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qguery theory ... have been found to
date.

-- Hellerstein and Stonebraker
“Readings in Database Systems”
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Today’s Tutorial, or,
Datalog: Taste it Again for the First Time

e We review the basics and examine several of
these recent applications

* Theme #1: lots of compelling applications, if we
look beyond payroll / bill-of-materials / ...

— Some of the most interesting work coming from
outside databases community!

* Theme #2: language extensions usually needed

— To go from a toy language to something really usable



(Asynchr‘Or\OUS\y\‘)
An Interactive Tutorial

INSTALL_LB : installation guide
README : structure of distribution files
Quick-Start guide : usage

*.logic : Datalog examples

*.Ib : LogicBlox interactive shell script (to drive the Datalog
examples)

Shan Shan and other LogicBlox folks will be available
immediately after talk for the “synchronous” version of
tutorial

24



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: Datalog 101

* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

* Conclusions



Datalog Refresher: Syntax of Rules

Datalog rule syntax:

<result> < <condition1>, <condition2>, ... , <conditionN>.



Datalog Refresher: Syntax of Rules

Datalog rule syntax:

<result> «&condition1>, <condition2>, ..., <conditionID
Body




Datalog Refresher: Syntax of Rules

Datalog rule syntax:

<condition1>, <condition2>, ..., <conditionN>.

Head Body

X Body consists of one or more conditions (input tables)
X Head is an output table

m Recursive rules: result of head in rule body



Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

# Input: link(source, destination)
# Output: reachable(source, destination)
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Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

link(a,b) — “there is a link from node a to node b”

# Input: link(source, destination)
# Output: reachable(source, destination)
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Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

link(a,b) — “there is a link from node a to node b”

reachable(a,b) — “node a can reach node b”

# Input: link(source, destination)
# Output: reachable(source, destination)
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Example: All-Pairs Reachability

9 R1: reachable(S,D) <- link(S,D).
R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

“For all nodes S,D,
If there is a link from S to D, then S can reach D”.

# Input: link(source, destination)
# Output: reachable(source, destination)
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Example: All-Pairs Reachability

R1: reachable(S,D) <- link(S,D).
9 R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

“For all nodes S,D and Z,
If there is a link from S to Z, AND Z can reach D, then S can reach D”.

# Input: link(source, destination)
# Output: reachable(source, destination)
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Terminology and Convention

reachable(S,D) <- link(S,Z), reachable(Z,D) .

An atom is a predicate, or relation name with arguments.

Convention: Variables begin with a capital, predicates begin with
lower-case.

The head is an atom; the body is the AND of one or more atoms.
Extensional database predicates (EDB) — source tables
Intensional database predicates (IDB) — derived tables



Negated Atoms

« We may put ! (NOT) in front of a atom, to negate its meaning.



Negated Atoms
Qlt”c;t"in Prolog. © >

« We may put ! (NOT) in front of a atom, to negate its meaning.
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Negated Atoms
Qﬂn Prolog. © >

« We may put ! (NOT) in front of a atom, to negate its meaning.

 Example: For any given node S, return all nodes D that are two
hops away, where D is not an immediate neighbor of S.

twoHop(S,D)
<- link(S,Z),
link(Z,D)
I link(S,D).

link(S,Z link(Z,D
O———®



Safe Rules

e Safety condition:

— Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

— Ensures that the results of programs are finite, and that
their results depend only on the actual contents of the
database.



Safe Rules

e Safety condition:

— Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

— Ensures that the results of programs are finite, and that
their results depend only on the actual contents of the
database.

* Examples of unsafe rules:
—  s(X) <-r(Y).
— s(X) <-r(Y), ! r(X).



Semantics

Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order
logic. View rules as logical constraints.

— Given input DB | and Datalog program P, find the smallest possible DB
instance I’ that extends | and satisfies all constraints in P.



Semantics

Model-theoretic

Most “declarative”. Based on model-theoretic semantics of first order
logic. View rules as logical constraints.

Given input DB | and Datalog program P, find the smallest possible DB
instance I’ that extends | and satisfies all constraints in P.

. Fixpoint-theoretic

Most “operational”. Based on the immediate consequence operator for
a Datalog program.

Least fixpoint is reached after finitely many iterations of the immediate
consequence operator.

Basis for practical, bottom-up evaluation strategy.



Semantics

. Model-theoretic

Most “declarative”. Based on model-theoretic semantics of first order
logic. View rules as logical constraints.

Given input DB | and Datalog program P, find the smallest possible DB
instance I’ that extends | and satisfies all constraints in P.

. Fixpoint-theoretic

III

Most “operational”. Based on the immediate consequence operator for

a Datalog program.

Least fixpoint is reached after finitely many iterations of the immediate
consequence operator.

Basis for practical, bottom-up evaluation strategy.

. Proof-theoretic

Set of provable facts obtained from Datalog program given input DB.
Proof of given facts (typically, top-down Prolog style reasoning)



The “Naive” Evaluation Algorithm

Start:
Start by assuming all IDB IDB =0

relations are empty.

Repeatedly evaluate the rules
using the EDB and the previous
IDB, to get a new IDB.

Apply rules
to IDB, EDB

yes
End when no change to IDB.

done



Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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reachable(Z,D).
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Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

* Since the EDB never changes, on each round we only
get new IDB tuples if we use at least one IDB tuple
that was obtained on the previous round.

e Saves work; lets us avoid rediscovering most known
facts.
— A fact could still be derived in a second way.



Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

reachable

reachable(S,D) <- link(S,D).
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reachable(Z,D).
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Semi-naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

reachable

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Semi-naive Evaluation

reachable(S,D) <- link(S,D).
reachable(S,D) <- link(S,Z2),
reachable(Z,D).
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Recursion with Negation

Example: to compute all pairs of disconnected nodes in
a graph.

reachable(S,D) <- link(S,D).
reachable(S,D) <-link(S,Z), reachable(Z,D).
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).



Recursion with Negation

Example: to compute all pairs of disconnected nodes in
a graph.

reachable(S,D) <- link(S,D).
reachable(S,D) <-link(S,Z), reachable(Z,D).
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Stratum 1 unreachable Precedence graph :
Nodes = IDB predicates.
__ Edge g <- p if predicate

q depends on p.
Label this arc “—” if the

Stratum 0 reachable predicate p is negated.



Stratified Negation

unreachable

» Straightforward syntactic restriction.

* When the Datalog program is stratified, we can evaluate
IDB predicates lowest-stratum-first.
* Once evaluated, treat it as EDB for higher strata.

reachable(S,D) <- link(S,D). Stratum 1
reachable(S,D) <- link(S,Z2),

reachable(Z,D).
unreachable(S,D) <- node(S),

node(D), Stratum 0
| reachable(S,D).




Stratified Negation

unreachable

» Straightforward syntactic restriction.

* When the Datalog program is stratified, we can evaluate
IDB predicates lowest-stratum-first.

* Once evaluated, treat it as EDB for higher strata.
Non-stratified example:

p(X) <- q(X), ! p(X).

reachable(S,D) <- link(S,D). Stratum 1
reachable(S,D) <- link(S,Z2),

reachable(Z,D).
unreachable(S,D) <- node(S),

node(D), Stratum 0
| reachable(S,D).




A Sneak Preview...

* Data integration

— Skolem functions
* Program analysis

— Type-based optimization
* Declarative networking

— Aggregates, aggregate selections
— Incremental view maintenance
— Magic sets



Suggested Readings

* Survey papers:

* A Survey of Research on Deductive Database Systems, Ramakrishnan and Ullman,
Journal of Logic Programming, 1993

 What you always wanted to know about datalog (and never dared to ask), by Ceri,
Gottlob, and Tanca.

 An Amateur’s Expert’s Guide to Recursive Query Processing, Bancilhon and
Ramakrishnan, SIGMOD Record.

* Database Encyclopedia entry on “DATALOG”. Grigoris Karvounarakis.
* Textbooks:
* Foundations in Databases. Abiteboul, Hull, Vianu.

* Database Management Systems, Ramakrishnan and Gehkre. Chapter on “Deductive
Databases”.

 Acknowledgements:
* Jeff Ullman’s CIS 145 class lecture slides.

* Raghu Ramakrishnan and Johannes Gehrke’s lecture slides for Database
Management Systems textbook.



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

e Refresher: Datalog 101

* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

* Conclusions
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Datalog for Data Integration

 Motivation and problem setting

* Two basic approaches:
— virtual data integration

— materialized data exchange

 Schema mappings and Datalog with Skolem
functions



The Data Integration Problem

Have a collection of related data sources with

— different schemas

— different data models (relational, XML, plain text, ...)
— different attribute domains

— different capabilities / availability

Need to cobble them together and provide a
uniform interface

Want to keep track of what came from where

Focus here: solving problem of different schemas
(schema heterogeneity) for relational data



Mediator-Based Data Integration

Basic idea: use a global mediated schema to provide a uniform
query interface for the heterogeneous data sources .

- Global mediated schema

/
/ VN,

2 ?

