
Datalog and Emerging Applications: 
an Interactive Tutorial

Shan Shan Huang      T.J. Green        Boon Thau Loo

SIGMOD 2011 Athens, Greece June 14, 2011



A Brief History of Datalog

‘77

Workshop on 
Logic and 
Databases 

2



A Brief History of Datalog

’80s …

LDL, NAIL,  
Coral, ...

‘77

Workshop on 
Logic and 
Databases 

3



A Brief History of Datalog

‘95

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘77

Workshop on 
Logic and 
Databases 

4



A Brief History of Datalog

‘95

Control + data flow

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘77

Workshop on 
Logic and 
Databases 

5



A Brief History of Datalog

‘95

Control + data flow

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘77

Workshop on 
Logic and 
Databases 

6



A Brief History of Datalog

‘95

Control + data flow

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘77

Workshop on 
Logic and 
Databases 

No practical applications of recursive 
query theory … have been found to 
date.  

-- Hellerstein and Stonebraker
“Readings in Database Systems”

7



A Brief History of Datalog

‘95

Control + data flow

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘77

Workshop on 
Logic and 
Databases 

8



A Brief History of Datalog

‘95

Control + data flow

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

‘77

Workshop on 
Logic and 
Databases 

9



A Brief History of Datalog

‘95

Control + data flow

‘05

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

‘77

Workshop on 
Logic and 
Databases 

10



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

‘77

Workshop on 
Logic and 
Databases 

11



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

‘77

Workshop on 
Logic and 
Databases 

Orchestra CDSS

12



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

‘77

Workshop on 
Logic and 
Databases 

Orchestra CDSS

13



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07

.QL 

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

‘77

Workshop on 
Logic and 
Databases 

Orchestra CDSS

14



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

‘77

Workshop on 
Logic and 
Databases 

Doop
(pointer-
analysis)

Orchestra CDSS

15



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

16



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

17



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

18



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

19



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

20



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

21



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

Hey wait… there ARE applications!

22



Today’s Tutorial, or,
Datalog: Taste it Again for the First Time

• We review the basics and examine several of 
these recent applications

• Theme #1: lots of compelling applications, if we 
look beyond payroll / bill-of-materials / ...

– Some of the most interesting work coming from 
outside databases community!

• Theme #2: language extensions usually needed

– To go from a toy language to something really usable

23



An Interactive Tutorial

• INSTALL_LB : installation guide

• README : structure of distribution files

• Quick-Start guide : usage

• *.logic : Datalog examples

• *.lb  : LogicBlox interactive shell script (to drive the Datalog
examples)

• Shan Shan and other LogicBlox folks will be available 
immediately after talk for the “synchronous” version of 
tutorial

24



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: Datalog 101

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions

25



Datalog Refresher: Syntax of Rules

<result>  <condition1>, <condition2>, … , <conditionN>.

Datalog rule syntax: 







26



Datalog Refresher: Syntax of Rules

<result>  <condition1>, <condition2>, … , <conditionN>.

Datalog rule syntax: 







Body

27



Datalog Refresher: Syntax of Rules

<result>  <condition1>, <condition2>, … , <conditionN>.

Datalog rule syntax: 

Body consists of one or more conditions (input tables)

Head is an output table

 Recursive rules: result of head in rule body

BodyHead

28



Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

29



Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

link(a,b) – “there is a link from node a to node b”

30



Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

link(a,b) – “there is a link from node a to node b”

reachable(a,b) – “node a can reach node b”

31



Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

“For all nodes S,D,
If there is a link from S to D, then S can reach D”.

32



Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

“For all nodes S,D and Z,
If there is a link from S to Z, AND Z can reach D, then S can reach D”.

33



Terminology and Convention

• An atom is a predicate, or relation name with arguments.

• Convention: Variables begin with a capital, predicates begin with 
lower-case.

• The head is an atom; the body is the AND of one or more atoms.

• Extensional database predicates (EDB) – source tables

• Intensional database predicates (IDB) – derived tables

reachable(S,D) <- link(S,Z), reachable(Z,D) .

34



Negated Atoms

• We may put ! (NOT) in front of a atom, to negate its meaning.

 

35



Negated Atoms

• We may put ! (NOT) in front of a atom, to negate its meaning.

 

Not “cut” in Prolog. 

36



Negated Atoms

• We may put ! (NOT) in front of a atom, to negate its meaning.

• Example: For any given node S, return all nodes D that are two 
hops away, where D is not an immediate neighbor of S.

Not “cut” in Prolog. 

twoHop(S,D) 
<- link(S,Z),

link(Z,D)
! link(S,D).

Z DS
link(S,Z) link(Z,D)

37



Safe Rules

• Safety condition:

– Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

– Ensures that the results of programs are finite, and that 
their results depend only on the actual contents of the 
database.

 

 

 

38



Safe Rules

• Safety condition:

– Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

– Ensures that the results of programs are finite, and that 
their results depend only on the actual contents of the 
database.

• Examples of unsafe rules:

– s(X) <- r(Y).

– s(X) <- r(Y), ! r(X).

39



Semantics
• Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order 
logic. View rules as logical constraints.  

— Given input DB I and Datalog program P, find the smallest possible DB 
instance I’ that extends I and satisfies all constraints in P.

 

 

 

 

 

 

 
40



Semantics
• Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order 
logic. View rules as logical constraints.  

— Given input DB I and Datalog program P, find the smallest possible DB 
instance I’ that extends I and satisfies all constraints in P.

• Fixpoint-theoretic

— Most “operational”. Based on the immediate consequence operator for 
a Datalog program. 

— Least fixpoint is reached after finitely many iterations of the immediate 
consequence operator.

— Basis for practical, bottom-up evaluation strategy.

 

 

 
41



Semantics
• Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order 
logic. View rules as logical constraints.  

— Given input DB I and Datalog program P, find the smallest possible DB 
instance I’ that extends I and satisfies all constraints in P.

• Fixpoint-theoretic

— Most “operational”. Based on the immediate consequence operator for 
a Datalog program. 

— Least fixpoint is reached after finitely many iterations of the immediate 
consequence operator.

— Basis for practical, bottom-up evaluation strategy.

• Proof-theoretic

— Set of provable facts obtained from Datalog program given input DB.

— Proof of given facts (typically, top-down Prolog style reasoning)
42



The “Naïve” Evaluation Algorithm

1. Start by assuming all IDB 
relations are empty.

2. Repeatedly evaluate the rules 
using the EDB and the previous 
IDB, to get a new IDB.

3. End when no change to IDB.

Start:
IDB = 0

Apply rules
to IDB, EDB

Change
to IDB?

no

yes

done

43



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

44



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

45



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

46



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

47



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

48



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

49



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

50



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

51



Semi-naïve Evaluation

• Since the EDB never changes, on each round we only 
get new IDB tuples if we use at least one IDB tuple
that was obtained on the previous round.

