Datalog and Emerging Applications:
an Interactive Tutorial

Shan Shan Huang T.J. Green Boon Thau Loo
.= LOGICBLOXE UNIVERSITY OF CALIFORNIA Penn

SIGMOD 2011 Athens, Greece June 14, 2011

A Brief History of Datalog

()
Workshop on
Logic and
Databases

—__ J

A Brief History of Datalog

4 N\
Workshop on
Logic and
Databases

—__ J

LDL, NAIL,
Coral, ...
v i 3]

A Brief History of Datalog

-
Workshop on
Logic and Data
Databases integration

LDL, NAIL,
Coral, ...
- .
H: B
LY H.; (7]

A Brief History of Datalog

[Control + data flow]

7

Databases integration
— =
[| |

Workshop on
Logic and [Data J

‘77 ’'80s.. ‘95

LDL, NAIL,
Coral, ...
- .
H: B
LY H.; (7]

A Brief History of Datalog

[Control + data flow]

7

Databases integration
— =
[| |

Workshop on
Logic and [Data J

‘77 ’'80s.. ‘95

LDL, NAIL,
Coral, ...
- .
H: B
LY H.; (7]

A Brief History of Datalog

[Control + data flow]

(]
Workshop on -
Logic and Data
Databases [integration J

N w

, No practical applications of recursive
qguery theory ... have been found to
date.

-- Hellerstein and Stonebraker
“Readings in Database Systems”

A Brief History of Datalog

[Control + data flow]

7

Databases integration
— =
[| |

Workshop on
Logic and [Data J

‘77 ’'80s.. ‘95

LDL, NAIL,
Coral, ...
- .
H: B
LY H.; (7]

A Brief History of Datalog

[Control + data flow]

7

Databases integration
— =
[| |

Workshop on
Logic and [Data J

|
|

‘77 ’80s.. ‘95 ‘0

asxeEN

Access control
LDL, NAIL, (Binder)
Coral, ...
- =
H:
\. H o (A

Declarative
networking

——

A Brief History of Datalog

[Control + data flow]

7

Databases integration
—s -
[| |

Workshop on
Logic and [Data J

‘77 '80s.. ‘O5 ‘05

Access control
LDL, NAIL, (Binder)
Coral, ...
- =
H:
\. H o (A

S
s\ ™=

10

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

Workshop on
Logic and [Data J

7

Databases integration
—s -
[| |

‘77 '80s.. ‘95 ‘05

Access control
LDL, NAIL, (Binder)
Coral, ...
- =
El:
| 8 HJ (\)

=)
ammaN) ==

11

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

- -
||
|
(- Orchestra CDSS
Workshop on = _
Logic and Data .
Databases integration :
~— l =
[| | [|
‘77 '80s.. ‘95 ‘02 ‘05
] | |
u | |
[| | |
[| | |
]

Access control
LDL, NAIL, (Binder)
Coral, ...
~ =
H: 5
LY u d (\)

12

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

u u
| |
|
g u Orchestra CDSS
Workshop on = .
Logic and Data .
Databases integration : Information
— o = | Extraction
[] | [|
‘77 ’80s.. ‘95 ‘02 ‘05 ‘07
- .
- | |
- | |
| |
| |
Access control
LDL, NAIL, (Binder)
Coral, ...

3
-
b -

13

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

7

[Orchestra CDSS]

Workshop on .
Logic and Data .
Databases integration = | |nformation
— = o | Extraction
| | I] =
‘77 ’805 see ‘95 ‘02 105 lo
- | |
- | |
- | |
- | |
]

Access control
LDL, NAIL, (Binder)
Coral, ...
~ =
H: 5
Vi e B [Kol]

!

14

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

7

[Orchestra CDSS]

Workshop on .
Logic and Data .
Databases integration = | Information
— = o | Extraction
[| | [|
77 ’80s.. ‘95 ‘02 ‘05 ‘07 ‘08
m : .
- n Doop
|
n - (pointer-
- analysis)

Access control
LDL, NAIL, (Binder)
Coral, ...
~ =
H:E
8 N (7] [

@)
—
—

15

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

- w
||
|
[: Orchestra CDSS
Workshop on = .
Logic and Data .
Databases integration : Information
— o = | Extraction
| | I]
77 ’'80s.. ‘95 ‘02 ‘05 ‘07 ‘08
- . .
. u = Doop
| [} q
u = (pointer-
] g
Access control =|_analysis)
Coral, Evita
= Raced
|

H: D |

@)
—
—

16

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

- w
u SecureBlox
. —

(= [Orchestra CDSS] -
Workshop on - . -
Logic and Data . :
Databases integration = | Information |m

— - : Extraction |*®

= []
[| | [|

|
F

‘77 ’80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| | []
= | | [|
. = = Doop
m - | (pointer-
|] .
Access control =\ analysis)
Coral, Evita
= Raced
| |

H: D |

@)
—
—

17

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

|
u - SecureBlox
| -

[- [Orchestra CDSS] .
Workshop on - . -
Logic and Data . :
Databases integration : Information |g

—= u - Extraction |*

o ! li Xt -
DELIVERING COMPETITIVE ADYANTAGE
M . %
‘77 '80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| |
- | |
: L]] Doop
| [} q
= = (pointer-
| .
Access control =|_analysis)
LDL, NAIL, (Binder) s "
Coral, Evita
={ Raced
|

H: D |

@)
—
—

18

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDB]

- u
u SecureBlox
| e
[- [Orchestra CDSS] .
Workshop on - . -
Logic and Data . :
Databases integration : Information |g
—= u - Extraction |*
: : li X t :
DELIVERING COMPETITIVE ADYANTAGE
M . %
‘77 '80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| |
- | |
- n - Doop
- | | 2 B
= =1 (pointer
] g
Access control =|_analysis)
LDL, NAIL, (Binder) s "
Coral, Evita
= Raced
L) - [|
EH: D —=
(N7 N
\ QL
semmle/

19

A Brief History of Datalog | seemtve |

1
Control + data flow] BDDBDDI ®
[_ [.1 LOGICBLOX
n . l SecureBlox
| e
4 u [Orchestra CDSS] :
Workshop on - . u
Logic and Data . :
Databases integration : Information J.
— : Extraction |*®
- : li X t :
DELIVERING COMPETITIVE ADYANTAGE
M . %
‘77 ’80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| |
= [] |
: n m Doop
- - +| (pointer-
]
Access control . LOG|CB|_0)(®
LDL, NA”., [(Binder) J [
Coral, Evita
n Raced
2 |

f .QL
semmilie/ —]

20

A Brief History of Datalog | seemtve |

h
Control + data flow] BDDBDDI ®
[_ [.1 LOGICBLOX
- - l SecureBlox
- _
r 3 [Orchestra CDSS] e SN,

Logic and Data :
Databases integration :
. - li X t@

I I I DEﬂERING COMPETITIVE ADYANTAGE
77 ’80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10

Doop
(pointer-
Access control I LOGICBLOX
LDL, NAIL, [(Binder) J
Coral, ...
- ‘. ‘
5 —)

[]
semmile/

Workshop on [

21

A Brief History of Datalog | seemtve |

[Control + data flow] [BDDBDDI .= LOGICBLOXE
: - l SecureBlox
(W < J{ - [Orchestra CDSS] K »
orkshop on o ST
Logic and = A .
Databases
—_
- Hey wait... there ARE applications!
‘77 ’80
E : : Doop
n - :((pointer-]

|

Coral, ...

.8 LOGICBLOX

Access control
LDL, NAIL, } (Binder)

Evita
Raced

[QL
semmle/ £ 2

EEEEBRE
)

2

Today’s Tutorial, or,
Datalog: Taste it Again for the First Time

e We review the basics and examine several of
these recent applications

* Theme #1: lots of compelling applications, if we
look beyond payroll / bill-of-materials / ...

— Some of the most interesting work coming from
outside databases community!

* Theme #2: language extensions usually needed

— To go from a toy language to something really usable

(Asynchr‘Or\OUS\y\‘)
An Interactive Tutorial

INSTALL_LB : installation guide
README : structure of distribution files
Quick-Start guide : usage

*.logic : Datalog examples

*.Ib : LogicBlox interactive shell script (to drive the Datalog
examples)

Shan Shan and other LogicBlox folks will be available
immediately after talk for the “synchronous” version of
tutorial

24

Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: Datalog 101

* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

* Conclusions

Datalog Refresher: Syntax of Rules

Datalog rule syntax:

<result> < <condition1>, <condition2>, ... , <conditionN>.

Datalog Refresher: Syntax of Rules

Datalog rule syntax:

<result> «&condition1>, <condition2>, ..., <conditionID
Body

Datalog Refresher: Syntax of Rules

Datalog rule syntax:

<condition1>, <condition2>, ..., <conditionN>.

Head Body

X Body consists of one or more conditions (input tables)
X Head is an output table

m Recursive rules: result of head in rule body

Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

Input: link(source, destination)
Output: reachable(source, destination)

29

Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

link(a,b) — “there is a link from node a to node b”

Input: link(source, destination)
Output: reachable(source, destination)

30

Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

link(a,b) — “there is a link from node a to node b”

reachable(a,b) — “node a can reach node b”

Input: link(source, destination)
Output: reachable(source, destination)

31

Example: All-Pairs Reachability

9 R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

“For all nodes S,D,
If there is a link from S to D, then S can reach D”.

Input: link(source, destination)
Output: reachable(source, destination)

32

Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
9 R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

“For all nodes S,D and Z,
If there is a link from S to Z, AND Z can reach D, then S can reach D”.

Input: link(source, destination)
Output: reachable(source, destination)

33

Terminology and Convention

reachable(S,D) <- link(S,Z), reachable(Z,D) .

An atom is a predicate, or relation name with arguments.

Convention: Variables begin with a capital, predicates begin with
lower-case.

The head is an atom; the body is the AND of one or more atoms.
Extensional database predicates (EDB) — source tables
Intensional database predicates (IDB) — derived tables

Negated Atoms

« We may put ! (NOT) in front of a atom, to negate its meaning.

Negated Atoms
Qlt”c;t"in Prolog. © >

« We may put ! (NOT) in front of a atom, to negate its meaning.

36

Negated Atoms
Qﬂn Prolog. © >

« We may put ! (NOT) in front of a atom, to negate its meaning.

 Example: For any given node S, return all nodes D that are two
hops away, where D is not an immediate neighbor of S.

twoHop(S,D)
<- link(S,Z),
link(Z,D)
I link(S,D).

link(S,Z link(Z,D
O———®

Safe Rules

e Safety condition:

— Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

— Ensures that the results of programs are finite, and that
their results depend only on the actual contents of the
database.

Safe Rules

e Safety condition:

— Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

— Ensures that the results of programs are finite, and that
their results depend only on the actual contents of the
database.

* Examples of unsafe rules:
— s(X) <-r(Y).
— s(X) <-r(Y), ! r(X).

Semantics

Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order
logic. View rules as logical constraints.

— Given input DB | and Datalog program P, find the smallest possible DB
instance I’ that extends | and satisfies all constraints in P.

Semantics

Model-theoretic

Most “declarative”. Based on model-theoretic semantics of first order
logic. View rules as logical constraints.

Given input DB | and Datalog program P, find the smallest possible DB
instance I’ that extends | and satisfies all constraints in P.

. Fixpoint-theoretic

Most “operational”. Based on the immediate consequence operator for
a Datalog program.

Least fixpoint is reached after finitely many iterations of the immediate
consequence operator.

Basis for practical, bottom-up evaluation strategy.

Semantics

. Model-theoretic

Most “declarative”. Based on model-theoretic semantics of first order
logic. View rules as logical constraints.

Given input DB | and Datalog program P, find the smallest possible DB
instance I’ that extends | and satisfies all constraints in P.

. Fixpoint-theoretic

III

Most “operational”. Based on the immediate consequence operator for

a Datalog program.

Least fixpoint is reached after finitely many iterations of the immediate
consequence operator.

Basis for practical, bottom-up evaluation strategy.

. Proof-theoretic

Set of provable facts obtained from Datalog program given input DB.
Proof of given facts (typically, top-down Prolog style reasoning)

The “Naive” Evaluation Algorithm

Start:
Start by assuming all IDB IDB =0

relations are empty.

Repeatedly evaluate the rules
using the EDB and the previous
IDB, to get a new IDB.

Apply rules
to IDB, EDB

yes
End when no change to IDB.

done

Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

44

Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

45

Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

46

Naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

47

Naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

48

Naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

49

Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

50

Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

51

Semi-naive Evaluation

* Since the EDB never changes, on each round we only
get new IDB tuples if we use at least one IDB tuple
that was obtained on the previous round.

e Saves work; lets us avoid rediscovering most known
facts.
— A fact could still be derived in a second way.

Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

53

Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

54

Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

55

Semi-naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

56

Semi-naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

57

Semi-naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

58

Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

59

Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).

60

Recursion with Negation

Example: to compute all pairs of disconnected nodes in
a graph.

reachable(S,D) <- link(S,D).
reachable(S,D) <-link(S,Z), reachable(Z,D).
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Recursion with Negation

Example: to compute all pairs of disconnected nodes in
a graph.

reachable(S,D) <- link(S,D).
reachable(S,D) <-link(S,Z), reachable(Z,D).
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Stratum 1 unreachable Precedence graph :
Nodes = IDB predicates.
__ Edge g <- p if predicate

q depends on p.
Label this arc “—” if the

Stratum 0 reachable predicate p is negated.

Stratified Negation

unreachable

» Straightforward syntactic restriction.

* When the Datalog program is stratified, we can evaluate
IDB predicates lowest-stratum-first.
* Once evaluated, treat it as EDB for higher strata.

reachable(S,D) <- link(S,D). Stratum 1
reachable(S,D) <- link(S,Z2),

reachable(Z,D).
unreachable(S,D) <- node(S),

node(D), Stratum 0
| reachable(S,D).

Stratified Negation

unreachable

» Straightforward syntactic restriction.

* When the Datalog program is stratified, we can evaluate
IDB predicates lowest-stratum-first.

