ·×An
are jointly independent in the product space.

Turning back to p-?-tables, for each tuple t ∈ D
n consider the finite prob-

ability space Bt := ({true, false}, p) where p(true) := p
t

and p(false) =
1− p

t
. Now consider the product space

P :=
∏

t∈Dn

Bt

We can think of its set of outcomes (abusing notation, we will call this set P
also) as the set of functions from D

n to {true, false}, in other words, predicates
on D

n. There is an obvious function f : P → N that associates to each
predicate the set of tuples it maps to true.

All this gives us a p-database, namely the image of P under f . It remains
to show that it satisfies the properties in Proposition 7.1. Indeed, since f is a
bijection, this probabilistic database is in fact isomorphic to P . In P the events
that are in bijection with the Et’s are the Cartesian product in which there
is exactly one component {true} and the rest are {true, false}. The desired
properties then follow from Proposition 7.3.

We define now another simple probabilistic representation system called
probabilistic or-set-tables (p-or-set-tables for short). These are the proba-
bilistic counterpart of or-set-tables where the attribute values are, instead of
or-sets, finite probability spaces whose outcomes are the values in the or-set.
p-or-set-tables correspond to a simplified version of the ProbView model pre-
sented in [33], in which plain probability values are used instead of confidence
intervals.

Example 7.4 A p-or-set-table S, and a p-?-table T .

S :=
1 〈2 : 0.3, 3 : 0.7〉
4 5

〈6 : 0.5, 7 : 0.5〉 〈8 : 0.1, 9 : 0.9〉
T :=

1 2 0.4
3 4 0.3
5 6 1.0

A p-or-set-table determines an instance by choosing an outcome in each
of the spaces that appear as attribute values, independently. Recall that or-
set tables are equivalent to finite-domain Codd tables. Similarly, a p-or-set-
table corresponds to a Codd table T plus for each variable x in T a finite

24 MANAGING AND MINING UNCERTAIN DATA

probability space dom(x) whose outcomes are in D. This yields a p-database,
again by image space construction, as shown more generally for c-tables next
in Section 8.
Query answering The papers [22, 47, 33] have considered, independently,

the problem of calculating the probability of tuples appearing in query answers.
This does not mean that in general q(Mod(T)) can be represented by another
tuple table when T is some p-?-table and q ∈ RA (neither does this hold for
p-or-set-tables). This follows from Proposition 5.1. Indeed, if the probabilistic
counterpart of an incompleteness representation system T is closed, then so is
T . Hence the lifting of the results in Proposition 5.1 and other similar results.

Each of the papers [22, 47, 33] recognizes the problem of query answering
and solves it by developing a more general model in which rows contain addi-
tional information similar in spirit to the conditions that appear in c-tables (in
fact [22]’s model is essentially what we call probabilistic Boolean c-tables, see
next section). It turns out that one can actually use a probabilistic counterpart
to c-tables themselves together with the algebra on c-tables given in [30] to
achieve the same effect.

8. Probabilistic c-tables

Definition 8.1 A probabilistic c-table (pc-tables for short) consists of a
c-table T together with a finite probability space dom(x) (whose outcomes are
values in D) for each variable x that occurs in T .

To get a probabilistic representation system consider the product space

V :=
∏

x∈Var(T)

dom(x)

The outcomes of this space are in fact the valuations for the c-table T ! Hence
we can define the function g : V → N , g(ν) := ν(T) and then defineMod(T)
as the image of V under g.

Similarly, we can talk about Boolean pc-tables, pv-tables and probabilistic
Codd tables (the latter related to [33], see previous section). Moreover, the
p-?-tables correspond to restricted Boolean pc-tables, just like ?-tables.

Theorem 8.2 Boolean pc-tables are complete (hence pc-tables are also com-
plete).

Proof: Let I1, . . . , Ik denote the instances with non-zero probability in an
arbitrary probabilistic database, and let p1, . . . , pk denote their probabilities.
Construct a probabilistic Boolean c-table T as follows. For 1 ≤ i ≤ k − 1,
put the tuples from Ii in T with condition ¬x1 ∧ · · · ∧ ¬xi−1 ∧ xi. Put the
tuples from Ik in T with condition ¬x1 ∧ · · · ∧ ¬xk−1. For 1 ≤ i ≤ k − 1,

Models for Incomplete and Probabilistic Information 25

A B C

a b c b1
d b e b2
f g e b3

A C

a c (b1 ∧ b1) ∨ (b1 ∧ b1)
a e b1 ∧ b2
d c b1 ∧ b2
d e (b2 ∧ b2) ∨ (b2 ∧ b2) ∨ (b2 ∧ b3)
f e (b3 ∧ b3) ∨ (b3 ∧ b3) ∨ (b2 ∧ b3)

A C

a c b1
a e b1 ∧ b2
d c b1 ∧ b2
d e b2
f e b3

(a) (b) (c)

Figure 2.1. Boolean c-tables example

set Pr[xi = true] := pi/(1−
∑i−1

j=1 pj). It is straightforward to check that this
yields a table such that Pr[Ii] = pi.