• Saves work; lets us avoid rediscovering most known 
facts.

– A fact could still be derived in a second way.

52



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

53



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

54



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

55



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

56



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

57



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

58



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

59



Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

60



Recursion with Negation

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z), reachable(Z,D). 
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Example: to compute all pairs of disconnected nodes in 
a graph.

61



Recursion with Negation

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z), reachable(Z,D). 
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Example: to compute all pairs of disconnected nodes in 
a graph.

--

Stratum 0 reachable

Stratum 1 unreachable Precedence graph :
Nodes = IDB predicates.
Edge q <- p if predicate 
q depends on p.
Label this arc “–” if the 
predicate p  is negated.

62



Stratified Negation

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can evaluate 

IDB predicates lowest-stratum-first.
• Once evaluated, treat it as EDB for higher strata.
 

Stratum 0 reachable

Stratum 1 unreachablereachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D).
unreachable(S,D)  <- node(S), 

node(D),  
! reachable(S,D).

--

63



Stratified Negation

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can evaluate 

IDB predicates lowest-stratum-first.
• Once evaluated, treat it as EDB for higher strata.
 Non-stratified example: 

Stratum 0 reachable

Stratum 1 unreachablereachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D).
unreachable(S,D)  <- node(S), 

node(D),  
! reachable(S,D).

p(X) <- q(X), ! p(X).

--

64



A Sneak Preview…

• Data integration

– Skolem functions

• Program analysis

– Type-based optimization

• Declarative networking

– Aggregates, aggregate selections

– Incremental view maintenance

– Magic sets

65



Suggested Readings

• Survey papers:
• A Survey of Research on Deductive Database Systems, Ramakrishnan and Ullman, 

Journal of Logic Programming, 1993
• What you always wanted to know about datalog (and never dared to ask), by Ceri, 

Gottlob, and Tanca.
• An Amateur’s Expert’s Guide to Recursive Query Processing, Bancilhon and 

Ramakrishnan, SIGMOD Record.
• Database Encyclopedia entry on “DATALOG”. Grigoris Karvounarakis.

• Textbooks:
• Foundations in Databases. Abiteboul, Hull, Vianu.
• Database Management Systems, Ramakrishnan and Gehkre. Chapter on “Deductive 

Databases”.

• Acknowledgements:
• Jeff Ullman’s CIS 145 class lecture slides.
• Raghu Ramakrishnan and Johannes Gehrke’s lecture slides for Database 

Management Systems textbook.

66



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: Datalog 101

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions

67



Datalog for Data Integration

• Motivation and problem setting

• Two basic approaches: 

– virtual data integration

– materialized data exchange

• Schema mappings and Datalog with Skolem 
functions

68



The Data Integration Problem

• Have a collection of related data sources with

– different schemas

– different data models (relational, XML, plain text, ...)

– different attribute domains

– different capabilities / availability

• Need to cobble them together and provide a 
uniform interface

• Want to keep track of what came from where

• Focus here: solving problem of different schemas 
(schema heterogeneity) for relational data

69



Mediator-Based Data Integration

Local data sources

Global mediated schema

Source schemas

? ? ? ?

Basic idea: use a global mediated schema to provide a uniform 
query interface for the heterogeneous data sources .

70



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

71



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

72



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

73



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

74



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

Integrated query 
results

75



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

Integrated query 
results

Query may be 
recursive

76



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

Integrated query 
results

Query may be 
recursive

Reformulation 
may be 
(necessarily) 
recursive 77



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

78



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Mappings may be 
recursive

79



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

80



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

81



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

82



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

83



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

84



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Materialized
mediated (target) 
database

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

85



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Materialized
mediated (target) 
database

Declarative schema 
mappings

86



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Query

Materialized
mediated (target) 
database

Declarative schema 
mappings

87



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Query

Materialized
mediated (target) 
database

Declarative schema 
mappings

88



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Query

Materialized
mediated (target) 
database

Declarative schema 
mappings

Query 
results

89



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

90



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Recursion arises 
naturally as peers add 
mappings to each other

91



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

92



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

93



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

94



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

95



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

Results

96



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

97



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

98



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

99



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query

100



Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query Results

101



How to Specify Mappings?

• Many flavors of mapping specifications: LAV, GAV, 
GLAV, P2P, “sound” versus “exact”, ...

• Unifying formalism: integrity constraints

– different flavors of specifications correspond to different 
classes of integrity constraints 

• We focus on mappings specified using tuple-
generating dependencies (a kind of integrity 
constraint)

• These capture (sound) LAV and GAV as special cases, 
and much of GLAV and P2P as well

– and, close relationship with Datalog!
102



Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

• A tuple-generating dependency (tgd) is a first-order 
constraint of the form

where ϕ and ψ are conjunctions of relational atoms

 

 

∀X ϕ(X) → ∃Y ψ(X,Y)

103



Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

• A tuple-generating dependency (tgd) is a first-order 
constraint of the form

where ϕ and ψ are conjunctions of relational atoms

For example:

“The name and address of every employee should also 
be recorded in the name and address tables, indexed 
by ssn.”

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

∀X ϕ(X) → ∃Y ψ(X,Y)

104



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

105



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)
CONSTRAINT:

106



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

LOCAL SOURCE

CONSTRAINT:

107



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

LOCAL SOURCE MEDIATED DB #1

CONSTRAINT:

108



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

CONSTRAINT:

109



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

...ETC...

...

110



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

...ETC...

...Which mediated 
DB should be 
materialized?

111



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

QUERY:

...ETC...

...

q(Name) <- name(Ssn, Name), address(Ssn, _).

Which mediated 
DB should be 
materialized?

112



What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

QUERY:

...ETC...

...

q(Name) <- name(Ssn, Name), address(Ssn, _).

What answers 
should q return? Which mediated 

DB should be 
materialized?

113



Certain Answers Semantics
Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

114



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

...ETC...

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

115



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

116



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

117



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

118



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

119



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

120



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

121



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...Alice

Bob

certain answers to q

= ∩ ∩

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

122



Computing the Certain Answers

• A number of methods have been developed

– Bucket algorithm [Levy+ 1996]

– Minicon [Pottinger & Halevy 2000]

– Inverse rules method [Duschka & Genesereth 1997]

– ...

• We focus on the Datalog-based inverse rules 
method

• Same method works for both virtual data 
integration, and materialized data exchange

– Assuming constraints are given by tgds
123



Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

 

 

 

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:

124



Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

• So just interpret tgds as Datalog rules!  (“Inverse” rules.)  Can 
use these to compute the certain answers.