* Once evaluated, treat it as EDB for higher strata.
Non-stratified example:

p(X) <- q(X), ! p(X).

reachable(S,D) <- link(S,D). Stratum 1
reachable(S,D) <- link(S,Z2),

reachable(Z,D).
unreachable(S,D) <- node(S),

node(D), Stratum 0
| reachable(S,D).

A Sneak Preview...

* Data integration

— Skolem functions
* Program analysis

— Type-based optimization
* Declarative networking

— Aggregates, aggregate selections
— Incremental view maintenance
— Magic sets

Suggested Readings

* Survey papers:

* A Survey of Research on Deductive Database Systems, Ramakrishnan and Ullman,
Journal of Logic Programming, 1993

 What you always wanted to know about datalog (and never dared to ask), by Ceri,
Gottlob, and Tanca.

 An Amateur’s Expert’s Guide to Recursive Query Processing, Bancilhon and
Ramakrishnan, SIGMOD Record.

* Database Encyclopedia entry on “DATALOG”. Grigoris Karvounarakis.
* Textbooks:
* Foundations in Databases. Abiteboul, Hull, Vianu.

* Database Management Systems, Ramakrishnan and Gehkre. Chapter on “Deductive
Databases”.

 Acknowledgements:
* Jeff Ullman’s CIS 145 class lecture slides.

* Raghu Ramakrishnan and Johannes Gehrke’s lecture slides for Database
Management Systems textbook.

Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

e Refresher: Datalog 101

* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

* Conclusions

67

Datalog for Data Integration

 Motivation and problem setting

* Two basic approaches:
— virtual data integration

— materialized data exchange

 Schema mappings and Datalog with Skolem
functions

The Data Integration Problem

Have a collection of related data sources with

— different schemas

— different data models (relational, XML, plain text, ...)
— different attribute domains

— different capabilities / availability

Need to cobble them together and provide a
uniform interface

Want to keep track of what came from where

Focus here: solving problem of different schemas
(schema heterogeneity) for relational data

Mediator-Based Data Integration

Basic idea: use a global mediated schema to provide a uniform
query interface for the heterogeneous data sources .

- Global mediated schema

/
/ VN,

2 ?

/ / \ NS

Source schemas

Local data sources

70

Mediator-Based Virtual Data Integration

Global mediated schema

Declarative schema
mappings

Source schemas

Local data sources

71

Mediator-Based Virtual Data Integration

Query over
global schema

Global mediated schema

Declarative schema
mappings

Source schemas

Local data sources

72

Mediator-Based Virtual Data Integration

Query over

global schema
Declarative schema
Reformulated mappings
guery over
local schemas

Global mediated schema

Source schemas

Local data sources

73

Mediator-Based Virtual Data Integration

Query over
global schema

Global mediated schema

Query
results
Reformulated
guery over)///‘ \
local schemas

Declarative schema
mappings

Source schemas

Local data sources

74

Mediator-Based Virtual Data Integration

Query over Integrated query
global schema results

Global mediated schema

Query
results
Reformulated
guery over)///‘ \
local schemas

Declarative schema
mappings

Source schemas

Local data sources

75

Mediator-Based Virtual Data Integration

Query over Integrated query
global schema results

Query may be

recursive)
Global mediated schema

Query
results
Reformulated
guery over)///‘ \
local schemas

Declarative schema
mappings

Source schemas

Local data sources

76

Mediator-Based Virtual Data Integration

Query over Integrated query
global schema results

Query may be

recursive)
Global mediated schema

Query
results
Reformulated
guery over)///‘ \
localjschemas

Declarative schema
mappings

Source schemas

Reformulation
NEVAJE

(necessarily)
recursive

Local data sources

77

Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)

78

Materialized Data Exchange

Declarative schema

mappings .
PRINg Mappings may be
q recursive

Global mediated schema
(aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)

79

Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)

80

Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Declarative schema

Data exchange step _
mappings

(construct mediated DB)

Source schema(s)

Local data source(s)

81

Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

Local data source(s)

82

Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

Local data source(s)

83

Materialized Data Exchange

Declarative schema
mappings

,} Global mediated schema

(aka target schema)

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

Local data source(s)

84

Materialized Data Exchange

Declarative schema
mappings

M/ Global mediated schema

(aka target schema)

Materialized
mediated (target)
database

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

o
<«

Local data source(s)

85

Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Materialized
mediated (target)
database

Declarative schema
mappings

Source schema(s)

Local data source(s)

86

Materialized Data Exchange

Declarative schema

Query mappings
Materialized
mediated (target) ' Global mediated schema
database (aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)

87

Materialized Data Exchange

Declarative schema

Query mappings
Materialized
mediated (target) ' Global mediated schema
database (aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)

88

Materialized Data Exchange

Query Declarative schema
results

Query mappings

' Global mediated schema

(aka target schema)

Materialized
mediated (target)
database

o
<«

Declarative schema
mappings

Source schema(s)

Local data source(s)

89

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Peer E

90

Peer-to-Peer Data Integration
(Virtual or Materialized)

Recursion arises
naturally as peers add
mappings to each other

Peer B Peer D

91

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Peer E

92

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer A

Query —>

Peer B Peer D

Peer E

93

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer A T 5 Peer E
C_ - >

Query —>
Peer D

Peer C

Peer B

94

Peer-to-Peer Data Integration
(Virtual or Materialized)

‘F
Peer A l' Peer E
C_ - >

Query —>
Peer D

Peer C

Peer B

95

Peer-to-Peer Data Integration
(Virtual or Materialized)

‘F
Peer A l' Peer E
C_ - >

Query —>
Peer D

Peer C

Results €—

Peer B

96

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Peer E

97

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Query

Peer E

98

Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Query

99

Peer-to-Peer Data Integration .
(Virtual or Materialized) ly

=

Peer A

Peer B Peer D

100

Peer-to-Peer Data Integration Query Result
(Virtual or Materialized) 1y /

/

Peer A

Peer B Peer D

101

How to Specify Mappings?

Many flavors of mapping specifications: LAV, GAYV,
GLAV, P2P, “sound” versus “exact”, ...

Unifying formalism: integrity constraints

— different flavors of specifications correspond to different
classes of integrity constraints

We focus on mappings specified using tuple-
generating dependencies (a kind of integrity
constraint)

These capture (sound) LAV and GAV as special cases,
and much of GLAV and P2P as well

— and, close relationship with Datalog!

Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

* A tuple-generating dependency (tgd) is a first-order
constraint of the form

VX d(X) = 3Y U(XY)

where ¢ and Y are conjunctions of relational atoms

Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

* A tuple-generating dependency (tgd) is a first-order
constraint of the form

VX d(X) = 3Y U(XY)

where ¢ and U are conjunctions of relational atoms

For example:
vV Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

“The name and address of every employee should also
be recorded in the name and address tables, indexed
by ssn.”

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

CONSTRAINT: V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

CONSTRAINT: V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

LOCAL SOURCE

employee

17 Alice 1 Main St
23 Bob 16 EIm St

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1
employee name
17 Alice 1 Main St 050-66 Alice
23 Bob 16 EIm St 010-12 Bob
040-66 Carol
address

050-66 1 Main St
010-12 16 Elm St
040-66 7 11%" Ave

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr employee(Eid, Name, Addr) —
CONSTRAINT: ’ ’ ploy (! ’)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2
employee name name
17 Alice 1 Main St 050-66 Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob
040-66 Carol
address address
050-66 1 Main St 27 1 Main St
010-12 16 Elm St 42 16 Elm St

040-66 7 11%" Ave

What Answers Should Queries Return?

Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

CONSTRAINT:

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

LOCAL SOURCE

employee

17 Alice 1 Main St

23 Bob 16 EIm St

MEDIATED DB #1

name

050-66 Alice
010-12 Bob
040-66 Carol

address

050-66 1 Main St
010-12 16 Elm St
040-66 7 11%" Ave

MEDIATED DB #2 ...ETC...
name
27 Alice
42 Bob ot
address
27 1 Main St csee
42 16 Elm St

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 ...ETC...

employee name name

17 Alice 1 Main St 050-66 Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob

040-66 Carol

address

050-66 1 Main St

010-12 16 Elm St : DB should be
040-66 711t Ave materialized?

111

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 ...ETC...

employee name name

17 Alice 1 Main St 050-66 Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob

040-66 Carol

address

050-66 1 Main St

010-12 16 Elm St : DB should be
040-66 711t Ave materialized?

QUERY: d(Name) <- name(Ssn, Name), address(Ssn,).

112

What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 ...ETC...

employee name name

17 Alice 1 Main St 050-66 Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob

040-66 Carol

address

What answers :
050-66 1 Main St

010-12 16 Elm St : DB should be
040-66 711t Ave materialized?

should q return?

QUERY: d(Name) <- name(Ssn, Name), address(Ssn,).

113

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

MEDIATED DB #1 MEDIATED DB #2 ...ETC...
name name

050-66 Alice 27 Alice

010-12 Bob 42 Bob "

040-66 Carol

address address

050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St

040-66 7 11t Ave

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn,).

MEDIATED DB #1 MEDIATED DB #2 ...ETC...
name name

050-66 Alice 27 Alice

010-12 Bob 42 Bob "

040-66 Carol

address address

050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St

040-66 7 11t Ave

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE MEDIATED DB#1 MEDIATED DB #2 ...ETC...
employee name name
17 Alice 1 Main St 050-66 Alice 27 Alice
53 Bob 16 Elm St 010-12 Bob 42 Bob -t
040-66 Carol
QUERY: address address
q(Name) <- 050-66 1 Main St 27 1 Main St ces
name(Ssn, Name), 010-12 16 Elm St 42 16 Elm St
address(Ssn,). 040-66 7 11th Ave
q
Alice
Bob

Carol

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn,).

MEDIATED DB #1

MEDIATED DB #2 ...ETC...

name name
050-66 Alice 27 Alice
010-12 Bob 42 Bob "
040-66 Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice
Bob Bob

Carol

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn,).

MEDIATED DB #1

MEDIATED DB #2 ...ETC...

name name
050-66 Alice 27 Alice
010-12 Bob 42 Bob "
040-66 Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice e
Bob Bob

Carol

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn,).

MEDIATED DB #1

MEDIATED DB #2 ...ETC...

name name
050-66 Alice 27 Alice
010-12 Bob 42 Bob "
040-66 Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice e
Bob Bob

Carol

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn,).

MEDIATED DB #1 MEDIATED DB #2 ...ETC...
name name
050-66 Alice 27 Alice
010-12 Bob 42 Bob "
040-66 Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice e
Bob Bob

Carol

Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE MEDIATED DB#1 MEDIATED DB #2 ...ETC...
employee name hame
17 Alice 1 Main St 050-66 Alice 27 Alice
53 Bob 16 Elm St 010-12 Bob 42 Bob -t
040-66 Carol
QUERY: address address
q(Name) <- 050-66 1 Main St 27 1 Main St ces
name(Ssn, Name), 010-12 16 Elm St 42 16 Elm St
address(Ssn,). 040-66 7 11th Ave
certain answers to q q q
Alice — Alice Alice N cee
Bob Bob Bob

Carol

Computing the Certain Answers

A number of methods have been developed
— Bucket algorithm [Levy+ 1996]
— Minicon [Pottinger & Halevy 2000]

— Inverse rules method [Duschka & Genesereth 1997]

 We focus on the Datalog-based inverse rules
method

 Same method works for both virtual data
integration, and materialized data exchange

— Assuming constraints are given by tgds

Inverse Rules: Computing Certain Answers

with Datalog
e Basicidea: a tgd looks a lot like a Datalog rule (or rules)
tgd: V X, Y, Zfoo(X,Y) A bar(X,Z) — biz(Y,Z) A baz(Z)
Datalog biz(X,)Y,Z) <- foo(X,Y), bar(X,Z).
rules: baz(z) <- foo(X,Y), bar(X,Z).

Inverse Rules: Computing Certain Answers

with Datalog
e Basicidea: a tgd looks a lot like a Datalog rule (or rules)
tgd: V X, Y, Zfoo(X,Y) A bar(X,Z) — biz(Y,Z) A baz(Z)
Datalog biz(X,)Y,Z) <- foo(X,Y), bar(X,Z).
rules: baz(z) <- foo(X,Y), bar(X,Z).

e Sojustinterpret tgds as Datalog rules! (“Inverse” rules.) Can
use these to compute the certain answers.

Inverse Rules: Computing Certain Answers

with Datalog
e Basicidea: a tgd looks a lot like a Datalog rule (or rules)
tgd: V X, Y, Zfoo(X,Y) A bar(X,Z) — biz(Y,Z) A baz(Z)
Datalog biz(X,)Y,Z) <- foo(X,Y), bar(X,Z).
rules: baz(z) <- foo(X,Y), bar(X,Z).

e Sojustinterpret tgds as Datalog rules! (“Inverse” rules.) Can
use these to compute the certain answers.
— Why called “inverse” rules? In work on LAV data integration,

constraints written in the other direction, with sources thought of as
views over the (hypothetical) mediated database instance

Inverse Rules: Computing Certain Answers

with Datalog
e Basicidea: a tgd looks a lot like a Datalog rule (or rules)
tgd: V X, Y, Zfoo(X,Y) A bar(X,Z) — biz(Y,Z) A baz(Z)
Datalog biz(X,)Y,Z) <- foo(X,Y), bar(X,Z).
rules: baz(z) <- foo(X,Y), bar(X,Z).

e Sojustinterpret tgds as Datalog rules! (“Inverse” rules.) Can
use these to compute the certain answers.

— Why called “inverse” rules? In work on LAV data integration,
constraints written in the other direction, with sources thought of as
views over the (hypothetical) mediated database instance

The catch: what to do about existentially quantified variables...

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —
3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

ssh is a Skolem
function

131

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —
3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

* Unlike SQL nulls, can join on Skolem values:

Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

* Unlike SQL nulls, can join on Skolem values:

query _(Name,Addr) <-
name(Ssn,Name) ,
address(Ssn,Addr).