The previous theorem was independently observed in [42] and [28].

Theorem 8.3 pc-tables (and Boolean pc-tables) are closed under the rela-
tional algebra.

Proof:(Sketch.) For any pc-table T and any RA query q we show that the
probability space q(Mod(T)) (the image of Mod(T) under q) is in fact the
same as the space Mod(q̄(T)). The proof of Theorem 4.2 already shows that
the outcomes of the two spaces are the same. The fact that the probabilities
assigned to each outcome are the same follows from Lemma 4.3.

The proof of this theorem gives in fact an algorithm for constructing the
answer as a p-database itself, represented by a pc-table. In particular this will
work for the models of [22, 33, 47] or for models we might invent by adding
probabilistic information to v-tables or to the representation systems consid-
ered in [41]. The interesting result of [16] about the applicability of an “ex-
tensional” algorithm to calculating answer tuple probabilities can be seen also
as characterizing the conjunctive queries q which for any p-?-table T are such
that the c-table q̄(T) is in fact equivalent to some p-?-table.

9. Queries on Annotated Relations

In this section we compare the calculations involved in query answering in
incomplete and probabilistic databases with those for two other important ex-
amples. We observe similarities between them which will motivate the general
study of annotated relations.

As a first example, consider the Boolean c-table in Figure 2.1(a), and the
followingRA query, which computes the union of two self-joins:

q(R) := πAC

(
πABR ⋊⋉ πBCR ∪ πACR ⋊⋉ πBCR

)

26 MANAGING AND MINING UNCERTAIN DATA

A B C

a b c 2
d b e 5
f g e 1

A C

a c 2 · 2 + 2 · 2 = 8
a e 2 · 5 = 10
d c 2 · 5 = 10
d e 5 · 5 + 5 · 5 + 5 · 1 = 55
f e 1 · 1 + 1 · 1 + 5 · 1 = 7

(a) (b)

Figure 2.2. Bag semantics example

A B C

a b c {{p}}
d b e {{r}}
f g e {{s}}

A C

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}}
f e {{s}}

(a) (b)

Figure 2.3. Minimal witness why-provenance example

The Imielinski-Lipski algorithm (cf. Theorem 4.2) produces the Boolean
c-table shown in Figure 2.1(b), which can be simplified to the one shown in
Figure 2.1(c). The annotations on the tuples of this c-table are such that it
correctly represents the possible worlds of the query answer:

Mod(q(R)) = q(Mod(R))

Another kind of table with annotations is a multiset or bag. In this case, the
annotations are natural numbers which represent the multiplicity of the tuple
in the multiset. (A tuple not listed in the table has multiplicity 0.) Query
answering on such tables involves calculating not just the tuples in the output,
but also their multiplicities.

For example, consider the multiset shown in Figure 2.2(a). Then q(R),
where q is the same query from before, is the multiset shown in Figure 2.2(b).
Note that for projection and union we add multiplicities while for join we mul-
tiply them. There is a striking similarity between the arithmetic calculations
we do here for multisets, and the Boolean calculations for the c-table.

A third example involves the minimal witness why-provenance proposed
in [9] for tracking the processing of scientific data. Here source tuples are
annotated with their own tuple ids, and answering queries involves calculating
the set of sets of ids of source tuples which “contribute together” for a given

Models for Incomplete and Probabilistic Information 27

output tuple. The minimal witness why-provenance W for an output tuple t is
required to be minimal in the sense that for any A,B in W neither is a subset
of the other.

Figure 2.3(a) shows an example of a source table, where t1, t2, t3 are tuple
ids. Considering again the same query q as above, the algorithm of [9] pro-
duces the table with why-provenance annotations shown in Figure 2.3(b). Note
again the similarity between this table and the example earlier with Boolean c-
tables.

10. K-Relations

In this section we unify the examples above by considering generalized re-
lations in which the tuples are annotated (tagged) with information of various
kinds. Then, we will define a generalization of the positive relational algebra
(RA+) to such tagged-tuple relations. The examples in Section 9 will turn out
to be particular cases.

We use here the named perspective [2] of the relational model in which
tuples are functions t : U → D with U a finite set of attributes and D a domain
of values. We fix the domain D for the time being and we denote the set of all
such U -tuples by U -Tup. (Usual) relations over U are subsets of U -Tup.

A notationally convenient way of working with tagged-tuple relations is
to model tagging by a function on all possible tuples, with those tuples not
considered to be “in” the relation tagged with a special value. For example,
the usual set-theoretic relations correspond to functions that map U -Tup to
B = {true, false} with the tuples in the relation tagged by true and those not
in the relation tagged by false.