 

 

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:

125



Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

• So just interpret tgds as Datalog rules!  (“Inverse” rules.)  Can 
use these to compute the certain answers.

– Why called “inverse” rules?  In work on LAV data integration, 
constraints written in the other direction, with sources thought of as 
views over the (hypothetical) mediated database instance

 

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:

126



Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

• So just interpret tgds as Datalog rules!  (“Inverse” rules.)  Can 
use these to compute the certain answers.

– Why called “inverse” rules?  In work on LAV data integration, 
constraints written in the other direction, with sources thought of as 
views over the (hypothetical) mediated database instance

The catch: what to do about existentially quantified variables...

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:

127



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

 

 

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

128



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

129



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

130



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

ssn is a Skolem 
function

131



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

132



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

• Unlike SQL nulls, can join on Skolem values:

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

133



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

• Unlike SQL nulls, can join on Skolem values:

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

query _(Name,Addr) <-
name(Ssn,Name), 
address(Ssn,Addr).

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

134



Semantics of Skolem Functions in Datalog

 

 

 

 

 

 

 

 
135



Semantics of Skolem Functions in Datalog

• Skolem functions interpreted “as themselves,” like constants 
(Herbrand interpretations): not to be confused with user-
defined functions

– e.g., can think of interpretation of term 

ssn(“Alice”, “1 Main St”) 

as just the string (or null labeled by the string)

ssn(“Alice”, “1 Main St”)

 

 

 
136



Semantics of Skolem Functions in Datalog

• Skolem functions interpreted “as themselves,” like constants 
(Herbrand interpretations): not to be confused with user-
defined functions

– e.g., can think of interpretation of term 

ssn(“Alice”, “1 Main St”) 

as just the string (or null labeled by the string)

ssn(“Alice”, “1 Main St”)

• Datalog programs with Skolem functions continue to have 
minimal models, which can be computed via, e.g., bottom-up 
seminaive evaluation

– Can show that the certain answers are precisely the query answers 
that contain no Skolem terms.  (We’ll revisit this shortly...)

 
137



Semantics of Skolem Functions in Datalog

• Skolem functions interpreted “as themselves,” like constants 
(Herbrand interpretations): not to be confused with user-
defined functions

– e.g., can think of interpretation of term 

ssn(“Alice”, “1 Main St”) 

as just the string (or null labeled by the string)

ssn(“Alice”, “1 Main St”)

• Datalog programs with Skolem functions continue to have 
minimal models, which can be computed via, e.g., bottom-up 
seminaive evaluation

– Can show that the certain answers are precisely the query answers 
that contain no Skolem terms.  (We’ll revisit this shortly...)

• But: the models may now be infinite!
138



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

 

 

 

139



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

140



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

m is a Skolem 
function

141



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee

142



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
m(Alice)

m(Bob)

m(m(Alice))

m(m(Bob))

m(m(m(Alice)))

...

manager

143



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

• Option 1: let ‘er rip and see what happens!  (Coral, LB)

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
m(Alice)

m(Bob)

m(m(Alice))

m(m(Bob))

m(m(m(Alice)))

...

manager

144



Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

• Option 1: let ‘er rip and see what happens!  (Coral, LB)

• Option 2: use syntactic restrictions to ensure 
termination...

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
m(Alice)

m(Bob)

m(m(Alice))

m(m(Bob))

m(m(m(Alice)))

...

manager

145



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

146



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

147



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

148



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

variable occurs as arg #1 to 
manager in body and as 

argument to Skolem (hence 
dashes) in arg #1 to manager

in head 149



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

variable occurs as arg #1 to 
manager in body and as 

argument to Skolem (hence 
dashes) in arg #1 to manager

in head 150

• If graph contains no cycle through 
a dashed edge, then P is called 
weakly acyclic



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

Cycle through 
dashed edge!

Not weakly 
acyclic 

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

variable occurs as arg #1 to 
manager in body and as 

argument to Skolem (hence 
dashes) in arg #1 to manager

in head 151

• If graph contains no cycle through 
a dashed edge, then P is called 
weakly acyclic



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

152



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

153



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

(emp, 1)

154



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

(emp, 1)

155



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

has cycle, but no 
cycle through 
dashed edge; 

weakly acyclic 

(emp, 1)

156



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

Theorem: bottom-up evaluation of weakly acyclic Datalog 
programs with Skolems terminates in # steps polynomial in size 
of source database.

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

has cycle, but no 
cycle through 
dashed edge; 

weakly acyclic 

(emp, 1)

157



Once Computation Stops, What Do We Have?

158



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

159



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

LOCAL SOURCE

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

160



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee name

ssn(A..) Alice

ssn(B..) Bob

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #2

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

161



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

162



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

163



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

Among all the mediated DB instances satisfying the constraints (solutions), #2 
above is universal: can be homomorphically embedded in any other solution.

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

164



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

Among all the mediated DB instances satisfying the constraints (solutions), #2 
above is universal: can be homomorphically embedded in any other solution.

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

165



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

Among all the mediated DB instances satisfying the constraints (solutions), #2 
above is universal: can be homomorphically embedded in any other solution.

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:

166



Universal Solutions Are Just What is 
Needed to Compute the Certain Answers

 

167



Universal Solutions Are Just What is 
Needed to Compute the Certain Answers

 

Theorem: can compute certain answers to Datalog program q
over target/mediated schema by:

(1) evaluating q on materialized mediated DB (computed 
using inverse rules); then 

(2) crossing out rows containing Skolem terms.

168



Universal Solutions Are Just What is 
Needed to Compute the Certain Answers

Proof (crux): use universality of materialized DB.

Theorem: can compute certain answers to Datalog program q
over target/mediated schema by:

(1) evaluating q on materialized mediated DB (computed 
using inverse rules); then 

(2) crossing out rows containing Skolem terms.

169



Notes on Skolem Functions in Datalog

• Notion of weak acyclicity introduced by Deutsch and Popa, 
as a way to ensure termination of the chase procedure for 
logical dependencies (but applies to Datalog too).

• Crazy idea: what if we allow arbitrary use of Skolems, and 
forget about computing complete output idb’s bottom-up, 
but only partially enumerate their contents, on demand, 
using top-down evaluation?  

– And, while we’re at it, allow unsafe rules too?