Semantics of Skolem Functions in Datalog

Semantics of Skolem Functions in Datalog

e Skolem functions interpreted “as themselves,” like constants
(Herbrand interpretations): not to be confused with user-
defined functions

— e.g., can think of interpretation of term
ssn(“Alice”, “1 Main St”)

as just the string (or null labeled by the string)
ssn(“Alice”, “1 Main St”)

Semantics of Skolem Functions in Datalog

e Skolem functions interpreted “as themselves,” like constants
(Herbrand interpretations): not to be confused with user-
defined functions

— e.g., can think of interpretation of term
ssn(“Alice”, “1 Main St”)
as just the string (or null labeled by the string)
ssn(“Alice”, “1 Main St”)
* Datalog programs with Skolem functions continue to have

minimal models, which can be computed via, e.g., bottom-up
seminaive evaluation

— Can show that the certain answers are precisely the query answers
that contain no Skolem terms. (We’ll revisit this shortly...)

Semantics of Skolem Functions in Datalog

Skolem functions interpreted “as themselves,” like constants
(Herbrand interpretations): not to be confused with user-
defined functions

— e.g., can think of interpretation of term
ssn(“Alice”, “1 Main St”)

as just the string (or null labeled by the string)
ssn(“Alice”, “1 Main St”)

Datalog programs with Skolem functions continue to have
minimal models, which can be computed via, e.g., bottom-up
seminaive evaluation

— Can show that the certain answers are precisely the query answers
that contain no Skolem terms. (We’ll revisit this shortly...)

But: the models may now be infinite!

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <-
employee(, X,).

manager(m(X)) <-
manager(X).

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <-
employee(, X,).
manager(m(X)) <-

m is a Skolem
function

141

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <- employee
employee(_, X, _) . 17 Alice 1 Main St

manager(m(X)) <-
manager(X).

23 Bob 16 Elm St

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <-

manager(m(X)) <-
manager(X).

employee

manager

employee(, X,).

17 Alice
23 Bob

1 Main St
16 Elm St

m(Alice)
m(Bob)
m(m(Alice))
m(m(Bob))

m(m(m(Alice)))

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager
; \ m(Alice)
manager(X) <- employee m(Bob)
employee(_, X,). 17 Alice 1 Main St P———
manager(m(X)) <- 23 Bob 16 Elm St e
manager(X). m(m(Bob))

m(m(m(Alice)))

* Option 1: let ‘er rip and see what happens! (Coral, LB)

Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager
; \ m(Alice)
manager(X) <- employee m(Bob)
employee(_, X,). 17 Alice 1 Main St P———
manager(m(X)) <- 23 Bob 16 Elm St e
manager(X). m(m(Bob))

m(m(m(Alice)))

* Option 1: let ‘er rip and see what happens! (Coral, LB)

* Option 2: use syntactic restrictions to ensure
termination...

Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows:

manager(X) <-
employee(, X,).

manager(m(X)) <-
manager(X).

Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: 4

(employee, 2)

manager(X) <-
employee(, X,). | (employee, 1) (employee, 3)

manager(m(X)) <-
manager(X).

(manager, 1)

147

Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: vertex for each
(employee, 2) (predicate, index)

manager|(X) <-

employee(| X,|). | (employee, 1)
manager(m(X)) <-
manager(X).

(employee, 3)

v
(manager, 1)

variable occurs as arg #2
to employee in body,

arg #1 to manager in
head

148

Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: vertex for each
(employee, 2) (predicate, index)

manager(X) <-
employee(, X,). | (employee, 1)

managerq_m(xj) <-

manageriX)i

(employee, 3)

v
(manager, 1) «_

variable occurs as arg #2
to employee in body,

arg #1 to manager in
head

variable occurs as arg #1 to
manager in body and as
argument to Skolem (hence
dashes) in arg #1 to manager
in head

Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: g

(employee, 2) (predicate, index)

manager(X) <-
employee(, X,). | (employee, 1)

manager(m(X)) <-
manager(X).

(employee, 3)

v
(manager, 1) «_

variable occurs as arg #2
to employee in body,

arg #1 to manager in

head
. variable occurs as arg #1 to
* If graph contains no cycle through manager in body and as
a dashed edge, then P is called argument to Skolem (hence
weakly acyclic dashes) in arg #1 to manager

in head

Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: vertex for each
(employee, 2) (predicate, index)

manager(X) <-
employee(, X,). | (employee, 1)

manager(m(X)) <-
manager(X).

(employee, 3)

3 Cycle through
(manager, 1) <, dashed edge!

variable occurs as arg #2 Not weakly
to employee in body, acyclic®
arg #1 to manager in
head
. variable occurs as arg #1 to
* |f graph contains no cycle through manager in body and as
a dashed edge, then P is called argument to Skolem (hence

weakly acyclic dashes) in arg #1 to manager
in head

Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

name(ssn(Name,Addr),Name)
<- emp(_,Name,Addr).
addr(ssn(Name,Addr),Addr)
<- emp(_,Name,Addr).

query _(Name,Addr)
<- name(Ssn,Name),
address(Ssn,Addr) ;
_(Addr,Name).

Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

name(ssn(Name,Addr),Name)
<- emp(_,Name,Addr).
addr(ssn(Name,Addr),Addr)
<- emp(_,Name,Addr).

query _(Name,Addr)
<- name(Ssn,Name),
address(Ssn,Addr) ;
_(Addr,Name).

(emp, 2)
(emp, 1)

(name, 1)

(name, 2)

(emp, 3)

(addr, 1)
(addr, 2)

154

Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

(emp, 2)
(emp, 1) A
name(ssn(Name,Addr),Name) /
<- emp(_,Name,Addr). // .
addr(ssn(Name,Addr),Addr) /:,/"‘
<- emp(_,Name,Addr). (nam: 1) i
query _(Name,Addr) (name, 2) (addr, 2)
<- name(Ssn,Name), / \
address(Ssn,Addr) ;
(Addr,Name). (L 1) — (,2)

"o |~

155

Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

(emp, 2)
(emp, 1) A
name(ssn(Name,Addr),Name) /
<- emp(_,Name,Addr). /" e
addr(ssn(Name,Addr),Addr) /:,/"‘
<- emp(_,Name,Addr). (nam:, 1) l
query _(Name,Addr) (name, 2)
<- name(Ssn,NarBRUEERS e[JViaq e /
address(Ssn, AN Ye [SRda[de]0f=4g
_(Addr,Name). IECEN =lo R=To[={CF (L 1)

weakly acyclic © ~_ _—

156

Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

(emp, 2)
(emp, 1) A
name(ssn(Name,Addr),Name) /
<- emp(_,Name,Addr). /" e
addr(ssn(Name,Addr),Addr) /:,/"‘
<- emp(_,Name,Addr). (nam'g, 1) i
query _(Name,Addr) (name, 2)
<- name(Ssn,NarBRUEERS e[JViaq e /
address(Ssn, AN Ye [SRda[de]0f=4g
_(Addr,Name). IECEN =lo R=To[={CF (L 1)

weakly acyclic © ~_ _—

Theorem: bottom-up evaluation of weakly acyclic Datalog

programs with Skolems terminates in # steps polynomial in size

of source database.

157

Once Computation Stops, What Do We Have?

Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

159

Once Computation Stops, What Do We Have?

V Eid, Name, Addr employee(Eid, Name, Addr) —

tgd: 3 Ssn name(Ssn, Name) A address(Ssn, Addr)

datalog rules: | name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).

address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE

employee

17 Alice 1 Main St
23 Bob 16 Elm St

160

Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #2
employee name
17 Alice 1 Main St ssn(A..) Alice
23 Bob 16 Elm St ssn(B..) Bob
address

ssn(A..) 1 Main St
ssn(B..) 16 Elm St

161

Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

employee name name
17 Alice 1 Main St 050-66 Alice ssn(A..) Alice
23 Bob 16 Elm St 010-12 Bob ssn(B..) Bob
040-66 Carol
address address

050-66 1 Main St ssn(A..) 1 Main St
010-12 16 Elm St ssn(B..) 16 Elm St
040-66 7 11t Ave

Once Computation Stops, What Do We Have?

tgd:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

datalog rules:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE

employee

17 Alice 1 Main St

23 Bob 16 Elm St

MEDIATED DB #1

MEDIATED DB #2

MEDIATED DB #3

name name name
050-66 Alice ssn(A..) Alice 27 Alice
010-12 Bob ssn(B..) Bob 42 Bob -
040-66 Carol
address address address
050-66 1 Main St ssn(A..) 1 Main St 27 1 Main St cee
010-12 16 EIm St ssn(B..) 16 Elm St 42 16 Elm St

040-66 7 11t Ave

Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 MEDIATED DB #3

employee name name name
17 Alice 1 Main St 050-66 Alice SSI’)(A..) Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob ssn(B..) Bob 42 Bob
040-66 Carol
address address address
050-66 1 Main St ssn(A..) 1 Main St 27 1 Main St cee

010-12 16 EIm St ssn(B..) 16 Elm St 42 16 Elm St
040-66 7 11t Ave

Among all the mediated DB instances satisfying the constraints (solutions), #2
above is universal: can be homomorphically embedded in any other solution.

Once Computation Stops, What Do We Have?

V Eid, Name, Addr employee(Eid, Name, Addr) —

tgd:
& 1 Ssn name(Ssn, Name) A address(Ssn, Addr)

datalog rules: name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 MEDIATED DB #3

employee ﬂ%mk—\ name name
17 Alice 1 Main St [50- Alice] [ssn‘(A..) AIice] 27 Alice

23 Bob 16 Elm St 010-12| Bob ssn'(B..) Bob 42 Bob
040 5—carob———
address address address
050-66 | 1 Main St ssn(A..)| 1 Main St 27 1 Main St e
010-12] 16 EIm St ssn(B..)] 16 Elm St 42 16 Elm St

040-6 th

Among all the mediated DB instances satisfying the constraints (solutions), #2
above is universal: can be homomorphically embedded in any other solution. .-

Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 MEDIATED DB #3
employee name name
17 Alice 1 Main St 050-66 Alice
23 Bob 16 Elm St 010-12 Bob
040-66 Carol
address address address
050-66 1MainSt [(Ssn(A.)) 1 Main St 27
010-12 16 EIm St ssn(B..)] 16 Elm St 42| 16 Elm St

040-66 7 11t Ave

1Main5t] cee

Among all the mediated DB instances satisfying the constraints (solutions), #2
above is universal: can be homomorphically embedded in any other solution. ..

Universal Solutions Are Just What is
Needed to Compute the Certain Answers

Universal Solutions Are Just What is
Needed to Compute the Certain Answers

Theorem: can compute certain answers to Datalog program g
over target/mediated schema by:

(1) evaluating g on materialized mediated DB (computed
using inverse rules); then

(2) crossing out rows containing Skolem terms.

Universal Solutions Are Just What is
Needed to Compute the Certain Answers

Theorem: can compute certain answers to Datalog program g
over target/mediated schema by:

(1) evaluating g on materialized mediated DB (computed
using inverse rules); then

(2) crossing out rows containing Skolem terms.

Proof (crux): use universality of materialized DB.

Notes on Skolem Functions in Datalog

* Notion of weak acyclicity introduced by Deutsch and Popa,
as a way to ensure termination of the chase procedure for
logical dependencies (but applies to Datalog too).

* Crazy idea: what if we allow arbitrary use of Skolems, and
forget about computing complete output idb’s bottom-up,
but only partially enumerate their contents, on demand,
using top-down evaluation?

— And, while we’re at it, allow unsafe rules too?

* Thisis actually a beautiful idea: it’s called logic
programming

— Skolem functions (aka “functor terms”) are how you build data
structures like lists, trees, etc. in Prolog

— Resulting language is Turing-complete

Summary: Datalog for
Data Integration and Exchange

 Datalog serves as very nice language for schema
mappings, as needed in data integration, provided
we extend it with Skolem functions

— Can use Datalog to compute certain answers

— Fancier kinds of schema mappings than tgds require
further language extensions; e.g., Datalog +/- [cali et al 09]

e Can also extend Datalog to track various kinds of
data provenance, very useful in data integration

— Using semiring-based framework [Green+ 07]

Some Datalog-Based Data
Integration/Exchange Systems

Information Manifold [Levy+ 96] — ATeT
— Virtual approach
— No recursion

—— Bell Laboratories

{

Clio [miller+ 01]

— Materialized approach

— Skolem terms, no recursion, rich data model
— Ships as part of IBM WebSphere

Orchestra CDSS [Ives+ 05]

— Materialized approach

— Skolem terms, recursion, provenance
updates

172

Datalog for Data Integration:
Some Open Issues

* Materialized data exchange: renewed need for
efficient incremental view maintenance algorithms

— Source databases are dynamic entities, need to propagate
changes

— Classical algorithm DRed [Gupta+ 93] often performs very
badly; newer provenance-based algorithms [Green+ 07, Liu+
08] faster but incur space overhead; can we do better?

* Termination for Datalog with Skolems

— Improvements on weak ayclicity for chase termination,
translate to Datalog; more permissive conditions always
useful!

— |Is termination even decidable? (Undecidable if we allow
Skolems and unsafe rules, of course.)

Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog
* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking
e Conclusion

Program Analysis

° Whatis it?

* Why in Datalog?

* How does it work?

Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

* How does it work?

Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion
* How does it work?

Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion

* How does it work?

— Really welll An order-of-magnitude faster than hand-
tuned, Java tools

Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion

* How does it work?

— Really welll An order-of-magnitude faster than hand-
tuned, Java tools

— Datalog optimizations are crucial in achieving
performance

WHAT IS PROGRAM ANALYSIS

Understanding Program Behavior

animal.eat((Food) thing);

181

Understanding Program Behavior

(without actually running the program)

animal.eat((Food) thing);

Understanding Program Behavior

testing
(without actually runrimg the program)

animal.eat((Food) thing);

Understanding Program Behavior

testing
(without actually runrimg the program)

what is animal?

\} \
animal.eat((Food) thing);

- J

184

Understanding Program Behavior

testing
(without actually runrimg the program)

what is animal?

2\ |
points-to animal.eat((Food) thing);

analyses

- J

185

Understanding Program Behavior

testing
(without actually rune#Tg the program)

what is animal?

2\ |
points-to animal.eat((Food) thing);

analyses

- J

through what method

does it eat?

186

Understanding Program Behavior

testing
(without actually rune#Tg the program)

(
|

points-to animal.eat((Food) thing);

analyses
_ \§

what is thing?

through what method

does it eat?