/ / \ NS

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Global mediated schema

Declarative schema
mappings

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Query over
global schema

Global mediated schema

Declarative schema
mappings

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Query over

global schema
Declarative schema
Reformulated mappings
guery over
local schemas

Global mediated schema

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Query over
global schema

Global mediated schema

Query
results
Reformulated
guery over )///‘ \
local schemas

Declarative schema
mappings

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Query over Integrated query
global schema results

Global mediated schema

Query
results
Reformulated
guery over )///‘ \
local schemas

Declarative schema
mappings

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Query over Integrated query
global schema results

Query may be

recursive )
Global mediated schema

Query
results
Reformulated
guery over )///‘ \
local schemas

Declarative schema
mappings

Source schemas

Local data sources
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Mediator-Based Virtual Data Integration

Query over Integrated query
global schema results

Query may be

recursive )
Global mediated schema

Query
results
Reformulated
guery over )///‘ \
localjschemas

Declarative schema
mappings

Source schemas

Reformulation
NEVAJE

(necessarily)
recursive

Local data sources
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Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)

78



Materialized Data Exchange

Declarative schema

mappings .
PRINg Mappings may be
q recursive

Global mediated schema
(aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Declarative schema

Data exchange step _
mappings

(construct mediated DB)

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

,} Global mediated schema

(aka target schema)

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

M/ Global mediated schema

(aka target schema)

Materialized
mediated (target)
database

Data exchange step Declarative schema
(construct mediated DB) / Nngs

Source schema(s)

o
<«

Local data source(s)
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Materialized Data Exchange

Declarative schema
mappings

' Global mediated schema

(aka target schema)

Materialized
mediated (target)
database

Declarative schema
mappings

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema

Query mappings
Materialized
mediated (target) ' Global mediated schema
database (aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Declarative schema

Query mappings
Materialized
mediated (target) ' Global mediated schema
database (aka target schema)

Declarative schema
mappings

Source schema(s)

Local data source(s)
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Materialized Data Exchange

Query Declarative schema
results

Query mappings

' Global mediated schema

(aka target schema)

Materialized
mediated (target)
database

o
<«

Declarative schema
mappings

Source schema(s)

Local data source(s)
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Peer E
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Recursion arises
naturally as peers add
mappings to each other

Peer B Peer D
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Peer E
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer A

Query —>

Peer B Peer D

Peer E
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer A T 5 Peer E
C_ - >

Query —>
Peer D

Peer C

Peer B
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Peer-to-Peer Data Integration
(Virtual or Materialized)

‘F
Peer A l' Peer E
C_ - >

Query —>
Peer D

Peer C

Peer B
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Peer-to-Peer Data Integration
(Virtual or Materialized)

‘F
Peer A l' Peer E
C_ - >

Query —>
Peer D

Peer C

Results €—

Peer B

96



Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Peer E
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Query

Peer E
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Peer-to-Peer Data Integration
(Virtual or Materialized)

Peer B

Peer D

Query
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Peer-to-Peer Data Integration .
(Virtual or Materialized) ly

=

Peer A

Peer B Peer D
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Peer-to-Peer Data Integration Query Result
(Virtual or Materialized) 1y /

/

Peer A

Peer B Peer D
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How to Specify Mappings?

Many flavors of mapping specifications: LAV, GAYV,
GLAV, P2P, “sound” versus “exact”, ...

Unifying formalism: integrity constraints

— different flavors of specifications correspond to different
classes of integrity constraints

We focus on mappings specified using tuple-
generating dependencies (a kind of integrity
constraint)

These capture (sound) LAV and GAV as special cases,
and much of GLAV and P2P as well

— and, close relationship with Datalog!



Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

* A tuple-generating dependency (tgd) is a first-order
constraint of the form

VX d(X) = 3Y U(XY)

where ¢ and Y are conjunctions of relational atoms




Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

* A tuple-generating dependency (tgd) is a first-order
constraint of the form

VX d(X) = 3Y U(XY)

where ¢ and U are conjunctions of relational atoms

For example:
vV Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

“The name and address of every employee should also
be recorded in the name and address tables, indexed
by ssn.”



What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.
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What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

CONSTRAINT: V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

LOCAL SOURCE

employee

17 Alice 1 Main St
23 Bob 16 EIm St




What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1
employee name
17 Alice 1 Main St 050-66  Alice
23 Bob 16 EIm St 010-12 Bob
040-66  Carol
address

050-66 1 Main St
010-12 16 Elm St
040-66 7 11%" Ave




What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr employee(Eid, Name, Addr) —
CONSTRAINT: ’ ’ ploy ( ! ’ )
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2
employee name name
17 Alice 1 Main St 050-66 Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob
040-66 Carol
address address
050-66 1 Main St 27 1 Main St
010-12 16 Elm St 42 16 Elm St

040-66 7 11%" Ave




What Answers Should Queries Return?

Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

CONSTRAINT:

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

LOCAL SOURCE

employee

17 Alice 1 Main St

23 Bob 16 EIm St

MEDIATED DB #1

name

050-66  Alice
010-12 Bob
040-66 Carol

address

050-66 1 Main St
010-12 16 Elm St
040-66 7 11%" Ave

MEDIATED DB #2 ...ETC...
name
27 Alice
42 Bob ot
address
27 1 Main St csee
42 16 Elm St




What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 ...ETC...

employee name name

17 Alice 1 Main St 050-66  Alice 27  Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob

040-66  Carol

address

050-66 1 Main St

010-12 16 Elm St : DB should be
040-66 711t Ave materialized?
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What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 ...ETC...

employee name name

17 Alice 1 Main St 050-66  Alice 27  Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob

040-66  Carol

address

050-66 1 Main St

010-12 16 Elm St : DB should be
040-66 711t Ave materialized?

QUERY: d(Name) <- name(Ssn, Name), address(Ssn, ).
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What Answers Should Queries Return?

* Challenge: constraints leave problem “under-defined”: for given local source
instance, many possible mediated instances may satisfy the constraints.

VY Eid, Name, Addr empl Eid, Name, Addr) —
CONSTRAINT: d, Name, Addr employee(Eid, Name, Addr)
3 Ssn name(Ssn, Name) A address(Ssn, Addr)
LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 ...ETC...

employee name name

17 Alice 1 Main St 050-66  Alice 27  Alice
23 Bob 16 Elm St 010-12 Bob 42 Bob

040-66  Carol

address

What answers :
050-66 1 Main St

010-12 16 Elm St : DB should be
040-66 711t Ave materialized?

should q return?

QUERY: d(Name) <- name(Ssn, Name), address(Ssn, ).
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Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).
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Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
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17 Alice 1 Main St
23 Bob 16 Elm St

MEDIATED DB #1 MEDIATED DB #2 ...ETC...
name name

050-66  Alice 27  Alice

010-12  Bob 42 Bob "

040-66  Carol

address address

050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St

040-66 7 11t Ave




Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn, ).

MEDIATED DB #1 MEDIATED DB #2 ...ETC...
name name

050-66  Alice 27  Alice

010-12  Bob 42 Bob "

040-66  Carol

address address

050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St

040-66 7 11t Ave




Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE MEDIATED DB#1  MEDIATED DB #2 ...ETC...
employee name name
17 Alice 1 Main St 050-66  Alice 27  Alice
53 Bob 16 Elm St 010-12  Bob 42 Bob -t
040-66  Carol
QUERY: address address
q(Name) <- 050-66 1 Main St 27 1 Main St ces
name(Ssn, Name), 010-12 16 Elm St 42 16 Elm St
address(Ssn, ). 040-66 7 11th Ave
q
Alice
Bob

Carol




Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn, ).

MEDIATED DB #1

MEDIATED DB #2 ...ETC...

name name
050-66  Alice 27  Alice
010-12  Bob 42 Bob "
040-66  Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice
Bob Bob
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Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn, ).

MEDIATED DB #1

MEDIATED DB #2 ...ETC...

name name
050-66  Alice 27  Alice
010-12  Bob 42 Bob "
040-66  Carol
address address
050-66 1 Main St 27 1 Main St cee
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040-66 7 11t Ave
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Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn, ).

MEDIATED DB #1

MEDIATED DB #2 ...ETC...

name name
050-66  Alice 27  Alice
010-12  Bob 42 Bob "
040-66  Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice e
Bob Bob

Carol




Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE
employee

17 Alice 1 Main St
23 Bob 16 Elm St

QUERY:

g(Name) <-
name(Ssn, Name),
address(Ssn, ).

MEDIATED DB #1  MEDIATED DB #2 ...ETC...
name name
050-66  Alice 27  Alice
010-12  Bob 42 Bob "
040-66  Carol
address address
050-66 1 Main St 27 1 Main St cee
010-12 16 Elm St 42 16 Elm St
040-66 7 11t Ave
q q
Alice Alice e
Bob Bob

Carol




Certain Answers Semantics

Basic idea: query should return those answers that would be
present for any mediated DB instance (satisfying the constraints).

LOCAL SOURCE MEDIATED DB#1  MEDIATED DB #2 ...ETC...
employee name hame
17 Alice 1 Main St 050-66  Alice 27  Alice
53 Bob 16 Elm St 010-12  Bob 42 Bob -t
040-66  Carol
QUERY: address address
q(Name) <- 050-66 1 Main St 27 1 Main St ces
name(Ssn, Name), 010-12 16 Elm St 42 16 Elm St
address(Ssn, ). 040-66 7 11th Ave
certain answers to q q q
Alice — Alice Alice N cee
Bob Bob Bob

Carol




Computing the Certain Answers

A number of methods have been developed
— Bucket algorithm [Levy+ 1996]
— Minicon [Pottinger & Halevy 2000]

— Inverse rules method [Duschka & Genesereth 1997]

 We focus on the Datalog-based inverse rules
method

 Same method works for both virtual data
integration, and materialized data exchange

— Assuming constraints are given by tgds



Inverse Rules: Computing Certain Answers

with Datalog
e Basicidea: a tgd looks a lot like a Datalog rule (or rules)
tgd: V X, Y, Zfoo(X,Y) A bar(X,Z) — biz(Y,Z) A baz(Z)
Datalog biz(X,)Y,Z) <- foo(X,Y), bar(X,Z).
rules: baz(z) <- foo(X,Y), bar(X,Z).
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constraints written in the other direction, with sources thought of as
views over the (hypothetical) mediated database instance



Inverse Rules: Computing Certain Answers

with Datalog
e Basicidea: a tgd looks a lot like a Datalog rule (or rules)
tgd: V X, Y, Zfoo(X,Y) A bar(X,Z) — biz(Y,Z) A baz(Z)
Datalog biz(X,)Y,Z) <- foo(X,Y), bar(X,Z).
rules: baz(z) <- foo(X,Y), bar(X,Z).

e Sojustinterpret tgds as Datalog rules! (“Inverse” rules.) Can
use these to compute the certain answers.