Definition 10.1 Let K be a set containing a distinguished element 0. A
K-relation over a finite set of attributes U is a function R : U -Tup→ K such

that its support defined by supp(R) := {t | R(t) 6= 0} is finite.

In generalizing RA+ we will need to assume more structure on the set of
tags. To deal with selection we assume that the set K contains two distinct
values 0 6= 1 which denote “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine different tags of the same
tuple into one tag we assume that K is equipped with a binary operation “+”.
To deal with natural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume thatK is equipped with another
binary operation “·”.

Definition 10.2 Let (K,+, ·, 0, 1) be an algebraic structure with two bi-
nary operations and two distinguished elements. The operations of the positive

algebra are defined as follows:

28 MANAGING AND MINING UNCERTAIN DATA

empty relation For any set of attributes U , there is ∅ : U -Tup→ K such that

∅(t) = 0.

union If R1, R2 : U -Tup→ K then R1 ∪R2 : U -Tup→ K is defined by

(R1 ∪R2)(t) := R1(t) +R2(t)

projection If R : U -Tup → K and V ⊆ U then πVR : V -Tup → K is

defined by

(πVR)(t) :=
∑

t=t′ on V and R(t′) 6=0

R(t′)

(here t = t′ on V means t′ is a U -tuple whose restriction to V is the

same as the V -tuple t; note also that the sum is finite since R has finite
support)

selection IfR : U -Tup→ K and the selection predicate Pmaps each U -tuple
to either 0 or 1 then σPR : U -Tup→ K is defined by

(σPR)(t) := R(t) · P(t)

Which {0, 1}-valued functions are used as selection predicates is left un-
specified, except that we assume that false—the constantly 0 predicate,
and true—the constantly 1 predicate, are always available.

natural join If Ri : Ui-Tup → K i = 1, 2 then R1 ⋊⋉ R2 is the K-relation
over U1 ∪ U2 defined by

(R1 ⋊⋉ R2)(t) := R1(t1) ·R2(t2)

where t1 = t on U1 and t2 = t on U2 (recall that t is a U1 ∪ U2-tuple).

renaming If R : U -Tup → K and β : U → U ′ is a bijection then ρβR is a
K-relation over U ′ defined by

(ρβR)(t) := R(t ◦ β)

Proposition 10.3 The operation of RA+ preserve the finiteness of sup-

ports therefore they map K-relations to K-relations. Hence, Definition 10.2
gives us an algebra onK-relations.

This definition generalizes the definitions ofRA+ for the motivating exam-
ples we saw. Indeed, for (B,∨,∧, false, true) we obtain the usual RA+ with
set semantics. For (N,+, ·, 0, 1) it isRA+ with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider the set of Boolean
expressions over some set B of variables which are positive, i.e., they involve

Models for Incomplete and Probabilistic Information 29

only disjunction, conjunction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for all Boolean assign-
ments of the variables in B.6 Denoting by PosBool(B) the result and apply-
ing Definition 10.2 to the structure (PosBool(B),∨,∧, false, true) produces
exactly the Imielinski-Lipski algebra.

These three structures are examples of commutative semi-rings, i.e., alge-
braic structures (K,+, ·, 0, 1) such that (K,+, 0) and (K, ·, 1) are commuta-
tive monoids, · is distributive over + and ∀a, 0·a = a·0 = 0. Further evidence
for requiring K to form such a semi-ring is given by

Proposition 10.4 The followingRA identities:
union is associative, commutative and has identity ∅;
join is associative, commutative and distributive over union;

projections and selections commute with each other as well as with

unions and joins (when applicable);

σfalse(R) = ∅ and σtrue(R) = R.

hold for the positive algebra on K-relations if and only if (K,+, ·, 0, 1) is a
commutative semi-ring.

Glaringly absent from the list of relational identities are the idempotence of
union and of (self-)join. Indeed, these fail for the bag semantics, an important
particular case of the general treatment presented here.

Any function h : K → K ′ can be used to transform K-relations to K ′-
relations simply by applying h to each tag (note that the support may shrink
but never increase). Abusing the notation a bit we denote the resulting trans-
formation from K-relations to K ′-relations also by h. The RA operations we
have defined work nicely with semi-ring structures:

Proposition 10.5 Let h : K → K ′ and assume that K,K ′ are commu-
tative semi-rings. The transformation given by h from K-relations to K ′-
relations commutes with any RA+ query (for queries of one argument)

q(h(R)) = h(q(R)) if and only if h is a semi-ring homomorphism.

Proposition 10.5 has some useful applications. For example, for Boolean c-
tables and semi-ring homomorphisms Evalν : PosBool(B) → B correspond-
ing to valuations of the variables ν : B → B, Proposition 10.5 generalizes
Lemma 4.3 and can be used to establish the closure of PosBool(B)-annotated
relations (in the sense of Section 4) underRA+ queries.