187

Optimizations

what is thing?

4

animal.eat((Food) thing);

through what method

does it eat?

188

Optimizations

it’s a Dog] what is thing?

_

-
\}an'ma.eTt((Food) thing);

through what method

does it eat?

189

Optimizations

it’s a Dog] what is thing?
\}
animal.eat((Food) thing);
—1
(class Dog {)

void eat(Food f) { ... }

}

\.

190

Optimizations

[it’s a Dog] what is thing?

\F}an'ma.eit((Food) thing);

virtual call resolution

(class Dog {
void eat(Food f) { ... }

}

\.

191

Optimizations

{ it’s a Dog J { it’s Chocolate J

\C}an'ma.eit((Food) thing);

virtual call resolution

(class Dog {
void eat(Food f) { ... }

k} J

192

Optimizations

{ it’s a Dog J { it’s Chocolate J

\E}an'ma.eit(-(-%od-)-th'ng);

virtual call resolution

(class Dog {
void eat(Food f) { ... }

k} J

193

Optimizations

{ it’s a Dog J { it’s Chocolate J

animal.eat(Food}-thing);

virtual call resolution type erasure

(class Dog {
void eat(Food f) { ... }

k} J

194

Bug Finding

it’s a Dog J { it’s Chocolate J
\}
animal.eat(-Feod)-thing);
p—
(class Dog {)

void eat(Food f) { ... }

k} J

195

Bug Finding

it’s a Dog J { it’s Chocolate J
'
animal.eat(-Feod)-thing);
_ [Dog + Chocolate =
| BUG
()
class Dog {

void eat(Food f) { ... }

k} J

196

Bug Finding

{ it’s a Dog J { it’s Chocolate J

animal.eat(Food}-thing);

ChokeException neverw [Dog + Chocolate =
caught = BUG J L BUG
()
class Dog {

void eat(Food f) { ... }

k} J

197

Precise, Fast Program Analysis Is Hard

* necessarily an approximation

Precise, Fast Program Analysis Is Hard

* necessarily an approximation
— because Alan Turing said so

199

Precise, Fast Program Analysis Is Hard

* necessarily an approximation
— because Alan Turing said so

* alot of possible execution paths to analyze

Precise, Fast Program Analysis Is Hard

* necessarily an approximation
— because Alan Turing said so

* alot of possible execution paths to analyze

— 10%* acyclic paths in an average Java program,
Whaley et al., ‘05

WHY PROGRAM ANALYSIS IN
DATALOG?

WHY PROGRAM ANALYSISIN A
DECLARATIVE LANGUAGE?

WHY PROGRAM ANALYSISIN A
DECLARATIVE LANGUAGE?

WHY DATALOG?

Prog

ram Analysis: A Complex Doma

Results 1 - 20 of 21,476 Sort by |relevance v in |expanded fom ¥
Resultpage:1 2 3 4 5 6 7 8 9 10 next =>>

Pointer analysis: haven't we solved this problem yet?

Michael Hind

June 2001 PASTE '01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering

P * ACM % Request Permissions
Full text aVEIIED\e:ﬁLﬂf (199.83 KB)

Bibliometrics: Downloads (6 Weeks): 25, Downloads (12 Months): 191, Downloads (Overall): 1523, Citation Count: 100

During the past twenty-one years, over seventy-five papers and nine Ph.D. theses have been published on
pointer analysis. Given the tomes of work on this topic one may wonder, “"Haven'trdqguo; we solved this
problem yet?" With input from many researchers ...

A schema for interprocedural modification side-effect analysis with pointer aliasing
Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, Rita Altucher

March 2001 Transactions on Programming Languages and Systems (TOPLAS) , volume 23 Issue 2
P T ACM % Request Permissions
Full text availab\e:ﬂm (1.72 MB)

Bibliometrics: Downloads (6 Weeks): 5, Downloads (12 Months): 59, Downloads (Overall): 675, Citation Count: 31

The first interprocedural modification side-effects analysis for C (MODC) that obtains better than worst-case
precision on programs with general-purpose pointer usage is presented with empirical results. The analysis

Semi-sparse flow-sensitive pointer analysis

Ben Hardekopf, Calvin Lin

January 2009 POPL "09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages

P : ACM % Request Permissions

Full text available: | Pdf (246.09 KB)

Bibliometrics: Downloads (6 Weeks): 12, Downloads (12 Months): 108, Downloads (Overall): 348, Citation Count: 6

Pointer analysis is a prerequisite for many program analyses, and the effectiveness of these analyses
depends on the precision of the pointer information they receive. Two major axes of pointer analysis
precision are flow-sensitivity and context-sensitivity, .

Keywords: alias analysis, pointer analysis

Also published in:
January 2009 SIGPLAN Notices Volume 44 Issue 1

Efficient field-sensitive pointer analysis of C
David . Pearce, Paul H.J. Kelly, Chris Hankin

November 2007 Transactions on Programming Languages and Systems (TOPLAS) , Volume 30 Issue 1

205

Prog

ram Analysis: A Complex Doma

Results 1 - 20

Sort by | relevance ¥ | in |expanded form ¥

Resultpage:1 2 3 4 5 6 7 8 9 10 next =>>

Pointer analysis: haven't we solved this problem yet?

Michael Hind

June 2001 PASTE '01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering

P * ACM % Request Permissions
Full text aVEIIED\e:ﬁLﬂf (199.83 KB)

Bibliometrics: Downloads (6 Weeks): 25, Downloads (12 Months): 191, Downloads (Overall): 1523, Citation Count: 100

During the past twenty-one years, over seventy-five papers and nine Ph.D. theses have been published on
pointer analysis. Given the tomes of work on this topic one may wonder, “"Haven'trdqguo; we solved this
problem yet?" With input from many researchers ...

A schema for interprocedural modification side-effect analysis with pointer aliasing
Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, Rita Altucher

March 2001 Transactions on Programming Languages and Systems (TOPLAS) , volume 23 Issue 2
P T ACM % Request Permissions
Full text availab\e:ﬂm (1.72 MB)

Bibliometrics: Downloads (6 Weeks): 5, Downloads (12 Months): 59, Downloads (Overall): 675, Citation Count: 31

The first interprocedural modification side-effects analysis for C (MODC) that obtains better than worst-case
precision on programs with general-purpose pointer usage is presented with empirical results. The analysis

Semi-sparse flow-sensitive pointer analysis

Ben Hardekopf, Calvin Lin

January 2009 POPL "09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages

P : ACM % Request Permissions

Full text available: | Pdf (246.09 KB)

Bibliometrics: Downloads (6 Weeks): 12, Downloads (12 Months): 108, Downloads (Overall): 348, Citation Count: 6

Pointer analysis is a prerequisite for many program analyses, and the effectiveness of these analyses
depends on the precision of the pointer information they receive. Two major axes of pointer analysis
precision are flow-sensitivity and context-sensitivity, .

Keywords: alias analysis, pointer analysis

Also published in:
January 2009 SIGPLAN Notices Volume 44 Issue 1

Efficient field-sensitive pointer analysis of C
David 1. Pearce, Paul H.1. Kelly, Chris Hankin

November 2007 Transactions on Programming Languages and Systems (TOPLAS) , Volume 30 Issue 1

206

rogram Ana

flow-sensitive
inclusion-based
unification-based
k-cfa
object-sensitive
context-sensitive
field-based
field-sensitive
BDDs

heap-sensitive

lysis: A Complex Doma

Sort by | relevance ¥ | in |expanded form ¥

Results 1 - 20-

1 Pointer analysis: haven't we solved this problem yet?
@ Michael Hind
June 2001 PASTE '01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering

Publisher: ACM ¥ Request Permissions
Full text avallab\e:ﬁLdf (199.83 KB)

Bibliometrics: Downloads (6 Weeks): 25, Downloads (12 Months): 191, Downloads (Overall): 1523, Citation Count: 100

During the past twenty-one years, over seventy-five papers and nine Ph.D. theses have been published on
pointer analysis. Given the tomes of work on this topic one may wonder, “"Haven'trdqguo; we solved this
problem yet?" With input from many researchers ...

2 A schema for interprocedural modification side-effect analysis with pointer aliasing
Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean Zhang, Rita Altucher

March 2001 Transactions on Programming Languages and Systems (TOPLAS) , volume 23 Issue 2
Publisher: ACM “e Request Permissions
Full text availab\e:ﬂp_dr (1.72 MB)

Bibliometrics: Downloads (6 Weeks): 5, Downloads (12 Months): 59, Downloads (Overall): 675, Citation Count: 31

The first interprocedural modification side-effects analysis for C (MODC) that obtains better than worst-case
precision on programs with general-purpose pointer usage is presented with empirical results. The analysis

January 2008 POPL '09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages

Publisher: ACM ¥ Request Permissions
Full text availab\e:ﬁLdr (246.09 KB)

Bibliometrics: Downloads (6 Weeks): 12, Downloads (12 Months): 108, Downloads (Overall): 348, Citation Count: 6

Pointer analysis is a prerequisite for man
depends on the precision of #& pointer informatid
precision are flow-sensitivigy and context-sensitivity

program analyses, and the effectiveness of these analyses
Rey receive. Two major axes of pointer analysis

Keywords: alias analysis, pointer analysis

Also published in:
January 2009 SIGPLAN Notices Volume 44 Issue 1

field-sensitive ter analysis of C
@ Pearce, Paul H , Chris Hankin
November 2007 Transactions on Programming Languages and Systems (TOPLAS) , Volume 30 Issue 1

Resultpage:1 2 3 4 5 6 7 8 9 10 next =>>

207

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)
G: an interprocedural control flow graph (ICFG);
begin
/* 1. only performed implicitly */
1. initialize may_hold with a default value NO;
create an empty worklist;
2. for each node N in G
2.1 if N is a pointer assignment
aliases_intro_by_assignment(N,Y ES);
2.2 else if N is a call node
aliases_intro_by_call(N,YES);
3. while worklist is not empty
3.1 remove (N, AA, PA) from worklist,;
3.2 if N is a call node
alias.at_call_implies(N, AA, PA,Y ES);
3.3 else if N is an exit node
alias_at_exit_implies(N, AA, PA,YES);
3.4 else for each M € successor(N)
3.4.1 if M is a pointer assignment
alias_implies_thru_assign(M,
AA,PA,YES);
3.4.2 else
make.true(M, AA, PA);
end

Figure 1: Exhaustive algorithm for pointer aliasing

208

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

procedure incremental_aliasing(G,N)
G: an ICFG;
N: a statement to be changed,;
begin
1. falsify the affected aliases, which are either generated
at N, or depend on other affected aliases.
2. update G to reflect the change to statement N;
3. worklist=reintroduce_aliases(G);
4. reiterate_worklist(worklist,Y ES);
end

Figure 2: Incremental aliasing algorithm for handling
addition /deletion of a statement

3.4 else for each M € successor(N)
3.4.1 if M is a pointer assignment
alias_implies_thru_assign(M,
AA,PA,YES);
3.4.2 else
make.true(M, AA, PA);

beg

end

Figure 1: Exhaustive algorithm for pointer aliasing

209

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */
procedure naive.falsification(N)

a statement to be changed;

if N is marked TOUCHED, return;
/* Falsify aliases at the changed node N */
set all may_hold(N, AA, PA) to NO;
mark N TOUCHED,
if N is an exit node
for each call node C which calls the function
containing V;
naive_falsi fication(corresponding return of C);
else if /V is a call node
5.1 disable_aliases(entry of the function called by N);
5.2 naive_falsification{corresponding return of N);
else for each M € successor(N)
naive_falsification(M);

procedure disable_aliases(E)

N:
.| begi
begi 3.
1
2.
3.
2 4
3
4
end| 5
Figu
addi| .
S end
E:
begin
1.
end 2,
3.
Figure 1 4.
end

entry of the function whose aliases will be disabled;

if F is marked INFLUENCED, return;

set all may_hold(FE, AA, AA) to FALSIFIED,

mark E INFLUENCED,;

for each call node C in function F;
disable_aliases(entry of the function called by C);

Figure 3: Naive falsification

nerated

ndling

210

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */

proced
N: 3
.| begin
begil "
1 /
2. si
3.
20 4 if
3
4
end 5 o
Figu :
addl 6. ¢
3.4 end
proced
E: ¢
begin
1. if
end 2. s
3. n
Figure 1 4. f
end

/* Alias reintroduction corresponding to step 3 in Figure 2 */

procedure reintroduce_aliases(G)
G: an ICFG;
return
a worklist for keeping the reintroduced aliases;
begin
1. create an empty worklist;
/* Inter-procedural propagation */
2. for each call node C in G
2.1 if C is TOUCHED or its called function is
INFLUENCED,
2.1.1 aliases.intro-by-call(C,Y ES);
2.1.2 repropagate.aliases(C, worklist);
/* Intra-procedural propagation */
3. for each TOUCHED node N in G
3.1 if N is-a pointer assignment statement,
aliases_intro_by_assignment(M Y ES);
3.2 for each M € predecessor(N)
repropagate_aliases(M worklist);
4, return-worklist;
end

procedure repropagate_aliases(N ,worklist)
N: a program node in the ICFG;

worklist: a worklist for keeping the reintroduced aliases;

begin
for each mavy_hold{N. AA. PAY=YES

211

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */
prOKﬁc: /* Alias reintroduction corresponding to step 3 in Figure 2 */
begi begili. ng /* Reiteration corresponding to step 4 in Figure 2 */
A L. }’ retur Procedure reiterate worklist(worklist,value)
2.8l & worklist: a worklist for keeping the aliases to process;
) 3. nf begin value: value that will be given to (N,AA,PA);
5 4. if 1. bEgin
4 5 1. while worklist is not empty do
] 1.1 remove (N,AA,PA) from worklist;
: i 1.2 if N is a call node
Figy 5 aliases_propagated_at_call(N, AA, PA,
addi| 6. e value);
34| 4 3. 1.3 else if NV is an exit node
alias.at_exit_implies(N, AA, PA,value);
proced 1.4 else for each M € successor(N)
beg‘?; y 1.4.1 if M is a pointer assignment
! alias_implies_thru_assign(M,
end 2. s end. AA, PA, value);
8. 0 1.4.2 else if value is YES
Figure1ly 4 f procg make_true(M, AA, PA);
end N 1.4.3 else /* value is FALSIFIED */
begt;: make_false(M,AA, PA); 212
fol end