• This is actually a beautiful idea: it’s called logic 
programming

– Skolem functions (aka “functor terms”) are how you build data 
structures like lists, trees, etc. in Prolog

– Resulting language is Turing-complete

170



Summary: Datalog for 
Data Integration and Exchange

• Datalog serves as very nice language for schema 
mappings, as needed in data integration, provided 
we extend it with Skolem functions

– Can use Datalog to compute certain answers

– Fancier kinds of schema mappings than tgds require 
further language extensions; e.g., Datalog +/- [Cali et al 09]

• Can also extend Datalog to track various kinds of 
data provenance, very useful in data integration

– Using semiring-based framework [Green+ 07]

171



Some Datalog-Based Data 
Integration/Exchange Systems

• Information Manifold [Levy+ 96]

– Virtual approach
– No recursion

• Clio [Miller+ 01]

– Materialized approach
– Skolem terms, no recursion, rich data model
– Ships as part of IBM WebSphere

• Orchestra CDSS [Ives+ 05]

– Materialized approach
– Skolem terms, recursion, provenance, 

updates

172



Datalog for Data Integration: 
Some Open Issues

• Materialized data exchange: renewed need for 
efficient incremental view maintenance algorithms

– Source databases are dynamic entities, need to propagate 
changes

– Classical algorithm DRed [Gupta+ 93] often performs very 
badly; newer provenance-based algorithms [Green+ 07, Liu+ 

08] faster but incur space overhead; can we do better?

• Termination for Datalog with Skolems

– Improvements on weak ayclicity for chase termination, 
translate to Datalog; more permissive conditions always 
useful!

– Is termination even decidable?  (Undecidable if we allow 
Skolems and unsafe rules, of course.)

173



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusion

174



Program Analysis

• What is it?
 

 

• Why in Datalog?
 

• How does it work?
 

 

175



Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
 

• How does it work?
 

 

176



Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
 

 

177



Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
– Really well!  An order-of-magnitude faster than hand-

tuned, Java tools

 

178



Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
– Really well!  An order-of-magnitude faster than hand-

tuned, Java tools

– Datalog optimizations are crucial in achieving 
performance

179



WHAT IS PROGRAM ANALYSIS

180



Understanding Program Behavior

animal.eat( (Food)  thing);

181



Understanding Program Behavior

animal.eat( (Food)  thing);

182

(without actually running the program)



Understanding Program Behavior

animal.eat( (Food)  thing);

183

(without actually running the program)
testing



Understanding Program Behavior

animal.eat( (Food)  thing);

what is animal?

184

(without actually running the program)
testing



Understanding Program Behavior

animal.eat( (Food)  thing);

what is animal?

185

points-to 
analyses

(without actually running the program)
testing



Understanding Program Behavior

animal.eat( (Food)  thing);

through what method 
does it eat?

what is animal?

186

points-to 
analyses

(without actually running the program)
testing



Understanding Program Behavior

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

187

points-to 
analyses

(without actually running the program)
testing



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

188



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

189

it’s a Dog



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

190

it’s a Dog

class Dog {
void eat(Food f) { … }

}



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

191

it’s a Dog

class Dog {
void eat(Food f) { … }

}

virtual call resolution



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

192

it’s a Dog

class Dog {
void eat(Food f) { … }

}

virtual call resolution

it’s Chocolate



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

193

it’s a Dog

class Dog {
void eat(Food f) { … }

}

virtual call resolution

it’s Chocolate



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

194

it’s a Dog

class Dog {
void eat(Food f) { … }

}

virtual call resolution

it’s Chocolate

type erasure



Bug Finding

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

195

it’s a Dog

class Dog {
void eat(Food f) { … }

}

it’s Chocolate



Bug Finding

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

196

it’s a Dog

class Dog {
void eat(Food f) { … }

}

it’s Chocolate

Dog + Chocolate = 
BUG



Bug Finding

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

197

it’s a Dog

class Dog {
void eat(Food f) { … }

}

it’s Chocolate

Dog + Chocolate = 
BUG

ChokeException never 
caught = BUG



Precise, Fast Program Analysis Is Hard

• necessarily an approximation

 

 

 

198



Precise, Fast Program Analysis Is Hard

• necessarily an approximation

– because Alan Turing said so

 

 

199

Halt



Precise, Fast Program Analysis Is Hard

• necessarily an approximation

– because Alan Turing said so

• a lot of possible execution paths to analyze

 

200



Precise, Fast Program Analysis Is Hard

• necessarily an approximation

– because Alan Turing said so

• a lot of possible execution paths to analyze

– 1014 acyclic paths in an average Java program, 
Whaley et al., ‘05

201



WHY PROGRAM ANALYSIS IN 
DATALOG?

202



203

WHY PROGRAM ANALYSIS IN A 
DECLARATIVE LANGUAGE?



WHY DATALOG?

204

WHY PROGRAM ANALYSIS IN A 
DECLARATIVE LANGUAGE?



Program Analysis: A Complex Domain

205



Program Analysis: A Complex Domain

206



Program Analysis: A Complex Domain
flow-sensitive

field-sensitive

context-sensitive

field-based

object-sensitive

inclusion-based

unification-based

k-cfa

BDDs

heap-sensitive 207



Algorithms in 10-page Conf. Papers

208



Algorithms in 10-page Conf. Papers

209



Algorithms in 10-page Conf. Papers

210



Algorithms in 10-page Conf. Papers

211



Algorithms in 10-page Conf. Papers

212



Algorithms in 10-page Conf. Papers

213



Algorithms in 10-page Conf. Papers

214



Algorithms in 10-page Conf. Papers

215



Algorithms in 10-page Conf. Papers

variaton points 
unclear

216



Algorithms in 10-page Conf. Papers

variaton points 
unclear

every variaton
new algorithm

217



Algorithms in 10-page Conf. Papers

variaton points 
unclear

every variaton
new algorithm

correctness 
unclear

218



Algorithms in 10-page Conf. Papers

variaton points 
unclear

every variaton
new algorithm

correctness 
unclear

incomparable in 
precision

219



Algorithms in 10-page Conf. Papers

variaton points 
unclear

every variaton
new algorithm

correctness 
unclear

incomparable in 
precision

incomparable in 
performance 220



Want: Specification + Implementation

221

Specifications



Want: Specification + Implementation

222

Specifications

Declarative
Language 
Runtime



Want: Specification + Implementation

223

Specifications

Declarative
Language 
Runtime

Implementation



WHY DATALOG?

224

DECLARATIVE = GOOD



Program Analysis: Domain of Mutual Recursion

var points-to

225



Program Analysis: Domain of Mutual Recursion

var points-to
x = y;

226



Program Analysis: Domain of Mutual Recursion

var points-to
x = y;

227



Program Analysis: Domain of Mutual Recursion

var points-to
x = f();

228



Program Analysis: Domain of Mutual Recursion

var points-to
x = f();

call graph

229



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x = y.f();

230



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x = y.f();

231



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x.f = y;

fields points-to

232



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x.f = y;

fields points-to

233



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

x = y.f;

234



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

x = y.f;

235



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

throw e

exceptions

236



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

throw e

exceptions

237



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

catch (E e)

238



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

catch (E e)

239



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

g()

240



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

g()

241



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

242



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

243



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

244



A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS

245



PROGRAM ANALYSIS IN DATALOG

246



Points-to Analyses for 
A Simple Language

247

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program



Points-to Analyses for 
A Simple Language

248

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program



Points-to Analyses for 
A Simple Language

249

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program



Points-to Analyses for 
A Simple Language

250

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program



Points-to Analyses for 
A Simple Language

251

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

252

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

253

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

254

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

255

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

256

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

257

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

258

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

259

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

260

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

What objects can a variable point to?