6in order to permit simplifications; it turns out that this is the same as transforming using the axioms of
distributive lattices [13]

30 MANAGING AND MINING UNCERTAIN DATA

A B C

a b c p
d b e r
f g e s

A C

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

A C

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}, {r, s}}
f e {{s}, {r, s}}

A C

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

(a) (b) (c) (d)

Figure 2.4. Lineage, why-provenance, and provenance polynomials

11. Polynomials for Provenance

Lineage was defined in [14, 15] as a way of relating the tuples in a query
output to the tuples in the query input that “contribute” to them. The lineage
of a tuple t in a query output is in fact the set of all contributing input tuples.

Computing the lineage for queries in RA+ turns out to be exactly Defini-
tion 10.2 for the semi-ring (P(X) ∪ {⊥},+, ·,⊥, ∅) where X consists of the
ids of the tuples in the input instance,⊥+S = S+⊥ = S, S ·⊥ = ⊥·S = ⊥,
and S + T = S · T = S ∪ T if S, T 6= ⊥7

For example, we consider the same tuples as in relation R used in the ex-
amples of Section 9 but now we tag them with their own ids p,r,s, as shown
in Figure 2.4(a). The resulting R can be seen as a P({p, r, s})-relation by re-
placing p with {p}, etc. Applying the query q from Section 9 to R we obtain
according to Definition 10.2 the P({p, r, s})-relation shown in Figure 2.4(b).

A related but finer-grained notion of provenance, called why-provenance,
was defined in [9].8 The why-provenance of a tuple t in a query output is the
set of sets of input tuples which contribute together to produce t. The lineage
of t can be obtained by flattening the why-provenance of t.

As with lineage, computing the why-provenance for queries inRA+ can be
done [8] using Definition 10.2, this time for the semi-ring
(P(P(X)),∪,⋒, ∅, {∅}) where X is the set of tuple ids for the input instance
and A⋒B is the pairwise union of A and B, i.e., A⋒B := {a∪ b : a ∈ A, b ∈
B}. For example, the R in Figure 2.4(a) can be seen as a why-provenance re-
lation by replacing p with {{p}}, etc. Applying the query q from Section 9 to
R we obtain according to Definition 10.2 the why-provenance relation shown
in Figure 2.4(c).

7This definition for lineage, due to [8], corrects the one which appeared in [27].
8The distinction between lineage and why-provenance, which went unnoticed in [9] and [27], was pointed
out in [8].

Models for Incomplete and Probabilistic Information 31

Finally, to return to the third example of Section 9, the minimal witness why-
provenance can be computed [8] using a semi-ring whose domain is irr(P(X)),
the set of irredundant subsets of P(X), i.e., W is in irr(P(X)) if for any
A,B in W neither is a subset of the other. We can associate with any W ∈
P(X) a unique irredundant subset of W by repeatedly looking for elements
A,B such that A ⊂ B and deleting B from W . Then we define a semi-ring
(irr(P(X)),+, ·, 0, 1) as follows:

I + J := irr(I ∪ J) I · J := irr(I ⋒ J)
0 := ∅ 1 := {∅}

The table in Figure 2.3(b) is obtained by applying the query q from Sec-
tion 9 to R of Figure 2.3(a) according to Definition 10.2 for the minimal why-
provenance semi-ring. Note that this is a well-known semi-ring: the construc-
tion above is the construction for the free distributive lattice generated by the
set X . Moreover, it is isomorphic PosBool(X)! This explains the similarity
between the calculations in Figure 2.1 and Figure 2.3.

These examples illustrate the limitations of lineage and why-provenance
(also recognized in [12]). For example, in the query result in Figure 2.4(b)
(f, e) and (d, e) have the same lineage, the input tuples with id r and s. How-
ever, the query can also calculate (f, e) from s alone and (d, e) from r alone.
In a provenance application in which one of r or s is perhaps less trusted or less
usable than the other the effect can be different on (f, e) than on (d, e) and this
cannot be detected by lineage. Meanwhile, with why-provenance we do see
that (f, e) can be calculated from s alone and (d, e) from r alone, but we have
lost information about multiplicities (the number of times a tuple was used in
a self-join, or the number of derivations of an output tuple in which a given set
of tuples is involved) which may be needed to calculate a more refined notion
of trust. It seems that we need to know not just which input tuples contribute
but also exactly how they contribute.9

On the other hand, by using the different operations of the semi-ring, Def-
inition 10.2 appears to fully “document” how an output tuple is produced. To
record the documentation as tuple tags we need to use a semi-ring of sym-
bolic expressions. In the case of semi-rings, like in ring theory, these are the
polynomials.