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */
PI‘O;;?C: /* Alias reintroduction corresponding to step 3 in Figure 2 */
begi PeED P““g /* Reiteration corresponding to step 4 in Figure 2 */
g 1. if) proceq procedure aliases.propagated.at.call(N,AA, PAvalue)
1 /| retur N: a call node;
9. s a won AA: reaching alias at the entry of the function contain- | PrOCESS;
3. n| begin 1 ing N; .
2 4 il e.gll .l:ai PA. pU&alblC alias at J’V, h
3 ' : bEgln value: value to set the propagated aliases;
1. 1 begin
4 2. ’ 1. let E be the entry of the function called by N, and
] R the corresponding return node of N;
end| 5 .]
: 5 /* aliasing effect propagated to the entry node £ */
Figy 5 2. for cach AA' in bind(N, E, PA) f,PA,
addi 8. /il /* bind uses parameter bindings to map PA to the
' entry E of the called function */
3.4 3] 2.1 if (B, AA’, AA") has not been seen before
end ’ make. true(E, AA’, AA"); Uﬂiﬂ&)'
2.2 else if rnay hold(E,AA', AA") # value t 1
proced| } 2.2.1 set may-hold(E,AA", AA") to value;
E: 4 /* Recursively cnable {or disablec) all the bt
begin reaching aliases implied at the entry of s
1. if other functions reachable from E */ 33-;'911(M s
' 4 2.2.2 inter_proc.propagate(E, AA', value);
end 2.8 and
3. 1 /¥ aliasing effect propagated to the return node R */
Figure 1; 4. f — 3. (Same as what is done for propagating aliases to the ':‘1)'
return node in procedure alias_at_call smplies, axcept]
end N it will make_true or make. false the implied aliases, TED * ;"
Ut depending on what value is) I
begir end PA); 213
fo end EYILS TR O\F PPy AN BN L AN 5 QA AT LA A A R T W GNP W i, URERe

Algorithms in 10-page Contf.

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */

proced
N: 4
.| begin
begil
1 /
2. s
3. n
20 4 if
3
4
end 5 o
Figu :
addl 6. ¢
3.4 end
proced
E: ¢
begin
1. i
end 2.
3. o
Figure 1: 4. f
end

/* Alias reintroduction corrg

1s - =1 .n.w-!l

procq
G
retur
a
begir
1.

2,

end
procs
U

begin
fo

/* Reiteration co

procec
won
vali

begin
1.

il

end

procedure al

N: acally

AA: reach|

ing N

FPA. puossi

value: val
begin

1. let E' Y

R the d

/* aliag
2. for cac]
/* bind
entr

2.1 if

2.2 el
2.9

2.4

/* aliag
3. {Same
return
it will y
depend

D SCANP OIS 7 |

/¥ Alias falsification for deleting a peinter assignment
corresponding to step 1 in Figure 2 */
procedure falsify.for.deleting assign{N)
N: a pointer assignment to be deleted;
begin
1. create an empty worklist;
/* Falsify the aliases introduced at statement N. */
2. aliases_intro by.assignment(N, FALSIFIED);
3. for each M € predecessor(N)
for each may_hole(M,AA, PA = {01,02)) = YES
if the left-hand side of N is a prefix®of either
01 or 02, or both
aliasamplies_thru.assign(N, AA, PA,
FALSIFIED);
4. reiterate_worklist(worklist, FALSIFIED);
end

procedure falsify.for.deleting_call(N)
N: a function call to be deleted;
begin
1. create an empty worklist;
/* Falsify the aliases introduced by the call */
2. let £ and X be the corresponding entry node and
exit node of the function called by N respectively;
3. aliases_propagated.at_call(N,9’,0, FALSIFIED);
4. for each may.hold(N,AA, PA) = YES
J* If the called function may generate new aliases
from the reaching aliases implied by PA */
if 3 AA’ € bind(N, E, PA), such that some
PA' (# AA’) is generated from AA™ at exit X

Papers

214

Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

- =1 .n.w-!l

/¥ Alias falsification for deleting a peinter assignment

proced
N:a
begin
1. crg
/#
2 al:
3. for

4. red
end

proceduy]

N:a
begin

1. crg

/t

2.1

N:

M:

begin
| 7

S o o

7
end

c°“"‘*“| procedure update_for_adding_assign(N,M)
u

a pointer assignment to be added;
the statement after which statement N is added;

make N as a successor of M, and leave NV without
any Successors;
create an empty worklist;
aliases_intro by assignment(N,Y ES);
repropagate_aliases(M, worklist);
reiterate_worklist{worklist,Y ES);
for each may_hold(M, AA, PA = (01,02)) = YES,
and may-hold(N,AA, PA) = NO

add (M, AA, PA) to worklist;
reiterate_worklist(worklist, FALSIFIED),

®1Figure 8: Procedure for falsifying aliases that are po-

3. aliftentially affected by adding a pointer assignment

4. fo

J* If the called function may generate new aliases

from

the reaching aliases implied by PA */ 215

if 3 AA’ € bind(N, E, PA), such that some

beg| PTO /* Alias falsification corresponding to step 1 in Figure 2 */
pro;fc: /* Alias reintroduction corrg =
begi PeEIR P““g /* Reiteration co
eg 1. if ; proceq procedure a
1 / retur N: acall §
9 gl a o AA: reach
5 3. n| begin vali ry Eif:
3 41 1| pegin value: val
1. 1 begin
4 2. ‘ 1. let E }
aend] R the
Fi & g] /* aliag
lgu 5 2. for cac
addi| 6. e P Bene
entr
34| 4 3] 2.1 if
2.2 els
proced] 2.1
E: 6
begin
1. if 4. 21
end g i SGd
: /¥ aliag
Figure 1{ % f proc 3. (Same
return
end N it will y
(il depend
begir end
fol end |

PA’ (#

AAY is generated from AA” at exit X

Algorithms in 10-page Conf. Papers

variaton points
unclear

1. if
1 /
2. si
3.
20 4 if
3
4
end| 5 ¢
Figu :
addl 6. ¢
3.4 end
proced
E: 6
begin
1. i
end 2. s
3. n
Figure 1: 4. f
end

end

proce

(THI

begin
fo

/* Reiteration cg

ng to step 1 in Figure 2 */

- =1 .n.w-!l

OI1 COTIT{]

proced
wor
vali

begin
1.

end

il

procedure a
N: acally
AA: reach|

ing N

PA. possi

value: val
begin

1. let E' Y

R the d

/* aliad
2. for cac]
/* bind
entr

2.1 if

2.2 ely
2.9

2.1

/* aliag
3. (Same
rcturn
it will y
depend

D SCANP OIS 7 |

/¥ Alias falsification for deleting a peinter assignment

corr

procedu

N:a
begin

1. crg

/#

2. als

3. for

4. red
end

proceduy]
N:a
begin
1. crq
/t
2

. le
3. ::]
4. fo

procedure update_for_adding_assign(N,M)

N: a pointer assignment to be added;

M: the statement after which statement N is added;
begin

1. make N as a successor of M, and leave N without
any SUCCessors;
create an empty worklist;
aliases_intro by assignment(N,Y ES);
repropagate_aliases(M, worklist);
reiterate_worklist{worklist,Y ES);
for each may_hold(M, AA, PA = (01,02)) = YES,
and may-hold(N,AA, PA) = NO

add (M, AA, PA) to worklist;
reiterate_worklist(worklist, FALSIFIED),

S o o

7
end

Figure 8: Procedure for falsifying aliases that are po-
tentially affected by adding a pointer assignment

J* If the called function may generate new aliases
from the reaching aliases implied by PA */

if 3 AA’ € bind(N, E, PA), such that some

PA' (# AA" is generated from AA" at exit X

216

Algorithms in 10-page Conf. Papers

variaton points
ng to step 1 in Figure 2 */
unclear - —
‘ /* Alias falsification for deleting a pointer assignment
C:e’; procedure update_for_adding_assign(N,M)
E procedu i : - ;
eve ry variaton N: o N: a pointer assignment to be added; |
: begin M: the statement after which statement N is added;
new algorithm JENEEALL
g alue: 2, ﬁ,,- 1. make N as a successor of M, and leave N without
4 2, 118" 5d 3 fol any SUCCessors;
end| 1 R the d 2. create an empty worklist;
Fi ' §] /* aliad 3. aliases_intro_by.assignment(N,Y ES);
lgl.l 5 o 4. repropagate.aliases(M, worklist);
addi| . e / zl't'f il 5 reiterate_worklist{worklist,Y ES);
34| 4 3] 2.1 if| end 6. for each may hold(M, AA, PA = (01,02)) = YES,
iy &l and may-hold(N,AA, PA) = NO
proced] 24 pro;t:eciw add (M, AA, PA) to worklist;
B ¢ begin 7. reiterate_worklist(worklist, FALSIFIED);
begln‘ 1 e d
1. if 4, 2 /‘ en
end 2. 8 ond 1 2 lefp - ;
3. o aind eqPigure 8: Procedure for falsifying aliases that are po-
Figure 1{ 4 1 1 oce 3. {(Same | 3. aliitentially affected by adding a pointer assignment
return 4. fo
end N it will g /* 1f the ealled function may genetate new aliases
o depend from the reaching aliases implied by PA */ 217
begin end if 3 AA’ € bind(N, E, PA), such that some
folend | | Al AT o b aritad B A A ok e

Algorithms in 10-page Conf. Papers

variaton points
unclear

ng to step 1 in Figure 2 */

- =1 .n.w-.!l

Il 2 /* Alias falsification for delating a pointer assignment
22:3 i:’ef;ﬂ procedure update.for_adding_assign(N,M)
every va riaton acall | N.a| Vi apointer assignment to be added;
| h % m begin M- the statement after which statement N is added;
new algorithm A posi| 1 T beEgIN
g alue: valf ﬁ,,- 1. make N as a successor of M, and leave N without
let E Y 3. fol an:y" SHUCCessors, E
R the g 2. create an empty worklist;
corre Ct NESsS /* aliad 3. aliases_intro_by_assignment(N,Y ES);
for ond 4. repropagate.aliases(M, worklist);
U nC|ea r / 2;':‘: 4 rel O reiterateworklist(worklist,Y ES);
34|, 4 3] 5 3 P 6. for each may_hold(M, AA, PA = (01,02)) = YES,
g5 gl and may-hold(N,AA, PA) = NO
proced] 24 pmﬁiw add (M, AA, PA) to worklist;
. E: ¢ begin 7. reiterate_worklist(worklist, FALSIFIEDY);
egll.n 1 4 2.1 I 7? end
d 2.) N : Gl g ;
en 3, i end /* aliad Z lpigure 8: Procedure for falsifying aliases that are po-
Figure1{ 4 f —_— 3. (seme | 3. aliltentially affected by adding a pointer assignment
rcturn 4. fo
end N it will y /* 1f the called function may generate new aliases
1?" depend from the reaching aliases implied by PA */ 218
begin end if 3 AA’ € bind(N, E, PA), such that some
fol end | PA' (# AA") is generated from AA" at exit X

Algorithms in 10-page Conf. Papers

variaton points

g to step 1 in Figure 2 */

unclear Pw——
‘ ot /* Alias falsification for delating a pointer assignment
: 1::11 co c°""“3| procedure update.for_adding_assign(N,M)
o ure af procedu . r ;
eve ry VvVa naton cacall] N:a N: a pointer assignment to be added;
Lt m begin M- the statement after which statement N is added;
new algorithm ZENEEALL
g alue: valy ﬁu 1. make N as a successor of M, and leave N without
. let E X 3. fol an:y" SHUCCessors,
R the ¢ 2. create an empty worklist;
COrre Ct NESsS /* aliad 3. aliases_intro_by_assignment(N,Y ES);
for ond 4. repropagate.aliases(M, worklist);
U nC|ea r / :;':f 4 rel O reiterateworklist(worklist,Y ES);
; 3 S P 6. for each may_hold(M, AA, PA = (01,02)) = YES,
. bl - 5o Gl and may-hold(N,AA, PA) = NO
INCOM pa rapie In 4 pmﬁ‘i‘" add (M, AA, PA) to worklist;
. . begin 7. reiterate_worklist(worklist, FALSIFIEDY);
precisio rdend
24 *
d 2. ’)
- 3, 4 °nd P Z ltpigure 8: Procedure for falsifying aliases that are po-
Figure1{ 4 f P 3. (Same 2. :li tentially affected by adding a pointer assignment
return . fo
end N it will y /* 1f the called function may generate new aliases
w{ depend from the reaching aliases implied by PA */ 219
begin end if 3 AA’ € bind(N, E, PA), such that some
folend | | PA b AA in-senerated fiom A A ot exlt X

Algorithms in 10-page Conf. Papers

variaton points

g to step 1 in Figure 2 */
unclear — 1
‘ A /* Alias falsification for delating a pointer assignment
: tﬁfmcz ‘—:’ef; procedure update.for_adding_assign(N,M)
every va riaton V. a call P sl N: a pointer assignment to be added; |
I ! h & m begin M: the statement after which statement N is added;
new algorithm A pusi] 1 7 begin
g alue: valy ﬁu 1. make N as a successor of M, and leave N without
. let E X 3. for an:f SUECESSOI'S;
R the ¢ 2. create an empty worklist;
COrIre Ct NESS /* ali 3. aliases_intro_by_assignment(N,Y ES);
< Mo e_a 4. repropagate.aliases(M, worklist);
U nC|ea r / z:m B 5. reiterate_worklist{worklist,Y ES);
; 3 S P 6. for each may_hold(M, AA, PA = (01,02)) = YES,
. bl . s al | and may-hold(N,AA, PA) = P{O
incomparable in 5 procedy add (M, AA, PA) to worklist
. . begin 7. reiterate_worklist(worklist, FALSIFIEDY);
precision {edond
2

/* alia Z lpigure 8: Procedure for falsifying aliases that are po-
inco m pa ra b I e in . (Same | 3. aliitentially affected by adding a pointer assignment

return 4. fo

it will § J* 1f the called function may generate new aliases

performance depend from the reaching alicses implied by PA */ 250

if 3 AA’ € bind(N, E, PA), such that some
I | PA' (# AA" is generated from AA" at exit X

Want: Specification + Implementation

221

Want: Specification + Implementation

Declarative
Language
Runtime

222

Want: Specification + Implementation

Implementation

Declarative E
Language

Runtime

223

DECLARATIVE = GOOD

WHY DATALOG?