— Why called “inverse” rules? In work on LAV data integration,
constraints written in the other direction, with sources thought of as
views over the (hypothetical) mediated database instance

The catch: what to do about existentially quantified variables...
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Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).




Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —
3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

ssh is a Skolem
function
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Inverse Rules: Computing Certain Answers
with Datalog (2)

* Challenge: existentially quantified variables in tgds

V Eid, Name, Addr employee(Eid, Name, Addr) —

3 Ssn name(Ssn, Name) A address(Ssn, Addr)

* Key idea: use Skolem functions

— think: “memoized value invention” (or “labeled nulls”)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

* Unlike SQL nulls, can join on Skolem values:

query _(Name,Addr) <-
name(Ssn,Name) ,
address(Ssn,Addr).
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Semantics of Skolem Functions in Datalog

e Skolem functions interpreted “as themselves,” like constants
(Herbrand interpretations): not to be confused with user-
defined functions

— e.g., can think of interpretation of term
ssn(“Alice”, “1 Main St”)

as just the string (or null labeled by the string)
ssn(“Alice”, “1 Main St”)
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defined functions

— e.g., can think of interpretation of term
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as just the string (or null labeled by the string)
ssn(“Alice”, “1 Main St”)
* Datalog programs with Skolem functions continue to have

minimal models, which can be computed via, e.g., bottom-up
seminaive evaluation

— Can show that the certain answers are precisely the query answers
that contain no Skolem terms. (We’ll revisit this shortly...)



Semantics of Skolem Functions in Datalog

Skolem functions interpreted “as themselves,” like constants
(Herbrand interpretations): not to be confused with user-
defined functions

— e.g., can think of interpretation of term
ssn(“Alice”, “1 Main St”)

as just the string (or null labeled by the string)
ssn(“Alice”, “1 Main St”)

Datalog programs with Skolem functions continue to have
minimal models, which can be computed via, e.g., bottom-up
seminaive evaluation

— Can show that the certain answers are precisely the query answers
that contain no Skolem terms. (We’ll revisit this shortly...)

But: the models may now be infinite!
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* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum
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Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <-
employee( , X, ).
manager(m(X)) <-

m is a Skolem
function
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Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <- employee
employee(_, X, _) . 17 Alice 1 Main St

manager(m(X)) <-
manager(X).

23 Bob 16 Elm St




Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager(X) <-

manager(m(X)) <-
manager(X).

employee

manager

employee( , X, ).

17 Alice
23 Bob

1 Main St
16 Elm St

m(Alice)
m(Bob)
m(m(Alice))
m(m(Bob))

m(m(m(Alice)))




Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager
; \ m(Alice)
manager(X) <- employee m(Bob)
employee(_, X, ). 17 Alice 1 Main St P———
manager(m(X)) <- 23 Bob 16 Elm St e
manager(X). m(m(Bob))

m(m(m(Alice)))

* Option 1: let ‘er rip and see what happens! (Coral, LB)



Termination and Infinite Models

* Problem: Skolem terms “invent” new values, which might be
fed back in a loop to “invent” more new values, ad infinitum

— e.g., “every manager has a manager”

manager
; \ m(Alice)
manager(X) <- employee m(Bob)
employee(_, X, ). 17 Alice 1 Main St P———
manager(m(X)) <- 23 Bob 16 Elm St e
manager(X). m(m(Bob))

m(m(m(Alice)))

* Option 1: let ‘er rip and see what happens! (Coral, LB)

* Option 2: use syntactic restrictions to ensure
termination...



Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows:

manager(X) <-
employee( , X, ).

manager(m(X)) <-
manager(X).




Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: 4

(employee, 2)

manager(X) <-
employee( , X, ). | (employee, 1) (employee, 3)

manager(m(X)) <-
manager(X).

(manager, 1)

147



Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: vertex for each
(employee, 2) (predicate, index)

manager|(X) <-

employee( | X,| ). | (employee, 1)
manager(m(X)) <-
manager(X).

(employee, 3)

v
(manager, 1)

variable occurs as arg #2
to employee in body,

arg #1 to manager in
head

148



Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: vertex for each
(employee, 2) (predicate, index)

manager(X) <-
employee( , X, ). | (employee, 1)

managerq_m(xj) <-

manageriX)i

(employee, 3)

v
(manager, 1) «_

variable occurs as arg #2
to employee in body,

arg #1 to manager in
head

variable occurs as arg #1 to
manager in body and as
argument to Skolem (hence
dashes) in arg #1 to manager
in head




Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: g

(employee, 2) (predicate, index)

manager(X) <-
employee( , X, ). | (employee, 1)

manager(m(X)) <-
manager(X).

(employee, 3)

v
(manager, 1) «_

variable occurs as arg #2
to employee in body,

arg #1 to manager in

head
. variable occurs as arg #1 to
* If graph contains no cycle through manager in body and as
a dashed edge, then P is called argument to Skolem (hence
weakly acyclic dashes) in arg #1 to manager

in head




Ensuring Termination of Datalog Programs with
Skolems via Weak Acyclicity

* Draw graph for Datalog program as follows: vertex for each
(employee, 2) (predicate, index)

manager(X) <-
employee( , X, ). | (employee, 1)

manager(m(X)) <-
manager(X).

(employee, 3)

3 Cycle through
(manager, 1) <, dashed edge!

variable occurs as arg #2 Not weakly
to employee in body, acyclic®
arg #1 to manager in
head
. variable occurs as arg #1 to
* |f graph contains no cycle through manager in body and as
a dashed edge, then P is called argument to Skolem (hence

weakly acyclic dashes) in arg #1 to manager
in head



Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:



Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

name(ssn(Name,Addr),Name)
<- emp(_,Name,Addr).
addr(ssn(Name,Addr),Addr)
<- emp(_,Name,Addr).

query _(Name,Addr)
<- name(Ssn,Name),
address(Ssn,Addr) ;
_(Addr,Name).




Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

name(ssn(Name,Addr),Name)
<- emp(_,Name,Addr).
addr(ssn(Name,Addr),Addr)
<- emp(_,Name,Addr).

query _(Name,Addr)
<- name(Ssn,Name),
address(Ssn,Addr) ;
_(Addr,Name).

(emp, 2)
(emp, 1)

(name, 1)

(name, 2)

(emp, 3)

(addr, 1)
(addr, 2)
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Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

(emp, 2)
(emp, 1) A
name(ssn(Name,Addr),Name) /
<- emp(_,Name,Addr). // .
addr(ssn(Name,Addr),Addr) /:,/"‘
<- emp(_,Name,Addr). (nam: 1) i
query _(Name,Addr) (name, 2)  (addr, 2)
<- name(Ssn,Name), / \
address(Ssn,Addr) ;
_(Addr,Name). (L 1) — (_,2)

"o |~
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Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

(emp, 2)
(emp, 1) A
name(ssn(Name,Addr),Name) /
<- emp(_,Name,Addr). /" e
addr(ssn(Name,Addr),Addr) /:,/"‘
<- emp(_,Name,Addr). (nam:, 1) l
query _(Name,Addr) (name, 2)
<- name(Ssn,NarBRUEERS e[ JViaq e /
address(Ssn, AN Ye [SRda[de]0f=4g
_(Addr,Name). IECEN =lo R=To[={CF (L 1)

weakly acyclic © ~_ _—
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Ensuring Termination via Weak Acyclicity (2)

* Another example, this one weakly acyclic:

(emp, 2)
(emp, 1) A
name(ssn(Name,Addr),Name) /
<- emp(_,Name,Addr). /" e
addr(ssn(Name,Addr),Addr) /:,/"‘
<- emp(_,Name,Addr). (nam'g, 1) i
query _(Name,Addr) (name, 2)
<- name(Ssn,NarBRUEERS e[ JViaq e /
address(Ssn, AN Ye [SRda[de]0f=4g
_(Addr,Name). IECEN =lo R=To[={CF (L 1)

weakly acyclic © ~_ _—

Theorem: bottom-up evaluation of weakly acyclic Datalog

programs with Skolems terminates in # steps polynomial in size

of source database.
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Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).
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Once Computation Stops, What Do We Have?

V Eid, Name, Addr employee(Eid, Name, Addr) —

tgd: 3 Ssn name(Ssn, Name) A address(Ssn, Addr)

datalog rules: | name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).

address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE

employee

17 Alice 1 Main St
23 Bob 16 Elm St
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Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #2
employee name
17 Alice 1 Main St ssn(A..) Alice
23 Bob 16 Elm St ssn(B..) Bob
address

ssn(A..) 1 Main St
ssn(B..) 16 Elm St
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Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

employee name name
17 Alice 1 Main St 050-66  Alice ssn(A..) Alice
23 Bob 16 Elm St 010-12 Bob ssn(B..) Bob
040-66 Carol
address address

050-66 1 Main St ssn(A..) 1 Main St
010-12 16 Elm St ssn(B..) 16 Elm St
040-66 7 11t Ave




Once Computation Stops, What Do We Have?

tgd:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

datalog rules:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE

employee

17 Alice 1 Main St

23 Bob 16 Elm St

MEDIATED DB #1

MEDIATED DB #2

MEDIATED DB #3

name name name
050-66 Alice ssn(A..) Alice 27 Alice
010-12 Bob ssn(B..) Bob 42 Bob -
040-66 Carol
address address address
050-66 1 Main St ssn(A..) 1 Main St 27 1 Main St cee
010-12 16 EIm St ssn(B..) 16 Elm St 42 16 Elm St

040-66 7 11t Ave




Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 MEDIATED DB #3

employee name name name
17 Alice 1 Main St 050-66 Alice SSI’)(A..) Alice 27 Alice
23 Bob 16 Elm St 010-12 Bob ssn(B..) Bob 42 Bob
040-66 Carol
address address address
050-66 1 Main St ssn(A..) 1 Main St 27 1 Main St cee

010-12 16 EIm St ssn(B..) 16 Elm St 42 16 Elm St
040-66 7 11t Ave

Among all the mediated DB instances satisfying the constraints (solutions), #2
above is universal: can be homomorphically embedded in any other solution.