Definition 11.1 LetX be the set of tuple ids of a (usual) database instance
I . The positive algebra provenance semi-ring for I is the semi-ring of poly-
nomials with variables (a.k.a. indeterminates) fromX and coefficients from N,

9In contrast to why-provenance, the notion of provenance we describe could justifiably be called how-
provenance.

32 MANAGING AND MINING UNCERTAIN DATA

with the operations defined as usual10:

(N[X],+, ·, 0, 1).

Example of provenance computation. Start again from the relation R in
Figure 2.4(a) in which tuples are tagged with their own id. R can be seen as
an N[p, r, s]-relation. Applying to R the query q from Section 9 and doing
the calculations in the provenance semi-ring we obtain the N[p, r, s]-relation
shown in Figure 2.4(c). The provenance of (f, e) is 2s2 + rs which can be
“read” as follows: (f, e) is computed by q in three different ways; two of them
use the input tuple s twice; the third uses input tuples r and s. We also see that
the provenance of (d, e) is different and we see how it is different! �

The following standard property of polynomials captures the intuition that
N[X] is as “general” as any semi-ring:

Proposition 11.2 Let K be a commutative semi-ring and X a set of vari-

ables. For any valuation v : X → K there exists a unique homomorphism of

semi-rings

Evalv : N[X]→ K

such that for the one-variable monomials we have Evalv(x) = v(x).

As the notation suggests, Evalv(P) evaluates the polynomial P in K given
a valuation for its variables. In calculations with the integer coefficients, na
where n ∈ N and a ∈ K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1K .

Using the Eval notation, for any P ∈ N[x1, . . . , xn] and any K the polyno-
mial function fP : Kn → K is given by:

fP (a1, . . . , an) := Evalv(P) v(xi) = ai, i = 1..n

Putting together Propositions 10.5 and 11.2 we obtain the following con-
ceptually important fact that says, informally, that the semantics of RA+ on
K-relations for any semi-ring K factors through the semantics of the same in
provenance semi-rings.

Theorem 11.3 Let K be a commutative semi-ring, let R be a K-relation,
and let X be the set of tuple ids of the tuples in supp(R). There is an obvious
valuation v : X → K that associates to a tuple id the tag of that tuple in R.
We associate to R an “abstractly tagged” version, denoted R̄, which is an

X ∪ {0}-relation. R̄ is such that supp(R̄) = supp(R) and the tuples in

10These are polynomials in commutative variables so their operations are the same as in middle-school
algebra, except that subtraction is not allowed.

Models for Incomplete and Probabilistic Information 33

supp(R̄) are tagged by their own tuple id. Note that as an X ∪ {0}-relation,
R̄ is a particular kind of N[X]-relation.
Then, for anyRA+ query q we have11

q(R) = Evalv(q(R̄))

To illustrate an instance of this theorem, consider the provenance polynomial
2r2 + rs of the tuple (d, e) in Figure 2.4(c). Evaluating it in N for p = 2, r =
5, s = 1 we get 55 which is indeed the multiplicity of (d, e) in Figure 2.2(a).

12. Query Containment

Here we present some results about query containment w.r.t. the general
semantics in K-relations.

Definition 12.1 Let K be a naturally ordered commutative semi-ring and

let q1, q2 be two queries defined on K-relations. We define containment with
respect toK-relations semantics by

q1 ⊑K q2
def⇔ ∀R ∀t q1(R)(t) ≤ q2(R)(t)

WhenK is B and N we get the usual notions of query containment with respect
to set and bag semantics.

Some simple facts follow immediately. For example if h : K → K ′ is a
semi-ring homomorphism such that h(x) ≤ h(y)⇒ x ≤ y and q1, q2 areRA+

queries it follows from Prop. 10.5 that q1 ⊑K′ q2 ⇒ q1 ⊑K q2. If instead h is
a surjective homomorphism then q1 ⊑K q2 ⇒ q1 ⊑K′ q2.

The following result allows us to use the decidability of containment of
unions of conjunctive queries [11, 40].

Theorem 12.2 If K is a distributive lattice then for any q1, q2 unions of
conjunctive queries we have

q1 ⊑K q2 iff q1 ⊑B q2

Proof:(sketch) One direction follows because B can be homomorphically
embedded inK. For the other direction we use the existence of query body ho-
momorphisms to establish mappings between monomials of provenance poly-
nomials. Then we apply the factorization theorem (11.3) and the idempotence
and absorption laws of K.

Therefore, if K is a distributive lattice for (unions of) conjunctive queries
containment with respect to K-relation semantics is decidable by the same

11To simplify notation we have stated this theorem for queries of one argument but the generalization is
immediate.

34 MANAGING AND MINING UNCERTAIN DATA

procedure as for standard set semantics. PosBool(B) is a distributive lattice,
as is the semi-ring ([0, 1],max,min, 0, 1) which is related to fuzzy sets [46]
and could be referred to as the fuzzy semi-ring. A theorem similar to the one
above is shown in [32] but the class of algebraic structures used there does not
include PosBool(B) (although it does include the fuzzy semi-ring).