Points-to Analyses for 
A Simple Language

261

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

What objects can a variable point to?



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

262



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo

263



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo

264



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

265



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

a new A()

b new B()

c new C()

266



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

a new A()

b new B()

c new C()

267



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

a new A()

b new B()

c new C()

268



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).

varPointsTo

a new A()

b new B()

c new C()

269



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).

varPointsTo

a new A()

b new B()

c new C()

a new B()

270



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).

varPointsTo

a new A()

b new B()

c new C()

a new B()

271



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).

varPointsTo

a new A()

b new B()

c new C()

a new B()

b new A()

272



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).

varPointsTo

a new A()

b new B()

c new C()

a new B()

b new A()

c new B()

273

c new A()



Introducing Fields

274

a.F1 = b;
c = b.F2;

program

274



Introducing Fields

275

a.F1 = b;
c = b.F2;

program

275



Introducing Fields

276

a.F1 = b;
c = b.F2;

program

276



Introducing Fields

277

a.F1 = b;
c = b.F2;

program
storeField

277



Introducing Fields

278

a.F1 = b;
c = b.F2;

program
storeField

b a F1

278



Introducing Fields

279

a.F1 = b;
c = b.F2;

program
storeField

b a F1

279



Introducing Fields

280

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

280



Introducing Fields

281

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

281



Introducing Fields

282

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

282

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 



Introducing Fields

283

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

283

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld Obj



Introducing Fields

284

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

284

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld Obj



Introducing Fields

285

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

285

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

Base.Fld =  From

Obj



Introducing Fields

286

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

286

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

Base.Fld =  From

Obj



Introducing Fields

287

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

287

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

Base.Fld =  From

Obj



Introducing Fields

288

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

288

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

Base.Fld =  From

Obj



Introducing Fields

289

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

289

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

Base.Fld =  From

Obj



Introducing Fields

290

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

290

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

Base.Fld =  From

Obj



Introducing Fields

291

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

291

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

Obj



Introducing Fields

292

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

292

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

Obj



Introducing Fields

293

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

293

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

To   =   Base.Fld

Obj



Introducing Fields

294

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

294

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

To   =   Base.Fld

Obj



Introducing Fields

295

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

295

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

To   =   Base.Fld

Obj

BaseObj.Fld



Introducing Fields

296

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

296

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

To   =   Base.Fld

Obj

BaseObj.Fld



Introducing Fields

297

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

297

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

To   =   Base.Fld

Obj

BaseObj.FldObj



Introducing Fields

298

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

298

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

BaseObj.Fld

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Base.Fld =  From

To   =   Base.Fld

Obj

BaseObj.FldObj



Introducing Fields

299

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

299

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Enhance 
specification 
without changing 
base code



Introducing Fields

300

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

300

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Enhance 
specification 
without changing 
base code



Introducing Fields

301

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

301

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Enhance 
specification 
without changing 
base code



Introducing Fields

302

a.F1 = b;
c = b.F2;

program
storeField

b a F1

loadField

b F2 c

302

fieldPointsTo(BaseObj, Fld, Obj) 
<- storeField(From, Base, Fld),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Fld, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj,  Fld, Obj).

Enhance 
specification 
without changing 
base code



Specification + Implementation

303

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation



Specification + Implementation

304

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Doop:
~2500 lines of logic



Specification + Implementation

305

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation



Specification + Implementation

306

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation



Specification + Implementation

307

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation
Control



Specification + Implementation

308

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Control



Specification + Implementation

309

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Tabled

Control



Specification + Implementation

310

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

Tabled

Control



Specification + Implementation

311

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

Control



Specification + Implementation

312

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

Control

Data Structures



Specification + Implementation

313

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

BTree

Control

Data Structures



Specification + Implementation

314

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

BTree

KDTree

Control

Data Structures



Specification + Implementation

315

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

BDDs
BTree

KDTree

Control

Data Structures



Specification + Implementation

316

varPointsTo(Var, Obj) 
<- assignObjectAllocation(…).

varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

Datalog
Engine

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 

varPointsTo(To, Obj) 
<- loadField(Base, Field, To),

varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, …).

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

BDDs
BTree

KDTree
transitive 
closure

Control

Data Structures



Specification + Implementation

317

Datalog
Engine

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

BDDs
BTree

KDTree
transitive 
closure

Control

Data Structures



Specification + Implementation

Datalog
Engine

Specifications Implementation



Specification + Implementation

Datalog
Engine

Specifications Implementation

Does It Run 
Fast?!?



Doop vs. Paddle: 
1-call-site-sensitive-heap

320



Crucial Optimizations 

• something old

 

• something new(-ish)

 

• something borrowed (from PL)

 

321



Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

 

• something borrowed (from PL)

 

322



Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

– magic-sets

• something borrowed (from PL)

 

323



Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

– magic-sets

• something borrowed (from PL)

– type-based

324



Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

– magic-sets

• something borrowed (from PL)

– type-based

325



TYPE-BASED OPTIMIZATIONS

326



Types: Sets of Values

327

universe



Types: Sets of Values

328

animal

universe



Types: Sets of Values

329

animal

universe

food



Types: Sets of Values

330

animal

universe

thing

food



Types: Sets of Values

331

animal

universe

animal(X)  ->  .

thing

food



Types: Sets of Values

332

bird

animal

universe

animal(X)  ->  .

thing

food



Types: Sets of Values

333

bird

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

thing

food



Types: Sets of Values

334

bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

thing

food



Types: Sets of Values

335

bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

thing

food



Types: Sets of Values

336

bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

dog(X) -> !bird(X).
bird(X) -> !dog(X).

thing

food



Types: Sets of Values

337

bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

dog(X) -> !bird(X).
bird(X) -> !dog(X).

thing

food

pet



Types: Sets of Values

338

bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

dog(X) -> !bird(X).
bird(X) -> !dog(X).

pet(X) -> animal(X).

thing

food

pet



“Virtual Call Resolution”

339

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”

340

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”

341

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”

342

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog



“Virtual Call Resolution”

343

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”

344

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

dogChews :: (dog, food)



“Virtual Call Resolution”

345

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

dogChews :: (dog, food)

birdSwallows :: (bird, food)