Once Computation Stops, What Do We Have?

V Eid, Name, Addr employee(Eid, Name, Addr) —

tgd:
& 1 Ssn name(Ssn, Name) A address(Ssn, Addr)

datalog rules: name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 MEDIATED DB #3

employee ﬂ%mk—\ name name
17 Alice 1 Main St [ 50- Alice] [ssn‘(A..) AIice] 27 Alice

23 Bob 16 Elm St 010-12| Bob ssn'(B..) Bob 42 Bob
040 5—carob———
address address address
050-66 | 1 Main St ssn(A..)| 1 Main St 27 1 Main St e
010-12] 16 EIm St ssn(B..)] 16 Elm St 42 16 Elm St

040-6 th

Among all the mediated DB instances satisfying the constraints (solutions), #2
above is universal: can be homomorphically embedded in any other solution. .-



Once Computation Stops, What Do We Have?

tgd:

datalog rules:

V Eid, Name, Addr employee(Eid, Name, Addr) —
1 Ssn name(Ssn, Name) A address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2 MEDIATED DB #3
employee name name
17 Alice 1 Main St 050-66  Alice
23 Bob 16 Elm St 010-12 Bob
040-66 Carol
address address address
050-66 1MainSt [(Ssn(A.)) 1 Main St 27
010-12 16 EIm St ssn(B..)] 16 Elm St 42| 16 Elm St

040-66 7 11t Ave

1Main5t] cee

Among all the mediated DB instances satisfying the constraints (solutions), #2
above is universal: can be homomorphically embedded in any other solution. ..
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Universal Solutions Are Just What is
Needed to Compute the Certain Answers

Theorem: can compute certain answers to Datalog program g
over target/mediated schema by:

(1) evaluating g on materialized mediated DB (computed
using inverse rules); then

(2) crossing out rows containing Skolem terms.




Universal Solutions Are Just What is
Needed to Compute the Certain Answers

Theorem: can compute certain answers to Datalog program g
over target/mediated schema by:

(1) evaluating g on materialized mediated DB (computed
using inverse rules); then

(2) crossing out rows containing Skolem terms.

Proof (crux): use universality of materialized DB.




Notes on Skolem Functions in Datalog

* Notion of weak acyclicity introduced by Deutsch and Popa,
as a way to ensure termination of the chase procedure for
logical dependencies (but applies to Datalog too).

* Crazy idea: what if we allow arbitrary use of Skolems, and
forget about computing complete output idb’s bottom-up,
but only partially enumerate their contents, on demand,
using top-down evaluation?

— And, while we’re at it, allow unsafe rules too?

* Thisis actually a beautiful idea: it’s called logic
programming

— Skolem functions (aka “functor terms”) are how you build data
structures like lists, trees, etc. in Prolog

— Resulting language is Turing-complete



Summary: Datalog for
Data Integration and Exchange

 Datalog serves as very nice language for schema
mappings, as needed in data integration, provided
we extend it with Skolem functions

— Can use Datalog to compute certain answers

— Fancier kinds of schema mappings than tgds require
further language extensions; e.g., Datalog +/- [cali et al 09]

e Can also extend Datalog to track various kinds of
data provenance, very useful in data integration

— Using semiring-based framework [Green+ 07]



Some Datalog-Based Data
Integration/Exchange Systems

Information Manifold [Levy+ 96] — ATeT
— Virtual approach
— No recursion

—— Bell Laboratories

{

Clio [miller+ 01]

— Materialized approach

— Skolem terms, no recursion, rich data model
— Ships as part of IBM WebSphere

Orchestra CDSS [Ives+ 05]

— Materialized approach

— Skolem terms, recursion, provenance
updates
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Datalog for Data Integration:
Some Open Issues

* Materialized data exchange: renewed need for
efficient incremental view maintenance algorithms

— Source databases are dynamic entities, need to propagate
changes

— Classical algorithm DRed [Gupta+ 93] often performs very
badly; newer provenance-based algorithms [Green+ 07, Liu+
08] faster but incur space overhead; can we do better?

* Termination for Datalog with Skolems

— Improvements on weak ayclicity for chase termination,
translate to Datalog; more permissive conditions always
useful!

— |Is termination even decidable? (Undecidable if we allow
Skolems and unsafe rules, of course.)



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog
* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking
e Conclusion
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° Whatis it?

* Why in Datalog?

* How does it work?
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Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion

* How does it work?

— Really welll An order-of-magnitude faster than hand-
tuned, Java tools



Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion

* How does it work?

— Really welll An order-of-magnitude faster than hand-
tuned, Java tools

— Datalog optimizations are crucial in achieving
performance



WHAT IS PROGRAM ANALYSIS



Understanding Program Behavior

animal.eat( (Food) thing);
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Understanding Program Behavior

(without actually running the program)

animal.eat( (Food) thing);




Understanding Program Behavior

testing
(without actually runrimg the program)

animal.eat( (Food) thing);




Understanding Program Behavior

testing
(without actually runrimg the program)

what is animal?

\} \
animal.eat( (Food) thing);

- J
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Understanding Program Behavior

testing
(without actually runrimg the program)

what is animal?

2\ |
points-to animal.eat( (Food) thing);

analyses

- J
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Understanding Program Behavior

testing
(without actually rune#Tg the program)

what is animal?

2\ |
points-to animal.eat( (Food) thing);

analyses

- J

through what method

does it eat?
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Understanding Program Behavior

testing
(without actually rune#Tg the program)

(
|

points-to animal.eat( (Food) thing);

analyses
_ \§

what is thing?

through what method

does it eat?
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Optimizations

what is thing?

4

animal.eat( (Food) thing);

through what method

does it eat?

188



Optimizations

it’s a Dog ] what is thing?

\_

-
\}an'ma.eTt( (Food) thing);

through what method

does it eat?
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Optimizations

it’s a Dog ] what is thing?
\}
animal.eat( (Food) thing);
—1
(class Dog { )

void eat(Food f) { ... }

}

\.
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Optimizations

[ it’s a Dog ] what is thing?

\F}an'ma.eit( (Food) thing);

virtual call resolution

(class Dog {
void eat(Food f) { ... }

}

\.
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Optimizations

{ it’s a Dog J { it’s Chocolate J

\C}an'ma.eit( (Food) thing);

virtual call resolution

(class Dog {
void eat(Food f) { ... }

k} J
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Optimizations

{ it’s a Dog J { it’s Chocolate J

\E}an'ma.eit(-(-%od-)-th'ng);

virtual call resolution

(class Dog {
void eat(Food f) { ... }

k} J
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Optimizations

{ it’s a Dog J { it’s Chocolate J

animal.eat(Food}-thing);

virtual call resolution type erasure

(class Dog {
void eat(Food f) { ... }

k} J
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Bug Finding

it’s a Dog J { it’s Chocolate J
\}
animal.eat(-Feod)-thing);
p—
(class Dog { )

void eat(Food f) { ... }

k} J
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Bug Finding

it’s a Dog J { it’s Chocolate J
'
animal.eat(-Feod)-thing);
\_ [ Dog + Chocolate =
| BUG
( )
class Dog {

void eat(Food f) { ... }

k} J
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Bug Finding

{ it’s a Dog J { it’s Chocolate J

animal.eat(Food}-thing);

ChokeException neverw [ Dog + Chocolate =
caught = BUG J L BUG
( )
class Dog {

void eat(Food f) { ... }

k} J
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Precise, Fast Program Analysis Is Hard

* necessarily an approximation
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Precise, Fast Program Analysis Is Hard

* necessarily an approximation
— because Alan Turing said so

* alot of possible execution paths to analyze

— 10%* acyclic paths in an average Java program,
Whaley et al., ‘05
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WHY PROGRAM ANALYSISIN A
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WHY DATALOG?
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Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)
G: an interprocedural control flow graph (ICFG);
begin
/* 1. only performed implicitly */
1. initialize may_hold with a default value NO;
create an empty worklist;
2. for each node N in G
2.1 if N is a pointer assignment
aliases_intro_by_assignment(N,Y ES);
2.2 else if N is a call node
aliases_intro_by_call(N,YES);
3. while worklist is not empty
3.1 remove (N, AA, PA) from worklist,;
3.2 if N is a call node
alias.at_call_implies(N, AA, PA,Y ES);
3.3 else if N is an exit node
alias_at_exit_implies(N, AA, PA,YES);
3.4 else for each M € successor(N)
3.4.1 if M is a pointer assignment
alias_implies_thru_assign(M,
AA,PA,YES);
3.4.2 else
make.true(M, AA, PA);
end

Figure 1: Exhaustive algorithm for pointer aliasing
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Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

procedure incremental_aliasing(G,N)
G: an ICFG;
N: a statement to be changed,;
begin
1. falsify the affected aliases, which are either generated
at N, or depend on other affected aliases.
2. update G to reflect the change to statement N;
3. worklist=reintroduce_aliases(G);
4. reiterate_worklist(worklist,Y ES);
end

Figure 2: Incremental aliasing algorithm for handling
addition /deletion of a statement