13. Related Work

Lineage and why-provenance were introduced in [14, 15, 9], (the last paper
uses a tree data model) but the relationship with [30] was not noticed. The
papers on probabilistic databases [22, 47, 33] note the similarities with [30]
but do not attempt a generalization.

Two recent papers on provenance, although independent of our work, have
a closer relationship to the approach outlined here. Indeed, [12] identifies the
limitations of why-provenance and proposes route-provenance which is also
related to derivation trees. The issue of infinite routes in recursive programs
is avoided by considering only minimal ones. [7] proposes a notion of lineage
of tuples for a type of incomplete databases but does not consider recursive
queries. It turns out that we can also describe the lineage in [7] by means of a
special commutative semi-ring.

The first attempt at a general theory of relations with annotations appears
to be [32] where axiomatized label systems are introduced in order to study
containment.

14. Conclusion and Further Work

The results on algebraic completion may not be as tight as they can be.
Ideally, we would like to be able show that for each representation system
we consider, the fragment of RA we use is minimal in the sense that closing
the representation system under a more restricted fragment does not obtain a
complete representation system.

We did not consider c-tables with global conditions [24] nor did we describe
the exact connection to logical databases [38, 44]. Even more importantly, we
did not consider complexity issues as in [3]. All of the above are important
topics for further work, especially the complexity issues and the related issues
of succinctness/compactness of the table representations.

As we see, in pc-tables the probability distribution is on the values taken by
the variables that occur in the table. The variables are assumed independent
here. This is a lot more flexible (as the example shows) than independent
tuples, but still debatable. Consequently, to try to make pc-tables even more
flexible, it would be worthwhile to investigate models in which the assumption
that the variables take values independently is relaxed by using conditional
probability distributions [21].

Models for Incomplete and Probabilistic Information 35

It would be interesting to connect this work to the extensive literature on
disjunctive databases, see e.g., [35], and to the work on probabilistic object-
oriented databases [19].

Probabilistic modeling is by no means the only way to model uncertainty in
information systems. In particular it would be interesting to investigate possi-
bilistic models [29] for databases, perhaps following again, as we did here, the
parallel with incompleteness.

Query answering on annotated relations can be extended beyond RA+ to
recursive Datalog programs, using semi-rings of formal power series (see [27]
for details). These formal power series, which can be represented finitely using
a system of equations, are the foundation of trust policies and incremental
update propagation algorithms in the ORCHESTRA collaborative data sharing
system [26].

Beyond the technical results, the approach surveyed above can be regarded
also as arguing that various forms of K-relations, even multisets, provide
coarser forms of provenance while the polynomial annotations are, by virtue of
their “universality” (as illustrated by the factorization theorem) the most gen-
eral form of annotation possible with the boundaries of semi-ring structures.
This might be a perspective worth using when, in the future, we search for
provenance structures for data models other than relational.

Acknowledgments

The author is grateful to Grigoris Karvounarakis and Val Tannen, his co-
authors of the papers [28, 27] on which this survey is based.

References

[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries using
materialized views. In PODS, pages 254–263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison–
Wesley, Reading, MA, 1995.

[3] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and
querying of sets of possible worlds. Theor. Comput. Sci., 78(1):159–187,
1991.

[4] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational
processing of uncertain data. In ICDE, 2008.

[5] M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent
query answering in inconsistent databases. TPLP, 3(4-5):393–424, 2003.

[6] D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational
data model. In EDBT, pages 60–74, New York, NY, USA, 1990.

[7] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB, 2006.

[8] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated
databases. In PODS, pages 1–12, 2008.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characteri-
zation of data provenance. In ICDT, 2001.

[10] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In
VLDB, pages 71–81, 1987.

[11] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, 1977.

[12] L. Chiticariu and W.-C. Tan. Debugging schema mappings with routes.
In VLDB, 2006.

38 MANAGING AND MINING UNCERTAIN DATA

[13] P. Crawley and R. P. Dilworth. Algebraic Theory of Lattices. Prentice
Hall, 1973.

[14] Y. Cui. Lineage Tracing in Data Warehouses. PhD thesis, Stanford Uni-
versity, 2001.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a
warehousing environment. TODS, 25(2), 2000.

[16] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, pages 864–875, 2004.

[17] D. Dey and S. Sarkar. A probabilistic relational model and algebra. ACM
TODS, 21(3):339–369, 1996.

[18] R. Durrett. Probability: Theory and Examples. Duxbury Press, 3rd edi-
tion, 2004.

[19] T. Eiter, J. J. Lu, T. Lukasiewicz, and V. S. Subrahmanian. Probabilistic
object bases. ACM Trans. Database Syst., 26(3):264–312, 2001.