“Virtual Call Resolution”

346

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

dogChews :: (dog, food)

birdSwallows :: (bird, food)



Type Erasure

347

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog

dogChews :: (dog, food)

birdSwallows :: (bird, food)



Type Erasure

348

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog

eat :: (dog, food)



Type Erasure

349

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog

eat :: (dog, food)



Type Erasure

350

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

eat :: (dog, food)



Type Erasure

351

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

Thing :: chocolate

eat :: (dog, food)



Type Erasure

352

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

Thing :: chocolate

eat :: (dog, food)



Clean Up

353

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

Thing :: chocolate

eat :: (dog, food)



Clean Up

354

D :: dog

Thing :: chocolate

query _(D) 
<- eat(D,Thing),

chocolate(Thing).

eat(A, Food)
<- dogChews(A,Food). eat :: (dog, food)



References on Datalog and Types

• “Type inference for datalog and its application to 
query optimisation”, de Moor et al., PODS ‘08

• “Type inference for datalog with complex type 
hierarchies”, Schafer and de Moor, POPL ‘10

• “Semantic Query Optimization in the Presence of 
Types”, Meier et al., PODS ‘10

355



Datalog Program Analysis Systems

• BDDBDDB
– Data structure: BDD

• Semmle (.QL)
– Object-oriented syntax
– No update

• Doop
– Points-to analysis for full Java
– Supports for many variants of context and heap 

sensitivity.

356



REVIEW

357



Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
– Really well! order of magnitude faster than hand-

tuned, Java tools

– Datalog optimizations are crucial in achieving 
performance

358



Program Analysis

359

 



Program Analysis

360

 



Program Analysis

361

 



Program Analysis

362

 



Program Analysis

363

 



Program Analysis

364

• “Evita Raced: Meta-compilation for 
declarative networks”, Condie et al., VLDB ‘08



OPEN CHALLENGES

365



Traditional View
Datalog: Data Querying Language

366

Queries



Traditional View
Datalog: Data Querying Language

367

Queries

Middleware

Java C++ Ruby…
Application Logic



Traditional View
Datalog: Data Querying Language

368

Queries

Middleware

Java C++ Ruby…
Application Logic

UI Logic + Rendering

Java JavaScriptOracleForms …



New View
Datalog: General Purpose Language

369

Queries

App. Logic App. Logic

App. Logic

UI Logic UI Logic

UI Rendering



Challenges Raised by Program Analysis

• Datalog Programming in the large
 

 

 

 

 

 

 

 

370



Challenges Raised by Program Analysis

• Datalog Programming in the large
– Modularization support

– Reuse (generic programming)

– Debugging and Testing

 

 

 

 

 

371



Challenges Raised by Program Analysis

• Datalog Programming in the large
– Modularization support

– Reuse (generic programming)

– Debugging and Testing

• Expressiveness:
– Recursion through negation, aggregation

– Declarative state

 

 

372



Challenges Raised by Program Analysis

• Datalog Programming in the large
– Modularization support

– Reuse (generic programming)

– Debugging and Testing

• Expressiveness:
– Recursion through negation, aggregation

– Declarative state

• Optimization, optimization, optimization
– In the presence of recursion!

373



Acknowledgements

• Slides:

– Martin Bravenboer & LogicBlox, Inc.

– Damien Sereni & Semmle, Inc.

– Matt Might, University of Utah

374



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions

375



Declarative Networking

• A declarative framework for networks:
– Declarative language: “ask for what you want, not how to 

implement it”

– Declarative specifications of networks, compiled to 
distributed dataflows

– Runtime engine to execute distributed dataflows

 

 

376



Declarative Networking

• A declarative framework for networks:
– Declarative language: “ask for what you want, not how to 

implement it”

– Declarative specifications of networks, compiled to 
distributed dataflows

– Runtime engine to execute distributed dataflows

• Observation: Recursive queries are a natural fit for 
routing

377



A Declarative Network

Traditional Networks Declarative Networks

378



A Declarative Network

Traditional Networks Declarative Networks

Network State Distributed database

379



A Declarative Network

Distributed recursive 
query

Traditional Networks Declarative Networks

Network State Distributed database

Network protocol Recursive Query Execution

380



A Declarative Network

Traditional Networks Declarative Networks

Network State Distributed database

Network protocol Recursive Query Execution

Network messages Distributed Dataflow

DataflowDataflow

messages

Dataflow

Dataflow

Dataflow

Dataflow messages
messages

381



Declarative* in Distributed Systems 
Programming

• IP Routing *SIGCOMM’05, SIGCOMM’09 demo+

• Overlay networks *SOSP’05+

• Network Datalog *SIGMOD’06+

• Distributed debugging *Eurosys’06+

• Sensor networks *SenSys’07+

• Network composition *CoNEXT’08+

• Fault tolerant protocols *NSDI’08+

• Secure networks *ICDE’09, NDSS’10, SIGMOD’10]

• Replication *NSDI’09+

• Hybrid wireless routing *ICNP’09+, channel selection *PRESTO’10+

• Formal network verification [HotNets’09, SIGCOMM’11 demo]

• Network provenance [SIGMOD’10, SIGMOD’11 demo]

• Cloud programming [Eurosys ‘10+, Cloud testing (NSDI’11)

• … <More to come>

Databases (5)
Networking (11)

Systems (2)

Security (1)

382



Open-source systems

• P2 declarative networking system 
– The “original” system
– Based on modifications to the Click modular router.
– http://p2.cs.berkeley.edu

• RapidNet
– Integrated with network simulator 3 (ns-3), ORBIT wireless testbed, and 

PlanetLab testbed.
– Security and provenance extensions.
– Demonstrations at SIGCOMM’09, SIGCOMM’11, and SIGMOD’11
– http://netdb.cis.upenn.edu/rapidnet

• BOOM – Berkeley Orders of Magnitude
– BLOOM (DSL in Ruby, uses Dedalus, a temporal logic programming 

language as its formal basis).
– http://boom.cs.berkeley.edu/

383

http://p2.cs.berkeley.edu/
http://netdb.cis.upenn.edu/rapidnet
http://boom.cs.berkeley.edu/


R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

b dca

384



R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

b dca

Location Specifier “@S”

385



R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

Input table:
@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

Location Specifier “@S”

386



R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

query _(@M,N) <- reachable(@M,N)

Input table:
@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

387



All-Pairs Reachability

R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

query _(@M,N) <- reachable(@M,N)

@S D

@a b

@a c

@a d

reachable

Output table:

Input table:
@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

@S D

@b a

@b c

@b d

reachable

@S D

@c a

@c b

@c d

reachable

@S D

@d a

@d b

@d c

reachable

388



R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

@S D

@a b

@a c

@a d

reachable

Output table:

Input table:

Query: reachable(@a,N)

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

query _(@a,N) <- reachable(@a,N)

389



Implicit Communication

• A networking language with no explicit communication:

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Data placement induces communication

390



Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

b dca

391



Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

path=[c,d]

c advertises [c,d]

b dca

392



Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

path=[c,d]path=[b,c,d]

c advertises [c,d]b advertises [b,c,d]

b dca

393



Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

path=[c,d]path=[b,c,d]path=[a,b,c,d]

c advertises [c,d]b advertises [b,c,d]

b dca

394



Path Vector in Network Datalog

Input: link(@source, destination)

Query output: path(@source, destination, pathVector)

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: link(@Z,S), path(@S,D,P) P=SP2. path(@Z,D,P2),<-

query _(@S,D,P) <- path(@S,D,P) 

Courtesy of Bill Marczak (UC Berkeley)

395



Path Vector in Network Datalog

Input: link(@source, destination)

Query output: path(@source, destination, pathVector)

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: link(@Z,S), path(@S,D,P) P=SP2. path(@Z,D,P2),<-

query _(@S,D,P) <- path(@S,D,P) 

Courtesy of Bill Marczak (UC Berkeley)

396



Path Vector in Network Datalog

Input: link(@source, destination)

Query output: path(@source, destination, pathVector)

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: link(@Z,S), path(@S,D,P) P=SP2. path(@Z,D,P2),<-

query _(@S,D,P) <- path(@S,D,P) Add S to front of P2

Courtesy of Bill Marczak (UC Berkeley)

397



@S D P

Query Execution

@S D P @S D P

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

path path path

Forwarding 
table:

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2.

query _(@a,d,P) <- path(@a,d,P)

398



@S D P

Query Execution

@S D P @S D P

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

path path path

Forwarding 
table:

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), 
P=SP2.query _(@a,d,P) <- path(@a,d,P)

399



@S D P @S D P

@c d [c,d]

Query Execution

@S D P

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

path path path

Forwarding 
table:

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), 
P=SP2.query _(@a,d,P) <- path(@a,d,P)

400



@S D P @S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

b dca

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 

401



@S D P @S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

b dca

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 

402



@S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 

403



@S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 

404



@S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

@S D P

@a d [a,b,c,d]

path(@a,d,[a,b,c,d])

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 

405



@S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

@S D P

@a d [a,b,c,d]

path(@a,d,[a,b,c,d])

Communication patterns are identical to those in 
the actual path vector protocol 

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 

406



R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).

R2: path(@S,D,P,C) <- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2,

 

All-pairs Shortest-path

P=SP2.

407



R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).

R2: path(@S,D,P,C) <- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2,

query_(@S,D,P,C) <- bestPath(@S,D,P,C)

R3: bestPathCost(@S,D,min<C>) <- path(@S,D,P,C).
R4: bestPath(@S,D,P,C) <- bestPathCost(@S,D,C), path(@S,D,P,C).

All-pairs Shortest-path

P=SP2.

408



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

2

1
1-hop

3

Link Table Network

5
10

0

21

3

4

6

8

7
9

409



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

2

1
1-hop

3

Link Table Network

5
10

0

21

3

4

6

8

7
9

410



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

2

1
1-hop

3

6

5 2-hop
4

Link Table Network

5
10

0

21

3

4

6

8

7
9

411



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

8

7

3-hop

10

9

2

1
1-hop

3

6

5 2-hop
4

Link Table Network

5
10

0

21

3

4

6

8

7
9

412



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

8

7

3-hop

10

9

2

1
1-hop

3

6

5 2-hop
4

Link Table Network

5
10

0

21

3

4

6

8

7
9

413



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

8

7

3-hop

10

9

2

1
1-hop

3

6

5 2-hop
4

Link Table Network

5
10

0

21

3

4

6

8

7
9

414



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

8

7

3-hop

10

9

2

1
1-hop

3

6

5 2-hop
4

Link Table Network

5
10

0

21

3

4

6

8

7
9

415



Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

8

7

3-hop

10

9

2

1
1-hop

3

6

5 2-hop
4

Link Table Network

5
10

0

21

3

4

6

8

7

Problem: How do nodes know that an iteration is completed? Unpredictable delays and 
failures make synchronization difficult/expensive.

9

416



Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows

Path TableLink Table Network

5

0

21

3

4

6

8

7
9

417

10



Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows

Path Table

1

Link Table Network

5

0

21

3

4

6

8

7
9

418

10



Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows

Path Table

4
1

Link Table Network

5

0

21

3

4

6

8

7
9

419

10



Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows

Path Table

4
1

7

Link Table Network

5

0

21

3

4

6

8

7
9

420

10



Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows

Path Table

4
1

7

Link Table Network

2

5

0

21

3

4

6

8

7
9

421

10



Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows

Path Table

4
1

7

Link Table Network

2
5
8
3
6
9
10

5

0

21

3

4

6

8

7
9

Relaxation of 
semi-naïve

422

10



lookup

lookup

D
e
m

u
x

link

Local Tables

path ...

U
D

P
 

T
x

R
o

u
n

d

R
o

b
in

Q
u

e
u

e
C

C
 

T
x

Q
u

e
u

e
U

D
P

 

R
x

C
C

 

R
x

Dataflow Graph

Nodes in dataflow graph (“elements”):

 Network elements (send/recv, rate limitation, jitter)

 Flow elements (mux, demux, queues)

 Relational operators (selects, projects, joins, aggregates)

Messages Messages

Single Node

423



lookup

lookup

D
e
m

u
x

link

Local Tables

path ...

U
D

P
 

T
x

R
o

u
n

d

R
o

b
in

Q
u

e
u

e
C

C
 

T
x

Q
u

e
u

e
U

D
P

 

R
x

C
C

 

R
x

Dataflow Graph

Nodes in dataflow graph (“elements”):

 Network elements (send/recv, rate limitation, jitter)

 Flow elements (mux, demux, queues)

 Relational operators (selects, projects, joins, aggregates)

Messages

Network In

Messages

Network Out

Single Node

424



lookup

lookup

D
e
m

u
x

link

Local Tables

path ...

U
D

P
 

T
x

R
o

u
n

d

R
o

b
in

Q
u

e
u

e
C

C
 

T
x

Q
u

e
u

e
U

D
P

 

R
x

C
C

 

R
x

Dataflow Graph

Nodes in dataflow graph (“elements”):

 Network elements (send/recv, rate limitation, jitter)

 Flow elements (mux, demux, queues)

 Relational operators (selects, projects, joins, aggregates)

Strands

Messages

Network In

Messages

Network Out

Single Node

425



Rule  Dataflow “Strands”

lookup

lookup

D
e
m

u
x

link

Local Tables

path ...