3.4 else for each M € successor(N)
3.4.1 if M is a pointer assignment
alias_implies_thru_assign(M,
AA,PA,YES);
3.4.2 else
make.true(M, AA, PA);

beg

end

Figure 1: Exhaustive algorithm for pointer aliasing
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Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */
procedure naive.falsification(N)

a statement to be changed;

if N is marked TOUCHED, return;
/* Falsify aliases at the changed node N */
set all may_hold(N, AA, PA) to NO;
mark N TOUCHED,
if N is an exit node
for each call node C which calls the function
containing V;
naive_falsi fication(corresponding return of C);
else if /V is a call node
5.1 disable_aliases(entry of the function called by N);
5.2 naive_falsification{corresponding return of N);
else for each M € successor(N)
naive_falsification(M);

procedure disable_aliases(E)

N:
.| begi
begi 3.
1
2.
3.
2 4
3
4
end| 5
Figu
addi| .
S end
E:
begin
1.
end 2,
3.
Figure 1 4.
end

entry of the function whose aliases will be disabled;

if F is marked INFLUENCED, return;

set all may_hold(FE, AA, AA) to FALSIFIED,

mark E INFLUENCED,;

for each call node C in function F;
disable_aliases(entry of the function called by C);

Figure 3: Naive falsification

nerated

ndling
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Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */

proced
N: 3
.| begin
begil "
1 /
2. si
3.
20 4 if
3
4
end 5 o
Figu :
addl 6. ¢
3.4 end
proced
E: ¢
begin
1. if
end 2. s
3. n
Figure 1 4. f
end

/* Alias reintroduction corresponding to step 3 in Figure 2 */

procedure reintroduce_aliases(G)
G: an ICFG;
return
a worklist for keeping the reintroduced aliases;
begin
1. create an empty worklist;
/* Inter-procedural propagation */
2. for each call node C in G
2.1 if C is TOUCHED or its called function is
INFLUENCED,
2.1.1 aliases.intro-by-call(C,Y ES);
2.1.2 repropagate.aliases(C, worklist);
/* Intra-procedural propagation */
3. for each TOUCHED node N in G
3.1 if N is-a pointer assignment statement,
aliases_intro_by_assignment(M Y ES);
3.2 for each M € predecessor(N)
repropagate_aliases(M worklist);
4, return-worklist;
end

procedure repropagate_aliases(N ,worklist)
N: a program node in the ICFG;

worklist: a worklist for keeping the reintroduced aliases;

begin
for each mavy_hold{N. AA. PAY=YES
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Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */
prOKﬁc: /* Alias reintroduction corresponding to step 3 in Figure 2 */
begi begili. ng /* Reiteration corresponding to step 4 in Figure 2 */
A L. }’ retur Procedure reiterate worklist(worklist,value)
2.8l & worklist: a worklist for keeping the aliases to process;
) 3. nf begin value: value that will be given to (N,AA,PA);
5 4. if 1. bEgin
4 5 1. while worklist is not empty do
] 1.1 remove (N,AA,PA) from worklist;
: i 1.2 if N is a call node
Figy 5 aliases_propagated_at_call(N, AA, PA,
addi| 6. e value);
34| 4 3. 1.3 else if NV is an exit node
alias.at_exit_implies(N, AA, PA,value);
proced 1.4 else for each M € successor(N)
beg‘?; y 1.4.1 if M is a pointer assignment
! alias_implies_thru_assign(M,
end 2. s end. AA, PA, value);
8. 0 1.4.2 else if value is YES
Figure1ly 4 f procg make_true(M, AA, PA);
end N 1.4.3 else /* value is FALSIFIED */
begt;: make_false(M,AA, PA); 212
fol end




Algorithms in 10-page Conf. Papers

procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */
PI‘O;;?C: /* Alias reintroduction corresponding to step 3 in Figure 2 */
begi PeED P““g /* Reiteration corresponding to step 4 in Figure 2 */
g 1. if ) proceq procedure aliases.propagated.at.call(N,AA, PAvalue)
1 /| retur N: a call node;
9. s a won AA: reaching alias at the entry of the function contain- | PrOCESS;
3. n| begin 1 ing N; .
2 4 il e.gll .l:ai PA. pU&alblC alias at J’V, h
3 ' : bEgln value: value to set the propagated aliases;
1. 1 begin
4 2. ’ 1. let E be the entry of the function called by N, and
] R the corresponding return node of N;
end| 5 . ]
: 5 /* aliasing effect propagated to the entry node £ */
Figy 5 2. for cach AA' in bind(N, E, PA) f,PA,
addi 8. /il /* bind uses parameter bindings to map PA to the
' entry E of the called function */
3.4 3 ] 2.1 if (B, AA’, AA") has not been seen before
end ’ make. true(E, AA’, AA"); Uﬂiﬂ&)'
2.2 else if rnay hold(E,AA', AA") # value t 1
proced| } 2.2.1 set may-hold(E,AA", AA") to value;
E: 4 /* Recursively cnable {or disablec) all the bt
begin reaching aliases implied at the entry of s
1. if other functions reachable from E */ 33-;'911( M s
' 4 2.2.2 inter_proc.propagate( E, AA', value);
end 2.8 and
3. 1 /¥ aliasing effect propagated to the return node R */
Figure 1; 4. f — 3. (Same as what is done for propagating aliases to the ':‘1)'
return node in procedure alias_at_call smplies, axcept ]
end N it will make_true or make. false the implied aliases, TED * ;"
Ut depending on what value is) I
begir end PA); 213
fo end EYILS TR O\F PPy AN BN L AN 5 QA AT LA A A R T W GNP W i, URERe
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procedure exhaustive_aliasing(G)

beg pro /* Alias falsification corresponding to step 1 in Figure 2 */

proced
N: 4
.| begin
begil
1 /
2. s
3. n
20 4 if
3
4
end 5 o
Figu :
addl 6. ¢
3.4 end
proced
E: ¢
begin
1. i
end 2.
3. o
Figure 1: 4. f
end

/* Alias reintroduction corrg

1s - =1 .n.w-!l

procq
G
retur
a
begir
1.

2,

end
procs
U

begin
fo

/* Reiteration co

procec
won
vali

begin
1.

il

end

procedure al

N: acally

AA: reach|

ing N

FPA. puossi

value: val
begin

1. let E' Y

R the d

/* aliag
2. for cac]
/* bind
entr

2.1 if

2.2 el
2.9

2.4

/* aliag
3. {Same
return
it will y
depend

D SCANP OIS 7 |

/¥ Alias falsification for deleting a peinter assignment
corresponding to step 1 in Figure 2 */
procedure falsify.for.deleting assign{N)
N: a pointer assignment to be deleted;
begin
1. create an empty worklist;
/* Falsify the aliases introduced at statement N. */
2. aliases_intro by.assignment(N, FALSIFIED);
3. for each M € predecessor(N)
for each may_hole(M,AA, PA = {01,02)) = YES
if the left-hand side of N is a prefix®of either
01 or 02, or both
aliasamplies_thru.assign(N, AA, PA,
FALSIFIED);
4. reiterate_worklist(worklist, FALSIFIED);
end

procedure falsify.for.deleting_call(N)
N: a function call to be deleted;
begin
1. create an empty worklist;
/* Falsify the aliases introduced by the call */
2. let £ and X be the corresponding entry node and
exit node of the function called by N respectively;
3. aliases_propagated.at_call(N,9’,0, FALSIFIED);
4. for each may.hold(N,AA, PA) = YES
J* If the called function may generate new aliases
from the reaching aliases implied by PA */
if 3 AA’ € bind(N, E, PA), such that some
PA' (# AA’) is generated from AA™ at exit X

Papers
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procedure exhaustive_aliasing(G)

- =1 .n.w-!l

/¥ Alias falsification for deleting a peinter assignment

proced
N:a
begin
1. crg
/#
2 al:
3. for

4. red
end

proceduy]

N:a
begin

1. crg

/t

2.1

N:

M:

begin
| 7

S o o

7
end

c°“"‘*“| procedure update_for_adding_assign(N,M)
u

a pointer assignment to be added;
the statement after which statement N is added;

make N as a successor of M, and leave NV without
any Successors;
create an empty worklist;
aliases_intro by assignment(N,Y ES);
repropagate_aliases( M, worklist);
reiterate_worklist{worklist,Y ES);
for each may_hold(M, AA, PA = (01,02)) = YES,
and may-hold(N,AA, PA) = NO

add (M, AA, PA) to worklist;
reiterate_worklist(worklist, FALSIFIED),

®1Figure 8: Procedure for falsifying aliases that are po-

3. aliftentially affected by adding a pointer assignment

4. fo

J* If the called function may generate new aliases

from

the reaching aliases implied by PA */ 215

if 3 AA’ € bind(N, E, PA), such that some

beg| PTO /* Alias falsification corresponding to step 1 in Figure 2 */
pro;fc: /* Alias reintroduction corrg =
begi PeEIR P““g /* Reiteration co
eg 1. if ; proceq procedure a
1 / retur N: acall §
9 gl a o AA: reach
5 3. n| begin vali ry Eif:
3 41 1| pegin value: val
1. 1 begin
4 2. ‘ 1. let E }
aend ] R the
Fi & g ] /* aliag
lgu 5 2. for cac
addi| 6. e P Bene
entr
34| 4 3 ] 2.1 if
2.2 els
proced ] 2.1
E: 6
begin
1. if 4. 21
end g i SGd
: /¥ aliag
Figure 1{ % f proc 3. (Same
return
end N it will y
(il depend
begir end
fol end |

PA’ (#

AAY is generated from AA” at exit X
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variaton points
unclear