[20] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Seman-
tics and query answering. In ICDT, pages 207–224, London, UK, 2003.
Springer-Verlag.

[21] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic
relational models with structural uncertainty. In Proc. ICML, 2001.

[22] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integra-
tion of information retrieval and database systems. TOIS, 14(1), 1997.

[23] E. Grädel, Y. Gurevich, and C. Hirch. The complexity of query reliability.
In PODS, pages 227–234, 1998.

[24] G. Grahne. Horn tables - an efficient tool for handling incomplete infor-
mation in databases. In PODS, pages 75–82. ACM Press, 1989.

[25] G. Grahne. The Problem of Incomplete Information in Relational

Databases, volume 554 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1991.

[26] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update ex-
change with mappings and provenance. In VLDB, 2007.

[27] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semi-rings. In
PODS, 2007.

[28] T. J. Green and V. Tannen. Models for incomplete and probabilistic in-
formation. In EDBT Workshops, 2006.

REFERENCES 39

[29] J. Y. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge,
MA, 2003.

[30] T. Imieliński and W. Lipski, Jr. Incomplete information in relational
databases. J. ACM, 31(4):761–791, 1984.

[31] T. Imieliński, S. A. Naqvi, and K. V. Vadaparty. Incomplete objects —
a data model for design and planning applications. In SIGMOD, pages
288–297, 1991.

[32] Y. E. Ioannidis and R. Ramakrishnan. Containment of conjunctive
queries: beyond relations as sets. TODS, 20(3), 1995.

[33] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. Prob-
view: a flexible probabilistic database system. ACM TODS, 22(3):419–
469, 1997.

[34] L. V. S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In
ILPS, pages 254–268, Cambridge, MA, USA, 1994. MIT Press.

[35] N. Leone, F. Scarcello, and V. S. Subrahmanian. Optimal models of dis-
junctive logic programs: Semantics, complexity, and computation. IEEE
Trans. Knowl. Data Eng., 16(4):487–503, 2004.

[36] L. Libkin. Aspects of Partial Information in Databases. PhD thesis,
University of Pennsylvania, 1994.

[37] L. Libkin and L. Wong. Semantic representations and query languages
for or-sets. J. Computer and System Sci., 52(1):125–142, 1996.

[38] R. Reiter. A sound and sometimes complete query evaluation algorithm
for relational databases with null values. J. ACM, 33(2):349–370, 1986.

[39] F. Sadri. Modeling uncertainty in databases. In ICDE, pages 122–131.
IEEE Computer Society, 1991.

[40] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM, 27(4), 1980.

[41] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models
for uncertain data. In ICDE, 2006.

[42] D. Suciu and N. Dalvi. Foundations of probabilistic answers to queries
(tutorial). In SIGMOD, pages 963–963, New York, NY, USA, 2005. ACM
Press.

[43] R. van der Meyden. Logical approaches to incomplete information: A
survey. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems. Kluwer Academic Publishers, Boston, 1998.

40 MANAGING AND MINING UNCERTAIN DATA

[44] M. Y. Vardi. Querying logical databases. JCSS, 33(2):142–160, 1986.

[45] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In CIDR, Jan. 2005.

[46] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3), 1965.

[47] E. Zimányi. Query evaluation in probabilistic databases. Theoretical

Computer Science, 171(1–2):179–219, 1997.

[48] E. Zimányi and A. Pirotte. Imperfect information in relational databases.
In Uncertainty Management in Information Systems, pages 35–88.
Kluwer, 1996.

REFERENCES 41

15. Appendix

Proposition 15.1 There exists a relational query q such that q(N) = Zn.

Proof: Define sub-query q′ to be the relational query

q′(V) := V − πℓ(σℓ6=r(V × V)),

where ℓ is short for 1, . . . , n and ℓ 6= r is short for 1 6= n+ 1 ∨ · · · ∨ n 6= 2n.
Note that q′ yields V if V consists of a single tuple and ∅ otherwise. Now
define q to be the relational query

q(V) := q′(V) ∪ ({t} − πℓ({t} × q′(V))),

where t is a tuple chosen arbitrarily from D
n. It is clear that q(N) = Zn.

Definition 15.2 A table in the representation system Rsets is a multiset of
sets of tuples, or blocks, each such block optionally labeled with a ‘?’. If T is
an Rsets table, then Mod(T) is the set of instances obtained by choosing one
tuple from each block not labeled with a ‘?’, and at most one tuple from each

block labeled with a ‘?’.

Definition 15.3 A table in the representation system R⊕≡ is a multiset of
tuples {t1, . . . , tm} and a conjunction of logical assertions of the form i ⊕
j (meaning ti or tj must be present in an instance, but not both) or i ≡ j
(meaning ti is present in an instance iff tj is present in the instance). If T is
an R⊕≡ table then Mod(T) consists of all subsets of the tuples satisfying the
conjunction of assertions.