Program Analysis: Domain of Mutual Recursion

225

Program Analysis: Domain of Mutual Recursion

—

226

Program Analysis: Domain of Mutual Recursion

L ox=v; |

var points-to

227

Program Analysis: Domain of Mutual Recursion

| x=f(); |

var points-to

228

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

229

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

230

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

231

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

232

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

233

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

234

Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

235

Program Analysis: Domain of Mutual Recursion

[throw e]

var points-to

call graph

fields points-to

236

Program Analysis: Domain of Mutual Recursion

[throw e]

var points-to

call graph exceptions

fields points-to

237

Program Analysis: Domain of Mutual Recursion

[catch (E e)]

var points-to

call graph exceptions

fields points-to

238

Program Analysis: Domain of Mutual Recursion

[catch (E e)]

var points-to

call graph exceptions

fields points-to

239

Program Analysis: Domain of Mutual Recursion

var points-to

exceptions

call graph

fields points-to

240

Program Analysis: Domain of Mutual Recursion

var points-to

exceptions

call graph

fields points-to

241

A Brief History of Datalog | seemtve |

1
Control + data flow] BDDBDDI ®
[_ [.1 LOGICBLOX
- . l SecureBlox
] e
4 m [Orchestra CDSS] :
Workshop on - . u
Logic and Data . :
Databases integration : Information J.
— : Extraction |*®
- : li X t :
DELIVERING COMPETITIVE ADYANTAGE
= %
‘77 ’80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| |
- [] |
: n m Doop
- - +| (pointer-
]
Access control . LOG|CB|_0)(®
LDL, NA”., [(Binder) J [
Coral, Evita
n Raced
2 |

f .QL
semmilie/ —]

242

A Brief History of Datalog | seemtve |

1
C | + data fl "
[1 LOGICBLOX

n - l SecureBlox
- .

[m [Orchestra CDSS] .
Workshop on - . -
Logic and Data . :
Databases integration : Information J.

—= u - Extraction |*

o g li Xt -
I I I DEﬂERING COMPETITIVE ADYANTAGE I I I
‘77 '80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| |
- | |
. n - Doop
m - | (pointer-
]
Access control LI LOGICBLOX
LDL, NA”., [(Binder) J [
Coral, Evita
n Raced
- [

f .QL
semmilie/ —]

243

A Brief History of Datalog | seemtve |

C | + data fl 0

n l SecureBlox
- .

[m [Orchestra CDSS] .
Workshop on - . -
Logic and Data . :
Databases integration - Information J.

—= u - Extraction |*

o g li Xt -
I I I DEﬂERING COMPETITIVE ADYANTAGE I I I
‘77 '80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
| |
- | |
: L]] Doop
|] q
= = I (pointer-
]
Access control b LOG|CBLOX®
LDL, NA”., [(B|nder) J [
Coral, ... : Evita
- Raced

semml-

A Brief History of Datalog | seemtve |

C | + data fl 0

n l SecureBlox
- .

[m [Orchestra CDSS] .
Workshop on - . -
Logic and Data . :
Databases integration - Information J.

—= u - Extraction |*

: : li X t :
I I I DEﬁERING COMPETITIVE ADYANTAGE I I I
‘77 '80s.. ‘95 ‘02 ‘05 ‘07 ‘08 ‘10
m : -
- n Doop
]
n - (pointer-
]
Access control ul LOG|CBLOX®
LDL, NA”., [(B|nder) J [
Coral, ... : Evita
- Raced

semml-

PROGRAM ANALYSIS IN DATALOG

Points-to Analyses for
=3
A Simple Language

program

a = new A();
b = new B();
c = new C();
b;

O T QL
LI (|

a;
b;

247

Points-to Analyses for
A Simple Language

program

b;

O T QL
LI (|

a;
b;

aF new A();
b = new B();
c = new C();

248

Points-to Analyses for
A Simple Language

program

a i new A();

b = new B();
c = new C();

b;

O T QL
LI (|

a;
b;

249

Points-to Analyses for
A Simple Language

program

a i new A();

b = new B();
c = new C();

b;

O T |V
i jn

a;
b;

250

Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

program

a i new A();

b = new B();
c = new C();

b;

O T |V
L]

a;
b;

251

Points-to Analyses for
A Simple Language

What objects can a variable point to?

program

a = new A();
b = new B();

c = new C(); —
b;

O T QL
mn

a;
b;

252

Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

program assignObjectAllocation

a = new A();
b = new B();

c = new C(); —
b;

O T QL
- n n

a;
b;

253

Points-to Analyses for
A Simple Language

What objects can a variable point to?

program assignObjectAllocation

a = new A(); a new A()

b = new B();

c = new C(); —
b;

O T QL
mn

a;
b;

254

Points-to Analyses for
A Simple Language

What objects can a variable point to?

program assignObjectAllocation

a = new A(); a new A()
b = new B(); b new B()
c = new C(); —

a=b;

b = a;

c=b;

255

Points-to Analyses for
A Simple Language

What objects can a variable point to?

assignObjectAllocation

program

a = new A(); a new A()
b = new B(); b new B()
c = new C(); C new C()
a=b;

b = a;

c=b;

256

Points-to Analyses for
A Simple Language

What objects can a variable point to?

assignObjectAllocation

program

a = new A(); a new A()
b = new B(); b new B()
c = new C(); C new C()
a=b;

b = a;

c=b;

257

Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program
a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;
b = a;
c=b;

258

Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program

a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;

b = a;

c=b; d

259

Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program
a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;
b=a;
c=b;

260

Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program
a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;

b = a;

c=b;

261

Defining varPointsTo

program
a = new A(); d new A)

b = new B(); b new B()

c = new C(); C new C()
a=b;

b = a;

c=Db;

262

Defining varPointsTo

program assignObjectAllocation

a = new A(); a new A()
b = new B(); b new B()
¢ = new C(); C new C()
a=b;
b = a;
c=Db;

263

Defining varPointsTo
program

Ia s e A I a new A()
b = new B(); b new B()
¢ = new C(); C new C()
a=b;

b = a;
c=Db;

264

Defining varPointsTo
program

I 5= T A I a new A()
b = new B(); b new B()
¢ = new C(); C new C()
a=b;

b = a;

c=Db; d
a b
b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

265

Defining varPointsTo
program

I 5= T A I a new A() a new A()
b = new B(); b new B() b new B()
c = new C(); c new C() C new C()
a=b;
b=a; m
c=b; b d

a b
b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

266

Defining varPointsTo
program

a = new A(); a new A() a new A()
b = new B(); b new B() b new B()
c = new C(); c new C() C new C()
a=b; |
b=a; m
c=b; b d

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

267

Defining varPointsTo
program

a = new A(); a new A() a new A()
b = new B(); b new B() b new B()
c = new C(); c new C() C new C()
a=b; |
b=a; m
c=b; b d

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

268

Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b;
b =a;
c=b; a

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj).) 268

\

Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b; a new B()
b =a;
c=b; a

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj).)70

\

Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b; a new B()
b =a;
c=b; d
a b
C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). |an

\

Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b; a new B()
b =a;
c=b: 3 b new A()
a b
C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj).)72

\

Defining varPointsTo
program

— a new A() a new A()

b = new B(); b new B() b new B()

¢ = new C(); C new C() C new C()

a=b; a new B()

b = a;

o[y 3 b new A()
2 b C new B()
b c C new A()

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). JEE

\

Introducing Fields

program

a.F1 = b;
c=b.F2;

274

274

Introducing Fields

program
a.F1 =b; —
c=b.F2;

275
275

Introducing Fields

program
|a.F1=b; |)
c=b.F2;

276
276

Introducing Fields

|aF1 b; |)
c=b.F2;

277
277

Introducing Fields

program
|a.F1=b; |)
c=b.F2;

b a F1

278
278

Introducing Fields

b a F1

program
a.F1 =b; —
|c=bf2 |

279
279

Introducing Fields

b a F1

loadField

280
280

Introducing Fields

b a F1

loadField

b F2 ¢

281
281

Introducing Fields

loadField

b F2 ¢

program
a.F1 =b; —
c=b.F2;

b a F1l
(fieIdPointsTo(BaseObj, Fid, Obj)

N

282
282

Introducing Fields

program
a.F1 =b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)

BaseObJ Fid b

283
283

Introducing Fields

program
a.F1=b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)

<- storeField(From, Base, Fid),

BaseObJ Fld b

284
284

Introducing Fields

program
a.F1 =b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)
<- storeField(From, Base, Fid),

BaseObJ FId g Obj

Base.FId = From

J

285
285

Introducing Fields

program
a.F1=b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)
<- storeField(From, Base, Fid),

varPointsTo(Base, BaseObj),

BaseObJ Fld g Obj

Base.FId = From

J

286
286

Introducing Fields

program
a.F1 =b; —
c=b.F2;

storeField

b a F1

loadField

b F2 ¢

g
fieldPointsTo(BaseObj, Fld, Obj)
<- storeField(From, Base, Fid),

varPointsTo(Base, BaseObj),

BaseObj.Fld g Obj

Base.FId = From

J

287
287

Introducing Fields

storeField

program b a F1
F1=b; —
:: b.F2: loadField
b F2 ¢

BaseObij.Fld Obj

(fieIdPointsTo(BaseObj, Fid, Obj)

<- storeField(From, Base, FId), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). J

288
288

Introducing Fields

storeField

program b a F1
F1=b; —
:: b.F2: loadField
b F2 ¢

BaseObij.Fld Obj

(fieIdPointsTo(BaseObj, Fid, Obj)

<- storeField(From, Base, FId), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). J

289
289

Introducing Fields

storeField

program b a F1
F1=b; —
:: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). J

290
290

Introducing Fields

program b a F1
F1=b; —
i: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObij, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

(varPointsTo(To, Obj)

291

< J 201

Introducing Fields

program b a F1

F1=b; —

o loadField
b F2 ¢

- . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

p
varPointsTo(To, Obj)
<- loadField(Base, Fid, To),

292

\. J/ 292

Introducing Fields

program b a F1
F1=b; —
i: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObij, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),

varPointsTo(From, Obj).)

N

p
varPointsTo(To, Obj)
<- loadField(Base, Fid, To), To = Base.Fld

J 293
\ 293

Introducing Fields

program b a F1
F1=b; —
i: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObij, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),

varPointsTo(From, Obj).)

N

p
varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj), J
294
294

Introducing Fields

b a F1

program
.F1 = b; —
&c]= b.E2: loadField

b F2 ¢

BaseObj.Fld = Obj

(fieIdPointsTo(BaseObj, Fid, Obj)

<- storeField(From, Base, FId), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObj.Fld

p
varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj), J
295
295

Introducing Fields

b a F1

program
.F1 = b; —
o loadField

b F2 ¢

‘ . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObij.Fld

(varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, Fld, Obj). JZ% 296

Introducing Fields

storeField

program b a F1

F1=b; —

o loadField
b F2 ¢

‘ . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObij.Fld

(varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, Fld, Obj). sz 297

Introducing Fields

storeField

program b a F1

F1=b; —

o loadField
b F2 ¢

‘ . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObij.Fld

(varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, Fld, Obj). JZ% 298

Introducing Fields

program b 2 F1

F1=b; —

o loadField
b F2 ¢

(fieIdPointsTo(BaseObj, Fid, Obj)]

<- storeField(From, Base, Fid),
varPointsTo(Base, BaseObij),
varPointsTo(From, Obj).

p
Enhance

specification

without changing

p
varPointsTo(To, Obj) base code
<- loadField(Base, Fld, To), -
varPointsTo(Base, BaseObj), }
oo 299

fieldPointsTo(BaseObj, Fld, Obj).

Introducing Fields

program b 2 F1

F1=b; —

o loadField
b F2 ¢

([fieIdPointsToIBaseObj, Fid, Obj)]

<- storeField(From, Base, Fid),
varPointsTo(Base, BaseObij),
varPointsTo(From, Obj).

p
Enhance

specification

without changing

(varPointsTo(To, Obj) base code
<- loadField(Base, Fld, To), -
varPointsTo(Base, BaseObj), }
300
300

fieldPointsTo(BaseObj, Fld, Obj).

Introducing Fields

program b a F1
a.F1=b: — '
e loadField
b F2 ¢
p
|fieldPointsTo|BaseObj, Fld, Obj)]
. a h
Enhance

specification
without changing

p
varPointsTo(To, Obj) base code
<- loadField(Base, Fld, To), -
varPointsTo(Base, BaseObj), }
301
301

fieldPointsTo(BaseObj, Fld, Obj).

Introducing Fields

program b a Fl1
a.F1=b; — :
c= b2 loadField
b F2 ¢
fieldPointsTo[BaseObj, Fld, Obj)]
: @ D
Enhance

specification
without changing

p
varPointsTe(To, Obj) base code
<- loadFigld(Base, Fld, To), -

varPoihtsTo(Base, BaseObj), }
. 302

fieIdPointsTolBaseObj, Fid, Obj).