1. if
1 /
2. si
3.
20 4 if
3
4
end| 5 ¢
Figu :
addl 6. ¢
3.4 end
proced
E: 6
begin
1. i
end 2. s
3. n
Figure 1: 4. f
end

end

proce

(THI

begin
fo

/* Reiteration cg

ng to step 1 in Figure 2 */

- =1 .n.w-!l

OI1 COTIT{]

proced
wor
vali

begin
1.

end

il

procedure a
N: acally
AA: reach|

ing N

PA. possi

value: val
begin

1. let E' Y

R the d

/* aliad
2. for cac]
/* bind
entr

2.1 if

2.2 ely
2.9

2.1

/* aliag
3. (Same
rcturn
it will y
depend

D SCANP OIS 7 |

/¥ Alias falsification for deleting a peinter assignment

corr

procedu

N:a
begin

1. crg

/#

2. als

3. for

4. red
end

proceduy]
N:a
begin
1. crq
/t
2

. le
3. ::]
4. fo

procedure update_for_adding_assign(N,M)

N: a pointer assignment to be added;

M: the statement after which statement N is added;
begin

1. make N as a successor of M, and leave N without
any SUCCessors;
create an empty worklist;
aliases_intro by assignment(N,Y ES);
repropagate_aliases( M, worklist);
reiterate_worklist{worklist,Y ES);
for each may_hold(M, AA, PA = (01,02)) = YES,
and may-hold(N,AA, PA) = NO

add (M, AA, PA) to worklist;
reiterate_worklist(worklist, FALSIFIED),

S o o

7
end

Figure 8: Procedure for falsifying aliases that are po-
tentially affected by adding a pointer assignment

J* If the called function may generate new aliases
from the reaching aliases implied by PA */

if 3 AA’ € bind(N, E, PA), such that some

PA' (# AA" is generated from AA" at exit X

216
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variaton points
ng to step 1 in Figure 2 */
unclear - —
‘ /* Alias falsification for deleting a pointer assignment
C:e’; procedure update_for_adding_assign(N,M)
E procedu i : - ;
eve ry variaton N: o N: a pointer assignment to be added; |
: begin M: the statement after which statement N is added;
new algorithm  JENEEALL
g alue: 2, ﬁ,,- 1. make N as a successor of M, and leave N without
4 2, 118" 5d 3 fol any SUCCessors;
end| 1 R the d 2. create an empty worklist;
Fi ' § ] /* aliad 3. aliases_intro_by.assignment(N,Y ES);
lgl.l 5 o 4. repropagate.aliases( M, worklist);
addi| . e / zl't'f il 5 reiterate_worklist{worklist,Y ES);
34| 4 3 ] 2.1 if| end 6. for each may hold(M, AA, PA = (01,02)) = YES,
iy &l and may-hold(N,AA, PA) = NO
proced ] 24 pro;t:eciw add (M, AA, PA) to worklist;
B ¢ begin 7. reiterate_worklist(worklist, FALSIFIED);
begln‘ 1 e d
1. if 4, 2 /‘ en
end 2. 8 ond 1 2 lefp - ;
3. o aind  eqPigure 8: Procedure for falsifying aliases that are po-
Figure 1{ 4 1 1 oce 3. {(Same | 3. aliitentially affected by adding a pointer assignment
return 4. fo
end N it will g /* 1f the ealled function may genetate new aliases
o depend from the reaching aliases implied by PA */ 217
begin end if 3 AA’ € bind(N, E, PA), such that some
folend | | Al AT o b aritad B A A ok e
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variaton points
unclear

ng to step 1 in Figure 2 */

- =1 .n.w-.!l

Il 2 /* Alias falsification for delating a pointer assignment
22:3 i:’ef;ﬂ procedure update.for_adding_assign(N,M)
every va riaton acall | N.a| Vi apointer assignment to be added;
| h % m begin M- the statement after which statement N is added;
new algorithm A posi| 1 T beEgIN
g alue: valf ﬁ,,- 1. make N as a successor of M, and leave N without
let E Y 3. fol an:y" SHUCCessors, E
R the g 2. create an empty worklist;
corre Ct NESsS /* aliad 3. aliases_intro_by_assignment(N,Y ES);
for ond 4. repropagate.aliases(M, worklist);
U nC|ea r / 2;':‘: 4 rel O reiterateworklist(worklist,Y ES);
34|, 4 3 ] 5 3 P 6. for each may_hold(M, AA, PA = (01,02)) = YES,
g5 gl and may-hold(N,AA, PA) = NO
proced ] 24 pmﬁiw add (M, AA, PA) to worklist;
. E: ¢ begin 7. reiterate_worklist(worklist, FALSIFIEDY);
egll.n 1 4 2.1 I 7? end
d 2. ) N : Gl g ;
en 3, i end /* aliad Z lpigure 8: Procedure for falsifying aliases that are po-
Figure1{ 4 f —_— 3. (seme | 3. aliltentially affected by adding a pointer assignment
rcturn 4. fo
end N it will y /* 1f the called function may generate new aliases
1?" depend from the reaching aliases implied by PA */ 218
begin end if 3 AA’ € bind(N, E, PA), such that some
fol end | PA' (# AA") is generated from AA" at exit X
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variaton points

g to step 1 in Figure 2 */

unclear Pw——
‘ ot /* Alias falsification for delating a pointer assignment
: 1::11 co c°""“3| procedure update.for_adding_assign(N,M)
o ure af procedu . r ;
eve ry VvVa naton cacall] N:a N: a pointer assignment to be added;
Lt m begin M- the statement after which statement N is added;
new algorithm  ZENEEALL
g alue: valy ﬁu 1. make N as a successor of M, and leave N without
. let E X 3. fol an:y" SHUCCessors,
R the ¢ 2. create an empty worklist;
COrre Ct NESsS /* aliad 3. aliases_intro_by_assignment(N,Y ES);
for ond 4. repropagate.aliases(M, worklist);
U nC|ea r / :;':f 4 rel O reiterateworklist(worklist,Y ES);
; 3 S P 6. for each may_hold(M, AA, PA = (01,02)) = YES,
. bl - 5o Gl and may-hold(N,AA, PA) = NO
INCOM pa rapie In 4 pmﬁ‘i‘" add (M, AA, PA) to worklist;
. . begin 7. reiterate_worklist(worklist, FALSIFIEDY);
precisio rdend
24 *
d 2. ’ )
- 3, 4 °nd P Z ltpigure 8: Procedure for falsifying aliases that are po-
Figure1{ 4 f P 3. (Same 2. :li tentially affected by adding a pointer assignment
return . fo
end N it will y /* 1f the called function may generate new aliases
w{ depend from the reaching aliases implied by PA */ 219
begin end if 3 AA’ € bind(N, E, PA), such that some
folend | | PA b AA in-senerated fiom A A ot exlt X
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variaton points

g to step 1 in Figure 2 */
unclear — 1
‘ A /* Alias falsification for delating a pointer assignment
: tﬁfmcz ‘—:’ef; procedure update.for_adding_assign(N,M)
every va riaton V. a call P sl N: a pointer assignment to be added; |
I ! h & m begin M: the statement after which statement N is added;
new algorithm A pusi] 1 7 begin
g alue: valy ﬁu 1. make N as a successor of M, and leave N without
. let E X 3. for an:f SUECESSOI'S;
R the ¢ 2. create an empty worklist;
COrIre Ct NESS /* ali 3. aliases_intro_by_assignment(N,Y ES);
< Mo e_a 4. repropagate.aliases(M, worklist);
U nC|ea r / z:m B 5. reiterate_worklist{worklist,Y ES);
; 3 S P 6. for each may_hold(M, AA, PA = (01,02)) = YES,
. bl . s al | and may-hold(N,AA, PA) = P{O
incomparable in 5 procedy add (M, AA, PA) to worklist
. . begin 7. reiterate_worklist(worklist, FALSIFIEDY);
precision {edond
2

/* alia Z lpigure 8: Procedure for falsifying aliases that are po-
inco m pa ra b I e in . (Same | 3. aliitentially affected by adding a pointer assignment

return 4. fo

it will § J* 1f the called function may generate new aliases

performance depend from the reaching alicses implied by PA */ 250

if 3 AA’ € bind(N, E, PA), such that some
I | PA' (# AA" is generated from AA" at exit X
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Runtime
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Program Analysis: Domain of Mutual Recursion
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Program Analysis: Domain of Mutual Recursion
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Program Analysis: Domain of Mutual Recursion

L ox=v; |

var points-to
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Program Analysis: Domain of Mutual Recursion

| x=f(); |

var points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to
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Program Analysis: Domain of Mutual Recursion

[ throw e ]

var points-to

call graph

fields points-to
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Program Analysis: Domain of Mutual Recursion

[ throw e ]

var points-to

call graph exceptions

fields points-to
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Program Analysis: Domain of Mutual Recursion

[ catch (E e) ]

var points-to

call graph exceptions

fields points-to
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Program Analysis: Domain of Mutual Recursion

[ catch (E e) ]

var points-to

call graph exceptions

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

exceptions

call graph

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

exceptions

call graph

fields points-to
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PROGRAM ANALYSIS IN DATALOG



Points-to Analyses for
=3
A Simple Language

program

a = new A();
b = new B();
c = new C();
b;

O T QL
LI (|

a;
b;
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Points-to Analyses for
A Simple Language

program

b;

O T QL
LI (|

a;
b;

aF new A();
b = new B();
c = new C();
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Points-to Analyses for
A Simple Language

program

a i new A();

b = new B();
c = new C();

b;

O T QL
LI (|

a;
b;
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Points-to Analyses for
A Simple Language

program

a i new A();

b = new B();
c = new C();

b;

O T |V
i jn

a;
b;
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Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

program

a i new A();

b = new B();
c = new C();

b;