Definition 15.4 A table in the representation system RAprop is a multiset of
or-set tuples {t1, . . . , tm} and a Boolean formula on the variables {t1, . . . , tm}.
If T is anRAprop table then Mod(T) consists of all subsets of the tuples satisfy-
ing the Boolean assertion, where the variable ti has value true iff the tuple ti
is present in the subset.

Theorem 5.3 (RA-Completion).

1 The representation system obtained by closing Codd tables under SPJU
queries isRA-complete.

2 The representation system obtained by closing v-tables under SP queries
isRA-complete.

Proof: In each case we show that given an arbitrary c-table T , one can
construct a table S and a query q such that q̄(S) = T .

42 MANAGING AND MINING UNCERTAIN DATA

1 Trivial corollary of Theorem 3.2.

2 Let k be the arity of T . Let {t1, . . . , tm} be an enumeration of the tuples
of T , and let {x1, . . . , xn} be an enumeration of the variables which
appear in T . Construct a v-table S with arity k + n+ 1 as follows. For
every tuple ti in T , put exactly one tuple t′i in S, where t′i agrees with ti
on the first k columns, the k + 1st column contains the constant i, and
the last m columns contain the variables x1, . . . , xm. Now let q be the
SP query defined

q := π1,...,k(σWm
i=1 k+1=‘i’∧ψi(S))

where ψi is obtained from the condition T (ti) of tuple ti by replacing
variable names with their corresponding indexes in S.

Theorem 5.4 (Finite Completion).

1 The representation system obtained by closing or-set-tables under PJ
queries is finitely complete.

2 The representation system obtained by closing finite v-tables under PJ
or S+P queries is finitely complete.

3 The representation system obtained by closing Rsets under PJ or PU
queries is finitely complete.

4 The representation system obtained by closingR⊕≡ under S+PJ queries
is finitely complete.

Proof: Fix an arbitrary finite incomplete database I = {I1, . . . , In} of
arity k. It suffices to show in each case that one can construct a table T in
the given representation system and a query q in the given language such that
q(Mod(T)) = I.

1 We construct a pair of or-set-tables S and T as follows. (They can be
combined together into a single table, but we keep them separate to sim-
plify the presentation.) For each instance Ii in I, we put all the tuples
of Ii in S, appending an extra column containing value i. Let T be the
or-set-table of arity 1 containing a single tuple whose single value is the
or-set 〈1, 2, . . . , n〉. Now let q be the S+PJ query defined:

q := π1,...,kσk+1=k+2(S × T).

2 Completion for PJ follows from Case 1 and the fact that finite v-tables
are strictly more expressive than or-set tables. For S+P , take the finite

REFERENCES 43

v-table representing the cross product of S and T in the construction
from Case 1, and let q be the obvious S+P query.

3 Completion for PJ follows from Case 1 and the fact (shown in [41])
that or-set-tables are strictly less expressive than Rsets. Thus we just
need show the construction for PU . We construct an Rsets table T as
follows. Let m be the cardinality of the largest instance in I. Then T
will have arity km and will consist of a single block of tuples. For every
instance Ii in I, we put one tuple in T which has every tuple from Ii
arranged in a row. (If the cardinality of Ii is less than m, we pad the
remainder with arbitrary tuples from Ii.) Now let q be the PU query
defined as follows:

q :=

m−1⋃

i=0

πki,...,ki+k−1(T)

4 We construct a pair of R⊕≡-tables S and T as follows. (S can be en-
coded as a special tuple in T , but we keep it separate to simplify the
presentation.) Let m = ⌈lgn⌉. T is constructed as in Case 2. S is a
binary table containing, for each i, 1 ≤ i ≤ m, a pair of tuples (0, i) and
(1, i) with an exclusive-or constraint between them. Let sub-query q′ be
defined

q′ :=
m∏

i=1

π1(σ2=‘i’(S))

The S+PJ query q is defined as in Case 2, but using this definition of
q′.

Theorem 5.5 (General Finite Completion). Let T be a representation system
such that for all n ≥ 1 there exists a table T in T such that |Mod(T)| ≥ n.
Then the representation system obtained by closing T under RA is finitely-
complete. Proof: Let T be a representation system such that for all n ≥ 1
there is a table T in T such that |Mod(T)| ≥ n. Let I = {I1, ..., Ik} be an
arbitrary non-empty finite set of instances of arity m. Let T be a table in T
such thatMod(T) = {J1, . . . , Jℓ}, with ℓ ≥ k. DefineRA query q to be

q(V) :=
⋃

1≤i≤k−1

Ii × qi(V) ∪
⋃

k≤i≤ℓ

Ik × qi(V),

where Ii is the query which constructs instance Ii and qi(V) is the Boolean
query which returns true iff V is identical to Ii (which can be done in RA).
Then q(Mod(T)) = I.