Specification + Implementation

Specifications Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

. J

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

. S

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

303

Specification + Implementation

Specifications Implementation

varPointsTo(Var, Obj)
< assignObjectAllocation(...).

rvarPointsTo(To, Obj) Doop:
<-assign(From, To), | ~2500 lines of logic
varPointsTo(From,Obj). J

~

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

304

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

305

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

306

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

\

307

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control

308

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

|

| Tabled |

309

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

|

(o)

[Semi-naive]

310

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

v
)
[Semi-naive]

=

[Counting] [DReD]

& J

311

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

v
)
[Semi-naive]

=

[Counting] [DReD]

& J

Data Structures

312

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

v
)
[Semi-naive]

=

[Counting] [DReD]

& J

Data Structures

313

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

|

| Tabled |

Naive

[Semi-naive]

[

=

Counting] [DReD]

&

Data Structures

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

|

| Tabled |

Naive

[Semi-naive]

[

=

Counting] [DReD]

&

Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control R

[Top-down][Bottom-up]

v
)
[Semi-naive]

=

[Counting] [DReD]

& J

Data Structures |

BDDs

transitive ,
closure ~ KDTree]

Specification + Implementation

Implementatlon
Control

Top down Bottom up

Y
[Tabled]

[Semi-naive]

=

[Counting] [DReD]

&

Data Structures |

BDDs

transitive
closure

Specification + Implementation

Specifications Implementation

Engine

Datalog E

Specification + Implementation

Specifications Implementation

Does It Run

Fast?!?

analysis time (seconds)

Doop vs. Paddle:
1-call-site-sensitive-heap

7000 T I
doop /=
paddle o
8000 - —
5000 —
4000 -
3000 —
2000 —
N V—I V—I V—I V—I ’—I _
0
antir bloat chart eclipse hsgldb jython luindex lusearc h pmd xalan

320

Crucial Optimizations

* something old
* something new(-ish)

e something borrowed (from PL)

Crucial Optimizations

* something old

— semi-naive evaluation, folding, index selection

* something new(-ish)

e something borrowed (from PL)

Crucial Optimizations

* something old

— semi-naive evaluation, folding, index selection
* something new(-ish)

— magic-sets

e something borrowed (from PL)

Crucial Optimizations

* something old

— semi-naive evaluation, folding, index selection
* something new(-ish)

— magic-sets
e something borrowed (from PL)

— type-based

Crucial Optimizations

* something old

— semi-naive evaluation, folding, index selection
* something new(-ish)

— magic-sets
e something borrowed (from PL)

— type-based

TYPE-BASED OPTIMIZATIONS

Types: Sets of Values

universe

Types: Sets of Values

universe

Types: Sets of Values

universe

food

329

Types: Sets of Values

universe

330

Types: Sets of Values

universe

[animaI(X) >]

331

Types: Sets of Values

universe

[animaI(X) >]

332

Types: Sets of Values

universe

animal(X) -> .

bird(X) -> animal(X) .

333

Types: Sets of Values

universe

animal(X) -> .

bird(X) -> animal(X) .

334

Types: Sets of Values

universe

animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

335

Types: Sets of Values

animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

rdog(X) -> lbird(X).
Lbird(X) -> ldog(X).

universe

336

Types: Sets of Values

animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

rdog(X) -> lbird(X).
Lbird(X) -> ldog(X).

universe

337

Types: Sets of Values

animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

rdog(X) -> lbird(X).
Lbird(X) -> ldog(X).

pet(X) -> animal(X).

universe

338

“Virtual Call Resolution”

query _(D)
<- dog(D), eat(D, Thing),
food(Thing),
chocolate(Thing).

339

“Virtual Call Resolution”

query _(D)
<- dog(D), eat(D, Thing),
food(Thing),
chocolate(Thing).

\

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).

340

“Virtual Call Resolution”

query _(D)
<- dog(D), eat(D, Thing),
food(Thing),
chocolate(Thing).

\

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).

341

“Virtual Call Resolution”

avery_(D)
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).

342

“Virtual Call Resolution”

avery (D)
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).

343

“Virtual Call Resolution”

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
; birdSwallows(A,Food).

344

“Virtual Call Resolution”

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
: birdSwallows(A,Food). birdSwallows :: (bird, food)

345

“Virtual Call Resolution”

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
: birdSwattowstA-Feed): birdSwallows :: (bird, food)

346

Type Erasure

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

\ J

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
pirdSwattowstA-Feed)— birdSwallows :: (bird, food)

347

Type Erasure

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—

348

Type Erasure

query (D)

<--gdeg{B}; eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—

349

Type Erasure

query (D)

<--gdeg{B}; eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—

350

Type Erasure

query (D)

.
<--gdeg{B}; eat(D, Thing),
Thing :: chocolate

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—

351

Type Erasure

—
<--gdeg{B}; eat(D, Thing),
~food{Thimg); Thing :: chocolate

chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—

352

Clean Up

query (D)
<--gdeg{B}; eat(D, Thing),
—foodtThing);
chocolate(Thing).

\

(eat(A, Food)
<- dogChews(A,Food)

SirdSwatowstA-Food)
)) /*

Thing :: chocolate

eat :: (dog, food)

353

Clean Up

query (D)

<- eat(D,Thing),
chocolate(Thing). J Thing :: chocolate

eat(A, Food)

<- dogChews(A,Food).] eat :: (dog, food)

354

References on Datalog and Types

* “Type inference for datalog and its application to
query optimisation”, de Moor et al., PODS ‘08

 “Type inference for datalog with complex type
hierarchies”, Schafer and de Moor, POPL ‘10

* “Semantic Query Optimization in the Presence of
Types”, Meier et al., PODS ‘10

Datalog Program Analysis Systems

« BDDBDDB

— Data structure: BDD WhlhhEg TSTANFORD

COMPUTER SCIENCE

e Semmle (.QL)

— Object-oriented syntax Semmle/
— No update
UMASSCS
° Doop EEEEEEEEEEEEEEEEEEEEEEEEEEEE i
— Points-to analysis for full Java 2 LOGICBLOX

— Supports for many variants of context and heap
sensitivity.

356

REVIEW

Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion

* How does it work?

— Really well! order of magnitude faster than hand-
tuned, Java tools

— Datalog optimizations are crucial in achieving
performance

Program Analysis

understanding program behavior

359

Program Analysis

| imperative %
understanding program behavior
A

360

Program Analysis

| functional f
understanding program behavior
A

361

Program Analysis

| logic
understanding program behavior
N

362

Program Analysis

| Datalog f
understanding program behavior
A

363

Program Analysis

Datalog

understanding program behavior
A

* “Evita Raced: Meta-compilation for
declarative networks”, Condie et al., VLDB ‘08

364

OPEN CHALLENGES

Traditional View
Datalog: Data Querying Language

Queries

Traditional View
Datalog: Data Querying Language

Application Logic

Middleware

Queries

367

Traditional View
Datalog: Data Querying Language

Ul Logic + Rendering

S -
Application Logic

Middleware

Queries

368

New View
Datalog: General Purpose Language

Ul Rendering

o e

7

Gl Querles

Challenges Raised by Program Analysis

* Datalog Programming in the large

Challenges Raised by Program Analysis

* Datalog Programming in the large
— Modularization support
— Reuse (generic programming)
— Debugging and Testing

Challenges Raised by Program Analysis

* Datalog Programming in the large
— Modularization support
— Reuse (generic programming)
— Debugging and Testing

* Expressiveness:
— Recursion through negation, aggregation
— Declarative state

Challenges Raised by Program Analysis

* Datalog Programming in the large
— Modularization support
— Reuse (generic programming)
— Debugging and Testing
* Expressiveness:
— Recursion through negation, aggregation
— Declarative state
* Optimization, optimization, optimization
— In the presence of recursion!

Acknowledgements

e Slides:

— Martin Bravenboer & LogicBlox, Inc.
— Damien Sereni & Semmle, Inc.
— Matt Might, University of Utah

Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog
* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

 Conclusions

Declarative Networking

A declarative framework for networks:

— Declarative language: “ask for what you want, not how to
implement it”

— Declarative specifications of networks, compiled to
distributed dataflows

— Runtime engine to execute distributed dataflows

Declarative Networking

A declarative framework for networks:

— Declarative language: “ask for what you want, not how to
implement it”

— Declarative specifications of networks, compiled to
distributed dataflows

— Runtime engine to execute distributed dataflows

e Observation: Recursive queries are a natural fit for
routing

A Declarative Network

T

\E

Traditional Networks Declarative Networks

378

A Declarative Network

) l/f@\\

—H D_} —)
Ng

Traditional Networks Declarative Networks

Network State 8 Distributed database

379

A Declarative Network

8 =

gé///g\\\

s

Distributed recursive
query

Traditional Networks Declarative Networks

Network State 8 Distributed database

Network protocol Recursive Query Execution

380

A Declarative Network

8 Daw

Dataflow = \
messages f

8D

Dataflm

8)

messages

Dataflow

Dataflow \qessages

6a%a flow

Dataflow

Traditional Networks

Network State 8

Network protocol

Network messages

Declarative Networks

Distributed database
Recursive Query Execution

Distributed Dataflow

381

Declarative™ in Distributed Systems
Programming

IP Routing [SIGCOMM’05, SIGCOMM’09 demo] Databases (5)
Overlay networks [SOSP’05] Networking (11)
Network Datalog [SIGMOD’06] _

Distributed debugging [Eurosys’06] Security (1)
Sensor networks [SenSys’'07] Systems (2)
Network composition [CoNEXT’08]

Fault tolerant protocols [NSDI'08]

Secure networks [ICDE’09, NDSS’10, SIGMOD’10]
Replication [NSDI’09]

Hybrid wireless routing [ICNP’09], channel selection [PRESTO’10]
Formal network verification [HotNets’09, SIGCOMM’11 demo]
Network provenance [SIGMOD’10, SIGMOD’11 demo]

Cloud programming [Eurosys ‘10], Cloud testing (NSDI'11)

... <More to come>
382

Open-source systems

* P2 declarative networking system
— The “original” system
— Based on modifications to the Click modular router.
— http://p2.cs.berkeley.edu

 RapidNet

— Integrated with network simulator 3 (ns-3), ORBIT wireless testbed, and
PlanetLab testbed.

— Security and provenance extensions.
— Demonstrations at SIGCOMM’09, SIGCOMM’11, and SIGMOD’11
— http://netdb.cis.upenn.edu/rapidnet

* BOOM - Berkeley Orders of Magnitude

— BLOOM (DSL in Ruby, uses Dedalus, a temporal logic programming
language as its formal basis).

— http://boom.cs.berkeley.edu/

http://p2.cs.berkeley.edu/
http://netdb.cis.upenn.edu/rapidnet
http://boom.cs.berkeley.edu/

Network Datalog

R1: reachable(@S,D) <- link(@S,D)
R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

O—O—O—@

384

Network Datalog

Location Specifier “@S”

R1: reachable(@S,D) <

R2: reachable(@S5,D) < @) reachable(@Z,D)

O—O—O—@

385

Network Datalog

Location Specifier “@S”

R1: reachable(@S,D) <
R2: reachable(@S,D) <

link

@S | D

@d | c

link link link

S| D S| D
Input table: @D © ©
@a|b @b | c @c
@b | a @c

()—®) (o)

386

Network Datalog

R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

qguery (@M,N) <- reachable(@M,N)

link

S
Input table: ©

D

link

@a

b

@S | D

link

@r

@b | c

@S | D

link

@b | a

@S | D

@d | c

@c
@c|d
(©)

387

Network Datalog

R1: reachable(@S,D) <- link(@S,D)
R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)
query (@M,N) <- reachable(@M,N) <= All-Pairs Reachability

link link link link

Input table: @b ©s|D @D @s|D
@a | b @b | c @c @d | c

@b | a @c | d

D———(—@
reachable reachable reachable reachable

Output table: @S |D @S |D @S |D @s|D
@a|b @b | a @c | a @d | a

@a | c @b | c @c | b @d| b

@a | d @b | d @c | d @d | c

388

Network Datalog

R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)
query _(@a,N) <- reachable(@a,N)

link

@d | c

link link link
Input table: @D @b @s|D
@a|b @b | c @c
@b | a @c | d
(O——)——)
reachable)
Output table: @S | D
@a | b | yQuery: reachable(@a,N)
@a | c
@a | d])

389

Implicit Communication

* A networking language with no explicit communication:

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

\ t /

Data placement induces communication

Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

O ————

Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

path=[c,d]

O—o)——)——)

c advertises [c,d]

Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

path=[b,c,d] path=[c,d]

Qo) ——)——)

b advertises [b,c,d] c advertises [c,d]

Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

path=[a,b,c,d] path=[b,c,d] path=[c,d]

Qo) ——)——)

b advertises [b,c,d] c advertises [c,d]

Path Vector in Network Datalog

R1: path(@S,D,P) <- link(@S,D), P=(S,D).
R2: path(@S,D,P) <-link(@Z,S), path(@Z,D,P,), P=SeP,.
query (@S,D,P) <- path(@S,D,P)

|nput: link(@source, destination)
Query output: path(@source, destination, pathVector)

Courtesy of Bill Marczak (UC Berkeley)

Path Vector in Network Datalog

R1: path(@S,D,P) <- Iink(@S,D

R2: path(@S,D,P) <-link(@Z,S), path(@Z,D,P,), P=SeP,.
query (@S,D,P) <- path(@S,D,P)

|nput: link(@source, destination)
Query output: path(@source, destination, pathVector)

Courtesy of Bill Marczak (UC Berkeley)

Path Vector in Network Datalog

R1: path(@S,D,P) <- Iink(@S,D
R2: path(@S,D,P) <-link(@Z,S), path(@Z,D,Pz)

query (@S,D,P) <- path(@S,D,P) Add S to front of P,

|nput: link(@source, destination)
Query output: path(@source, destination, pathVector)

Courtesy of Bill Marczak (UC Berkeley)

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).
R2: path(@S,D,P) <- link(@2Z,S), path(@Zz,D,P,), P=SeP,,
query (@a,d,P) <- path(@a,d,P)

link

link

@ | D

@c

@S

@c

@d

path

Q)

link link
Neighbor @s | D @S | D
table: @a | b @b | c
@b | a
(H)—)
path path
Forwarding @s|p| P @s| b P

table:

398

Query Execution

R1: path(@S,D,P) <- link(@$,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P,),
(ﬂ}1=e§xP(2@a,d,P) <- path(@a,d,P)

link

@S

D

@d

C

link link link

Neighbor @S |D @S | D @S| D
table: @a | b @b | c @c

@b | a @c | d

()——b) (©)

path path path

Forwarding @b P @s| b P @ |Db

table:

(@

399

Query Execution

R1: path(@S,D,P) <- link(@$,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P,),
(ﬂ}1=e§xP(2@a,d,P) <- path(@a,d,P)

link

@S

@d

link link link

Neighbor @s | D @S | D @s| b

table: @a|b @b | c @c | b
@b | a 1@c| d »

(H)—) (o)

path path path

Forwarding @s|p| P @s|b| P @s | b
table: @c | d | [c,d]

400

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link link link link
Neighbor @S| D @S (D @S| D @S |D
table: @a | b @b | c @c| b @d | c
@b | a @c
O—o—O—@
path path path
Forwarding @b P @s|b| P @ b, P

table: @c | d | [c,d]

401

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.

query (@a,d,P) <- path(@a,d,P)

Neighbor
table:

Forwarding
table:

link

link

@s | D

@a

@r

path

Matching variable Z = “Join” M

link

S(D

@c

@
&bb
d

()

link

O

@S

@d

(@)

@S

&

path

—

@S

@c | d

[c,d

@

402

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link

@S

@d

link link link
Neighbor @S |D @S |D @S| D
table: @a | b @b | c @c
@b | a @c | d
path(@b,d,[b,c,d])
path path path
Forwarding @ Db P @ | D P @|b) P

table: @b | d | [b,c,d] @c | d

[c,d]

403

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link

@S

@d

link link link
Neighbor @S |D @S |D @S| D
table: @a | b @b | c @c
@b | a @c | d
path(@b,d,[b,c,d])
path path path
Forwarding @ Db P @ | D P @|b) P

table: @b | d | [b,c,d] @c | d

[c,d]

404

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link

@S

@d

link link link
Neighbor @S| D @S | D @S| D
table: @al b @b | c @c
@b | a @c | d
M @
path(@a,d,[a,b,c,d]) path(@b,d,[b,c,d])
path path path
Forwarding @ | D e @ | D * @ Db P
table: @a | d [a,b,c,d] @b | d [b,c,d] @c | d | [cd]

405

Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link link link link
Communication patterns are identical to those in E

the actual path vector protocol

e —o—@

path(@a,d,[a,b,c,d]) path(@b,d,[b,c,d])
path path path
Forwarding @ D e @ | D * @ Db P

table: @a | d | [a,b,c,d] @b | d | [b,cd] @c | d | [cd]

406

All-pairs Shortest-path

R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).
R2: path(@S,D,P,C) <- link(@5,Z,C,), path(@Z,D,P,,C,), C=C,+C,, P=SeP.,.

All-pairs Shortest-path

R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).
R2: path(@S,D,P,C) <- link(@5,Z2,C,), path(@Z,D,P,,C,), C=C,+C,, P=SeP,,

R3: bestPathCost(@S,D,min<C>) <- path(@S,D,P,C).
R4: bestPath(@S,D,P,C) <- bestPathCost(@S,D,C), path(@S,D,P,C).
query_(@S,D,P,C) <- bestPath(@S,D,P,C)

408

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

2 1-hop

Link Table Path Table Network

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

P

/ \{3

2 1-hop

Link Table Path Table Network

Distributed Semi-naive Evaluation

* Semi-naive evaluation:

— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

/ M\{

Link Table Path Table Network

=INIWIARUO

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table Network

412

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table Network

413

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table Network

414

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table

415

Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>l (F
6
/ \+ Z 2-hop
3
2 1-hop
1 o000 ®
Link Table Path Table Network

Problem: How do nodes know that an iteration is completed? Unpredictable delays and
failures make synchronization difficult/expensive. 116

Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\

Link Table Path Table Network

Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\

Link Table Path Table Network

Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\

Link Table Path Table Network

(Y

Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\

Link Table Path Table Network

~N

I

(Y

Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\

Link Table Path Table Network

[l SN RNE 1§

Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:

— Computed tuples in any iteration are pipelined to next iteration

— Natural for distributed dataflows

\

o

P>

9\

=l ESN RN [O} {621 [0} [U8) [e)) Vo) T

Link Table Path Table

Relaxation of
semi-nailve

Network

422

Dataflow Graph

5% > > B > —l
|_+l—v

i > == - = 23

2Q 52

> e > >
i <8
Messages o J LI LI L o Messages

R Q

! [L ;.

3 c

g Ef —-— =3s

T link -

Local Tables

Single Node

Nodes in dataflow graph (“elements”):
m Network elements (send/recv, rate limitation, jitter)
m Flow elements (mux, demux, queues)
m Relational operators (selects, projects, joins, aggregates)

Dataflow Graph

> > >
Network In Network Out
Messages L L L Messages

X1
ddan
—

It

Local Tables

[

Single Node

Nodes in dataflow graph (“elements”):
m Network elements (send/recv, rate limitation, jitter)
m Flow elements (mux, demux, queues)
m Relational operators (selects, projects, joins, aggregates)

424

Dataflow Graph

Strands
> >
B B gg
Network In 5[Network Out
A
Messages L L _,i Messages
O
> 25
N link "l
ocal Tabl
Single Node

Nodes in dataflow graph (“elements”):
m Network elements (send/recv, rate limitation, jitter)

m Flow elements (mux, demux, queues)

m Relational operators (selects, projects, joins, aggregates)

425

Rule — Dataflow “Strands”

S| ——» S T -
R2: path(@S,D,P) <- link(@S5,Z), path(@Z,D,P,),
P=SeP2.
Eg —— r— g;
> > > >

! 23
fcf — >t > > vV
i 9
- [Bl B B vV
3

2 < 4G
1 | link °

Local Tables

426

Rule — Dataflow “Strands”

25| — > > >
- —
‘ Vul
S 8
28 =.
> - > >
: o
< O
Q0
s —> Bl —> > vV
5 Q
l &
&
> > > ——
©
3
2 > 25
-)
el -G T

Local Tables

427

Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S5,2), path(@Z,D,P,), P=SeP,,

~_ 7

Matching variable Z = “Join” M

Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M
Rewritten rules:
R2a: linkD(S,@D) <« link(@S,D)

R2b: path(@S,D,P) < linkD(S,@Z2), path(@Z,D,P,), P=SeP,.

Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M

Rewritten rules:

R2a: linkD(S,@D) <« link(@S,0) >

R2b: path(@S,D,P) < linkD(S,@Z2), path(@Z,D,P,), P=SeP,.

Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M
Rewritten rules:

R2a: linkD(S,@D) « link(@S,D)

R2b: path(@5,D,P) < IiD(S,@2), path(@Z,D,P,), P=SeR.

Matching variable Z = “Join” M

Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M
Rewritten rules:
R2a: linkD(S,@D) <« link(@S,D)

R2bGath(@S,D,P) JinkD(S,@2), path(@7Z,D,P,), P=SsP,.

Matching variable Z = “Join” M

Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S,@2), path(@Z,D,P,), P=SeP,,

Strand Elements

u| yJoMi1aN

u| JJOMIaN

Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S, @1%), path(@Z,@ P=SeP,.

Apath |

Strand Elements

u| yJoMi1aN

u| JJOMIaN

Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S, @1%), path(@Z,@ P=SeP,.

u| yJoMi1aN

Apath

Strand Elements

Join
path.Z =
linkD.Z

linkD

u| JJOMIaN

435

Physical Execution Plan

RZb@(@S,D,P) <JlinkD(S,@Z), path(@Z,D,P,), P=SeP,.

u| yJoMi1aN

Apath

Strand Elements

Join
path.Z =
linkD.Z

b

Project
path(S,D,P)

linkD

u| JJOMIaN

436

Physical Execution Plan

RZb@(@S,D,P) <JlinkD(S,@Z), path(@Z,D,P,), P=SeP,.

u| yJoMi1aN

Apath

Strand Elements

Join
path.Z =
linkD.Z

b

Project
path(S,D,P)

linkD

Send to
path.S

u| JJOMIaN

437

Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S,@2), path(@Z,D,P,), P=SeP,,

u| yJoMi1aN

Apath

AlinkD

Strand Elements

Join

Project

pach = # path(SrDrP)
linkD.Z
linkD
Join Project
||nkDZ = # path(S,D,P)
path.zZ

path

Send to
path.S

Send to
path.S

u| JJOMIaN

Pipelined Evaluation

* Challenges:

— Does PSN produce the correct answer?
— Is PSN bandwidth efficient?

* |.e.does it make the minimum number of inferences?

Pipelined Evaluation

* Challenges:

— Does PSN produce the correct answer?
— Is PSN bandwidth efficient?

* |.e.does it make the minimum number of inferences?

* Theorems [SIGMOD’06]:

— RS¢\(pP) = RSpsp(P), Where RS is results set
— No repeated inferences in computing RS,¢\(p)

— Require per-tuple timestamps in delta rules and FIFO and
reliable channels

Incremental View Maintenance

Leverages insertion and deletion delta rules for state
modifications.

Complications arise from duplicate evaluations.

Consider the Reachable query. What if there are many ways to
route between two nodes a and b, i.e. many possible derivations

for reachable(a,b)?

Incremental View Maintenance

Leverages insertion and deletion delta rules for state
modifications.

Complications arise from duplicate evaluations.

Consider the Reachable query. What if there are many ways to
route between two nodes a and b, i.e. many possible derivations
for reachable(a,b)?

Mechanisms: still use delta rules, but additionally, apply
— Count algorithm (for non-recursive queries).
— Delete and Rederive (SIGMOD’93). Expensive in distributed settings.

Maintaining Views Incrementally. Gupta, Mumick,
Ramakrishnan, Subrahmanian. SIGMOD 1993.

Recent PSN Enhancements

* Provenance-based approach

— Condensed form of provenance piggy-backed with each tuple for
derivability test.

— Recursive Computation of Regions and Connectivity in Networks. Liu,
Taylor, Zhou, Ives, and Loo. ICDE 2009.

* Relaxation of FIFO requirements:

— Maintaining Distributed Logic Programs Incrementally.
Vivek Nigam, Limin Jia, Boon Thau Loo and Andre Scedrov.
13th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP), 2011.

Optimizations

e Traditional:
— Aggregate Selections
— Magic Sets rewrite
— Predicate Reordering

Optimizations

e Traditional:
— Aggregate Selections
— Magic Sets rewrite

PV/DV — DSR
— Predicate Reordering

Optimizations

e Traditional:
— Aggregate Selections
— Magic Sets rewrite
— Predicate Reordering

* New:
— Multi-query optimizations:
* Query Results caching
* Opportunistic message sharing

— Cost-based optimizations
* Network statistics (e.g. density, route request rates, etc.)
* Combining top-down and bottom-up evaluation

} PV/DV — DSR

Suggested Readings

 Networking use cases:

— Declarative Routing: Extensible Routing with Declarative Queries. Loo,
Hellerstein, Stoica, and Ramakrishnan. SIGCOMM 2005.

— Implementing Declarative Overlays. Loo, Condie, Hellerstein, Maniatis,
Roscoe, and Stoica. SOSP 2005.

* Distributed recursive query processing:

— *Declarative Networking: Language, Execution and Optimization. Loo,
Condie, Garofalakis, Gay, Hellerstein, Maniatis, Ramakrishnan, Roscoe, and
Stoica, SIGMOD 06.

— Recursive Computation of Regions and Connectivity in Networks. Liu, Taylor,
Zhou, lves, and Loo. ICDE 20009.

Challenges and Opportunities

e Declarative networking adoption:

— Leverage well-known open-source software-based projects, e.g. ns-3,
Quagga, OpenFlow

— Wrappers for legacy code
— Usability studies
— Open-source code release and demonstrations

* Formal network verification:

— Integration of formal tools (e.g. theorem provers, SMT solvers), formal
network models (e.g. routing algebra)

— Operational semantics of Network Datalog and subsequent extensions

— Other properties: timing, security

* Opportunities for automated program synthesis

Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog

* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

* Modern System Implementations

* Open Questions

449

Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog
* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

 Conclusions

What Is A Program?

prograim = aﬂ@ﬁjﬁhmﬁ
EI}J
data structures

451

at Is A Program?

lucid, systematic,

aind penatrating
treatment of bosic
and dynnmrt data

program =

learithng = R N
g\)j@j jtﬁlﬁﬁm = ' @ I @ LOgg(i)él + Control
Robert Kowalski

I‘ Imperial College, London

An algorithm can be regarded as consisting of a
logic component, which specifies the knowledge to be

-} — used in solving problems, and a control component,
which determines the problem-solving strategies by
means of which that knowledge is used. The logic

component determines the meaning of the algorithm
whereas the control component only affects its
effkiency. The effkiency of an algorithm can often be
improved by improving the control component without
changing the logic of the algorithm. We argue that
computer programs would be more often correct and
more easily improved and modified if their logic and
control aspects were identified and separated in the
program text.

Key Words and Plnases cull(ml language, lugw
programming, nonproced ge, programuming
methodology, program speclf'ma(mn relational data

structures
CR Categories: 3.64, 4.20, 4.30, 5.21, 5.24452

What Is A Program?

program

l

ogic
§|Jg

contro

lucid, systematic,

aind penatrating
treatment of busic
and dynomic data
structures, surting,

Programming
Languages

Algorithm =
Logic + Control

Robert Kowalski
Imperial College, London

I] Homing
Editor

An algorithm can be regarded as consisting of a
logic component, which specifies the knowledge to be
used in solving problems, and a control component,
which determines the problem-solving strategies by
means of which that knowledge is used. The logic
component determines the meaning of the algorithm
whereas the control component only affects its
effkiency. The effkiency of an algorithm can often be
improved by improving the control component without
changing the logic of the algorithm. We argue that
computer programs would be more often correct and
more easily improved and modified if their logic and
control aspects were identified and separated in the
program text.

Key Words and Phrases: control language, logic
programming, nonpr l language, programming
methodology, program specification, relational data
structures

CR Categories: 3.64, 4.20, 4.30, 5.21, 5.24 453

Logic + Control + Data Structures

Implementation

Control R

~

[Top-down][Bottom-up]

Y
[Tabled]

[Semi-naive]

=

[Counting] [DReD]

&

Data Structures |

BDDs

transitive
closure

THE END... OR IS IT THE
BEGINNING?