O T |V
L ]

a;
b;

251



Points-to Analyses for
A Simple Language

What objects can a variable point to?

program

a = new A();
b = new B();

c = new C(); —
b;

O T QL
mn

a;
b;
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Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

program assignObjectAllocation

a = new A();
b = new B();

c = new C(); —
b;

O T QL
- n n

a;
b;
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Points-to Analyses for
A Simple Language

What objects can a variable point to?

program assignObjectAllocation

a = new A(); a new A()

b = new B();

c = new C(); —
b;

O T QL
mn

a;
b;
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Points-to Analyses for
A Simple Language

What objects can a variable point to?

program assignObjectAllocation

a = new A(); a new A()
b = new B(); b new B()
c = new C(); —

a=b;

b = a;

c=b;
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Points-to Analyses for
A Simple Language

What objects can a variable point to?

assignObjectAllocation

program

a = new A(); a new A()
b = new B(); b new B()
c = new C(); C new C()
a=b;

b = a;

c=b;
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Points-to Analyses for
A Simple Language

What objects can a variable point to?

assignObjectAllocation

program

a = new A(); a new A()
b = new B(); b new B()
c = new C(); C new C()
a=b;

b = a;

c=b;
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Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program
a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;
b = a;
c=b;
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Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program

a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;

b = a;

c=b; d
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Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program
a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;
b=a;
c=b;
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Points-to Analyses for
=3
A Simple Language

What objects can a variable point to?

assignObjectAIIocation

program
a = new A(); new A()
b = new B(); new B()
c = new C(); new C()
a=b;

b = a;

c=b;
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Defining varPointsTo

program
a = new A(); d new A)

b = new B(); b new B()

c = new C(); C new C()
a=b;

b = a;

c=Db;
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Defining varPointsTo

program assignObjectAllocation

a = new A(); a new A()
b = new B(); b new B()
¢ = new C(); C new C()
a=b;
b = a;
c=Db;
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Defining varPointsTo
program

Ia s e A I a new A()
b = new B(); b new B()
¢ = new C(); C new C()
a=b;

b = a;
c=Db;
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Defining varPointsTo
program

I 5= T A I a new A()
b = new B(); b new B()
¢ = new C(); C new C()
a=b;

b = a;

c=Db; d
a b
b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).
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Defining varPointsTo
program

I 5= T A I a new A() a new A()
b = new B(); b new B() b new B()
c = new C(); c new C() C new C()
a=b;
b=a; m
c=b; b d

a b
b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).
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Defining varPointsTo
program

a = new A(); a new A() a new A()
b = new B(); b new B() b new B()
c = new C(); c new C() C new C()
a=b; |
b=a; m
c=b; b d

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).
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Defining varPointsTo
program

a = new A(); a new A() a new A()
b = new B(); b new B() b new B()
c = new C(); c new C() C new C()
a=b; |
b=a; m
c=b; b d

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).
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Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b;
b =a;
c=b; a

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). ) 268
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Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b; a new B()
b =a;
c=b; a

a b

b C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). )70
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Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b; a new B()
b =a;
c=b; d
a b
C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). |an
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Defining varPointsTo

program a55|gn0bjectAIIocat|on

5 = e A new A() new A()
b = new B(); b new B() b new B()
¢ = new C(); C new C() C new C()
a=b; a new B()
b =a;
c=b: 3 b new A()
a b
C

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). )72
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Defining varPointsTo
program

— a new A() a new A()

b = new B(); b new B() b new B()

¢ = new C(); C new C() C new C()

a=b; a new B()

b = a;

o[y 3 b new A()
2 b C new B()
b c C new A()

varPointsTo(Var, Obj)
<- assignObjectAllocation(Var,Obj).

rvarPointsTo(To, Obj)
<- assign(From, To), varPointsTo(From,Obj). JEE
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Introducing Fields

program

a.F1 = b;
c=b.F2;
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program
a.F1 =b; —
c=b.F2;
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Introducing Fields

program
|a.F1=b; | )
c=b.F2;
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Introducing Fields

|aF1 b; | )
c=b.F2;
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Introducing Fields

program
|a.F1=b; | )
c=b.F2;

b a F1
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Introducing Fields

b a F1

program
a.F1 =b; —
|c=bf2 |
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Introducing Fields

b a F1

loadField
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Introducing Fields

b a F1

loadField

b F2 ¢
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Introducing Fields

loadField

b F2 ¢

program
a.F1 =b; —
c=b.F2;

b a F1l
(fieIdPointsTo(BaseObj, Fid, Obj)

N
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Introducing Fields

program
a.F1 =b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)

BaseObJ Fid b
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Introducing Fields

program
a.F1=b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)

<- storeField(From, Base, Fid),

BaseObJ Fld b
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Introducing Fields

program
a.F1 =b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)
<- storeField(From, Base, Fid),

BaseObJ FId g Obj

Base.FId = From

J
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Introducing Fields

program
a.F1=b; —
c=b.F2;

storeFleId

F1

loadField

b F2 ¢

fleIdPomtsTo(BaseObJ, Fid, Obj)
<- storeField(From, Base, Fid),

varPointsTo(Base, BaseObj),

BaseObJ Fld g Obj

Base.FId = From

J
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Introducing Fields

program
a.F1 =b; —
c=b.F2;

storeField

b a F1

loadField

b F2 ¢

g
fieldPointsTo(BaseObj, Fld, Obj)
<- storeField(From, Base, Fid),

varPointsTo(Base, BaseObj),

BaseObj.Fld g Obj

Base.FId = From

J
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Introducing Fields

storeField

program b a F1
F1=b; —
:: b.F2: loadField
b F2 ¢

BaseObij.Fld Obj

(fieIdPointsTo(BaseObj, Fid, Obj)

<- storeField(From, Base, FId), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). J
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Introducing Fields

storeField

program b a F1
F1=b; —
:: b.F2: loadField
b F2 ¢

BaseObij.Fld Obj

(fieIdPointsTo(BaseObj, Fid, Obj)

<- storeField(From, Base, FId), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). J
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Introducing Fields

storeField

program b a F1
F1=b; —
:: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). J
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Introducing Fields

program b a F1
F1=b; —
i: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObij, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

(varPointsTo(To, Obj)
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Introducing Fields

program b a F1

F1=b; —

o loadField
b F2 ¢

- . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

p
varPointsTo(To, Obj)
<- loadField(Base, Fid, To),
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Introducing Fields

program b a F1
F1=b; —
i: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObij, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),

varPointsTo(From, Obj). )

N

p
varPointsTo(To, Obj)
<- loadField(Base, Fid, To), To = Base.Fld
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Introducing Fields

program b a F1
F1=b; —
i: b.F2: loadField
b F2 ¢

- . . . BaseObj.FIld = Obj
fieldPointsTo(BaseObij, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),

varPointsTo(From, Obj). )

N

p
varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj), J
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Introducing Fields

b a F1

program
.F1 = b; —
&c]= b.E2: loadField

b F2 ¢

BaseObj.Fld = Obj

(fieIdPointsTo(BaseObj, Fid, Obj)

<- storeField(From, Base, FId), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObj.Fld

p
varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj), J
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Introducing Fields

b a F1

program
.F1 = b; —
o loadField

b F2 ¢

‘ . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObij.Fld

(varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, Fld, Obj). JZ% 296




Introducing Fields

storeField

program b a F1

F1=b; —

o loadField
b F2 ¢

‘ . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObij.Fld

(varPointsTo(To, Obj)
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Introducing Fields

storeField

program b a F1

F1=b; —

o loadField
b F2 ¢

‘ . . . BaseObj.FId = Obj
fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From, Base, Fld), = Base.FId = From
varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

BaseObij.Fld

(varPointsTo(To, Obj)
<- loadField(Base, Fld, To), To = Base.Fld
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Introducing Fields

program b 2 F1

F1=b; —

o loadField
b F2 ¢

(fieIdPointsTo(BaseObj, Fid, Obj) ]

<- storeField(From, Base, Fid),
varPointsTo(Base, BaseObij),
varPointsTo(From, Obj).

p
Enhance

specification

without changing

p
varPointsTo(To, Obj) base code
<- loadField(Base, Fld, To), -
varPointsTo(Base, BaseObj), }
oo 299
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Introducing Fields

program b 2 F1

F1=b; —

o loadField
b F2 ¢

([fieIdPointsToIBaseObj, Fid, Obj) ]

<- storeField(From, Base, Fid),
varPointsTo(Base, BaseObij),
varPointsTo(From, Obj).

p
Enhance

specification

without changing

(varPointsTo(To, Obj) base code
<- loadField(Base, Fld, To), -
varPointsTo(Base, BaseObj), }
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Introducing Fields

program b a F1
a.F1=b: — '
e loadField
b F2 ¢
p
|fieldPointsTo|BaseObj, Fld, Obj) ]
. a h
Enhance

specification
without changing

p
varPointsTo(To, Obj) base code
<- loadField(Base, Fld, To), -
varPointsTo(Base, BaseObj), }
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Introducing Fields

program b a Fl1
a.F1=b; — :
c= b2 loadField
b F2 ¢
fieldPointsTo[BaseObj, Fld, Obj) ]
: @ D
Enhance

specification
without changing

p
varPointsTe(To, Obj) base code
<- loadFigld(Base, Fld, To), -

varPoihtsTo(Base, BaseObj), }
. 302
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Specification + Implementation

Specifications Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

. J

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

. S

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).
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Specification + Implementation

Specifications Implementation

varPointsTo(Var, Obj)
< assignObjectAllocation(...).

rvarPointsTo(To, Obj) Doop:
<-assign(From, To), | ~2500 lines of logic
varPointsTo(From,Obj). J

~

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).
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varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),
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varPointsTo(To, Obj)
<- loadField(Base, Field, To),
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Implementation
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).
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varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).