U
D

P
 

T
x

R
o

u
n
d

R
o

b
in

Q
u
e

u
e

C
C

 

T
x

Q
u

e
u

e
U

D
P

 

R
x

C
C

 

R
x

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), 
P=SP2.

426



Rule  Dataflow “Strands”

lookup

lookup

D
e
m

u
x

link

Local Tables

path ...

U
D

P
 

T
x

R
o

u
n
d

R
o

b
in

Q
u
e

u
e

C
C

 

T
x

Q
u

e
u

e
U

D
P

 

R
x

C
C

 

R
x

427



Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.

Matching variable Z = “Join”

428



Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.

R2b: path(@S,D,P)  linkD(S,@Z), path(@Z,D,P2), P=SP2.

R2a: linkD(S,@D)  link(@S,D)

Matching variable Z = “Join”

Rewritten rules:

429



Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.

R2b: path(@S,D,P)  linkD(S,@Z), path(@Z,D,P2), P=SP2.

R2a: linkD(S,@D)  link(@S,D)

Matching variable Z = “Join”

Rewritten rules:

430



Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.

R2b: path(@S,D,P)  linkD(S,@Z), path(@Z,D,P2), P=SP2.

R2a: linkD(S,@D)  link(@S,D)

Matching variable Z = “Join”

Rewritten rules:

Matching variable Z = “Join”

431



Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.

R2b: path(@S,D,P)  linkD(S,@Z), path(@Z,D,P2), P=SP2.

R2a: linkD(S,@D)  link(@S,D)

Matching variable Z = “Join”

Rewritten rules:

Matching variable Z = “Join”

432



Physical Execution Plan

Strand Elements

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
rk In

N
etw

o
rk In

433



Physical Execution Plan

Strand Elements

path

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
rk In

N
etw

o
rk In

434



Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
rk In

N
etw

o
rk In

435



Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD

Project
path(S,D,P)

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
rk In

N
etw

o
rk In

436



Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD

Project
path(S,D,P)

Send to 
path.S

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
rk In

N
etw

o
rk In

437



Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD

Project
path(S,D,P)

Send to 
path.S

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
rk In

N
etw

o
rk In

linkD Join
linkD.Z = 
path.Z

path

Project
path(S,D,P)

Send to 
path.S

438



Pipelined Evaluation

• Challenges:

– Does PSN produce the correct answer?

– Is PSN bandwidth efficient?

• I.e. does it make the minimum number of inferences?

 

 

 

 

439



Pipelined Evaluation

• Challenges:

– Does PSN produce the correct answer?

– Is PSN bandwidth efficient?

• I.e. does it make the minimum number of inferences?

• Theorems *SIGMOD’06+: 

– RSSN(p) = RSPSN(p), where RS is results set

– No repeated inferences in computing RSPSN(p)

– Require per-tuple timestamps in delta rules and FIFO and 
reliable channels

440



Incremental View Maintenance

• Leverages insertion and deletion delta rules for state 
modifications.

• Complications arise from duplicate evaluations. 

• Consider the Reachable query. What if there are many ways to 
route between two nodes a and b, i.e. many possible derivations 
for reachable(a,b)?

 

 

 

441



Incremental View Maintenance

• Leverages insertion and deletion delta rules for state 
modifications.

• Complications arise from duplicate evaluations. 

• Consider the Reachable query. What if there are many ways to 
route between two nodes a and b, i.e. many possible derivations 
for reachable(a,b)?

• Mechanisms: still use delta rules, but additionally, apply

– Count algorithm (for non-recursive queries).

– Delete and Rederive (SIGMOD’93). Expensive in distributed settings.

Maintaining Views Incrementally. Gupta, Mumick, 
Ramakrishnan, Subrahmanian. SIGMOD 1993.

442



Recent PSN Enhancements

• Provenance-based approach
– Condensed form of provenance piggy-backed with each tuple for 

derivability test.

– Recursive Computation of Regions and Connectivity in Networks. Liu, 
Taylor, Zhou, Ives, and Loo. ICDE 2009.

• Relaxation of FIFO requirements:
– Maintaining Distributed Logic Programs Incrementally.

Vivek Nigam, Limin Jia, Boon Thau Loo and Andre Scedrov.
13th International ACM SIGPLAN Symposium on Principles and 
Practice of Declarative Programming (PPDP), 2011.

443



Optimizations

• Traditional:
– Aggregate Selections
– Magic Sets rewrite
– Predicate Reordering

 
 

 

 

 
 

 

444



Optimizations

• Traditional:
– Aggregate Selections
– Magic Sets rewrite
– Predicate Reordering

 
 

 

 

 
 

 

PV/DV  DSR

445



Optimizations

• Traditional:
– Aggregate Selections
– Magic Sets rewrite
– Predicate Reordering

• New:
– Multi-query optimizations:

• Query Results caching
• Opportunistic message sharing

– Cost-based optimizations
• Network statistics (e.g. density, route request rates, etc.)
• Combining top-down and bottom-up evaluation

PV/DV  DSR

446



Suggested Readings

• Networking use cases:
– Declarative Routing: Extensible Routing with Declarative Queries. Loo, 

Hellerstein, Stoica, and Ramakrishnan. SIGCOMM 2005.

– Implementing Declarative Overlays. Loo, Condie, Hellerstein, Maniatis, 
Roscoe, and Stoica. SOSP 2005.

• Distributed recursive query processing:
– *Declarative Networking: Language, Execution and Optimization. Loo, 

Condie, Garofalakis, Gay, Hellerstein, Maniatis, Ramakrishnan, Roscoe, and 
Stoica, SIGMOD 06.

– Recursive Computation of Regions and Connectivity in Networks. Liu, Taylor, 
Zhou, Ives, and Loo. ICDE 2009.

447



Challenges and Opportunities

• Declarative networking adoption:
– Leverage well-known open-source software-based projects, e.g. ns-3, 

Quagga, OpenFlow

– Wrappers for legacy code

– Usability studies

– Open-source code release and demonstrations

• Formal network verification:
– Integration of formal tools (e.g. theorem provers, SMT solvers), formal 

network models (e.g. routing algebra)

– Operational semantics of Network Datalog and subsequent extensions

– Other properties: timing, security

• Opportunities for automated program synthesis

448



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Modern System Implementations

• Open Questions

449



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions

450



What Is A Program?

451



What Is A Program?

452



What Is A Program?

453



Logic + Control + Data Structures

454

Datalog
Engine

Specifications Implementation

Top-down Bottom-up

Naive

Semi-naive

DReDCounting

Tabled

BDDs
BTree

KDTree
transitive 
closure

Control

Data Structures



THE END… OR IS IT THE 
BEGINNING?

455