\\

varPointsTo(To, Obj)
<- loadField(Base, Field, To),
varPointsTo(Base, BaseObj),
fieldPointsTo(BaseObj, ...).

Implementation

Control
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).
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varPointsTo(To, Obj)
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Implementation
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj).
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varPointsTo(To, Obj)
<- loadField(Base, Field, To),
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).
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varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)
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Specification + Implementation

varPointsTo(Var, Obj)
<- assignObjectAllocation(...).

.

varPointsTo(To, Obj)
<- assign(From, To),
varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)

<- storeField(From,Base,Field),
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Specification + Implementation

Specifications Implementation

Does It Run
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Types: Sets of Values

universe
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Types: Sets of Values

universe

[animaI(X) > ]
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Types: Sets of Values

universe

[animaI(X) > ]
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Types: Sets of Values

universe

animal(X) -> .

bird(X) -> animal(X) .
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animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

rdog(X) -> lbird(X).
Lbird(X) -> ldog(X).
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Types: Sets of Values

animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

rdog(X) -> lbird(X).
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Types: Sets of Values

animal(X) -> .

bird(X) -> animal(X) .

rdog(X) -> animal(X) .

rdog(X) -> lbird(X).
Lbird(X) -> ldog(X).

pet(X) -> animal(X).

universe
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“Virtual Call Resolution”

query _(D)
<- dog(D), eat(D, Thing),
food(Thing),
chocolate(Thing).

339



“Virtual Call Resolution”

query _(D)
<- dog(D), eat(D, Thing),
food(Thing),
chocolate(Thing).

\

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).
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query _(D)
<- dog(D), eat(D, Thing),
food(Thing),
chocolate(Thing).

\

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).
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“Virtual Call Resolution”

avery_(D)
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).
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“Virtual Call Resolution”

avery (D)
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

(eat(A, Food)
<- dogChews(A,Food)
; birdSwallows(A,Food).
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“Virtual Call Resolution”

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
; birdSwallows(A,Food).
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“Virtual Call Resolution”

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
: birdSwallows(A,Food). birdSwallows :: (bird, food)
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“Virtual Call Resolution”

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
: birdSwattowstA-Feed): birdSwallows :: (bird, food)
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Type Erasure

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

\ J

eat(A, Food) dogChews :: (dog, food)

<- dogChews(A,Food)
pirdSwattowstA-Feed)— birdSwallows :: (bird, food)
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Type Erasure

query (D)

<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—
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Type Erasure

query (D)

<--gdeg{B}; eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—
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Type Erasure

query (D)

<--gdeg{B}; eat(D, Thing),

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—
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Type Erasure

query (D)

.
<--gdeg{B}; eat(D, Thing),
Thing :: chocolate

food(Thing),
chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—

351



Type Erasure

—
<--gdeg{B}; eat(D, Thing),
~food{Thimg); Thing :: chocolate

chocolate(Thing).

. S

eat(A, Food)

<- dogChews(A,Food) eat :: (dog, food)

PiredSwatewstAcFooe—
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Clean Up

query (D)
<--gdeg{B}; eat(D, Thing),
—foodtThing);
chocolate(Thing).

\

(eat(A, Food)
<- dogChews(A,Food)

SirdSwatowstA-Food)
) ) /*

Thing :: chocolate

eat :: (dog, food)
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Clean Up

query (D)

<- eat(D,Thing),
chocolate(Thing). J Thing :: chocolate

eat(A, Food)

<- dogChews(A,Food). ] eat :: (dog, food)
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References on Datalog and Types

* “Type inference for datalog and its application to
query optimisation”, de Moor et al., PODS ‘08

 “Type inference for datalog with complex type
hierarchies”, Schafer and de Moor, POPL ‘10

* “Semantic Query Optimization in the Presence of
Types”, Meier et al., PODS ‘10



Datalog Program Analysis Systems

« BDDBDDB

— Data structure: BDD WhlhhEg TSTANFORD

COMPUTER SCIENCE

e Semmle (.QL)

— Object-oriented syntax Semmle/
— No update
UMASSCS
° Doop EEEEEEEEEEEEEEEEEEEEEEEEEEEE i
— Points-to analysis for full Java 2 LOGICBLOX

— Supports for many variants of context and heap
sensitivity.
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REVIEW



Program Analysis

* Whatis it?
— Fundamental analysis aiding software development
— Help make programs run fast, help you find bugs

* Why in Datalog?

— Declarative recursion

* How does it work?

— Really well! order of magnitude faster than hand-
tuned, Java tools

— Datalog optimizations are crucial in achieving
performance



Program Analysis

understanding program behavior
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Program Analysis

| imperative %
understanding program behavior
A
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Program Analysis

| functional f
understanding program behavior
A
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Program Analysis

| logic
understanding program behavior
N
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Program Analysis

| Datalog f
understanding program behavior
A
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Program Analysis

Datalog

understanding program behavior
A

* “Evita Raced: Meta-compilation for
declarative networks”, Condie et al., VLDB ‘08
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OPEN CHALLENGES



Traditional View
Datalog: Data Querying Language

Queries



Traditional View
Datalog: Data Querying Language

Application Logic

Middleware

Queries

367



Traditional View
Datalog: Data Querying Language

Ul Logic + Rendering

S -
Application Logic

Middleware

Queries

368



New View
Datalog: General Purpose Language

Ul Rendering

o e

7

Gl Querles




Challenges Raised by Program Analysis

* Datalog Programming in the large
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Challenges Raised by Program Analysis

* Datalog Programming in the large
— Modularization support
— Reuse (generic programming)
— Debugging and Testing
* Expressiveness:
— Recursion through negation, aggregation
— Declarative state
* Optimization, optimization, optimization
— In the presence of recursion!
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog
* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

 Conclusions



Declarative Networking

A declarative framework for networks:

— Declarative language: “ask for what you want, not how to
implement it”

— Declarative specifications of networks, compiled to
distributed dataflows

— Runtime engine to execute distributed dataflows



Declarative Networking

A declarative framework for networks:

— Declarative language: “ask for what you want, not how to
implement it”

— Declarative specifications of networks, compiled to
distributed dataflows

— Runtime engine to execute distributed dataflows

e Observation: Recursive queries are a natural fit for
routing



A Declarative Network

T

\E

Traditional Networks Declarative Networks
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A Declarative Network

) l/f@\\

—H D_} —)
Ng

Traditional Networks Declarative Networks

Network State 8 Distributed database
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A Declarative Network

8 =

gé///g\\\

s

Distributed recursive
query

Traditional Networks Declarative Networks

Network State 8 Distributed database

Network protocol Recursive Query Execution
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A Declarative Network

8 Daw

Dataflow = \
messages f

8D

Dataflm

8 )

messages

Dataflow

Dataflow \qessages

6a%a flow

Dataflow

Traditional Networks

Network State 8

Network protocol

Network messages

Declarative Networks

Distributed database
Recursive Query Execution

Distributed Dataflow
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Declarative™ in Distributed Systems
Programming

IP Routing [SIGCOMM’05, SIGCOMM’09 demo] Databases (5)
Overlay networks [SOSP’05] Networking (11)
Network Datalog [SIGMOD’06] _

Distributed debugging [Eurosys’06] Security (1)
Sensor networks [SenSys’'07] Systems (2)
Network composition [CoNEXT’08]

Fault tolerant protocols [NSDI'08]

Secure networks [ICDE’09, NDSS’10, SIGMOD’10]
Replication [NSDI’09]

Hybrid wireless routing [ICNP’09], channel selection [PRESTO’10]
Formal network verification [HotNets’09, SIGCOMM’11 demo]
Network provenance [SIGMOD’10, SIGMOD’11 demo]

Cloud programming [Eurosys ‘10], Cloud testing (NSDI'11)

... <More to come>
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Open-source systems

* P2 declarative networking system
— The “original” system
— Based on modifications to the Click modular router.
— http://p2.cs.berkeley.edu

 RapidNet

— Integrated with network simulator 3 (ns-3), ORBIT wireless testbed, and
PlanetLab testbed.

— Security and provenance extensions.
— Demonstrations at SIGCOMM’09, SIGCOMM’11, and SIGMOD’11
— http://netdb.cis.upenn.edu/rapidnet

* BOOM - Berkeley Orders of Magnitude

— BLOOM (DSL in Ruby, uses Dedalus, a temporal logic programming
language as its formal basis).

— http://boom.cs.berkeley.edu/



http://p2.cs.berkeley.edu/
http://netdb.cis.upenn.edu/rapidnet
http://boom.cs.berkeley.edu/

Network Datalog

R1: reachable(@S,D) <- link(@S,D)
R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

O—O—O—@
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Network Datalog

Location Specifier “@S”

R1: reachable(@S,D) <

R2: reachable(@S5,D) < @) reachable(@Z,D)

O—O—O—@
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Network Datalog

Location Specifier “@S”

R1: reachable(@S,D) <
R2: reachable(@S,D) <

link

@S | D

@d | c

link link link

S| D S| D
Input table: @D © ©
@a|b @b | c @c
@b | a @c

()—®) (o)
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Network Datalog

R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

qguery (@M,N) <- reachable(@M,N)

link

S
Input table: ©

D

link

@a

b

@S | D

link

@r

@b | c

@S | D

link

@b | a

@S | D

@d | c

@c
@c|d
(©)
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Network Datalog

R1: reachable(@S,D) <- link(@S,D)
R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)
query (@M,N) <- reachable(@M,N) <= All-Pairs Reachability

link link link link

Input table: @b ©s|D @D @s|D
@a | b @b | c @c @d | c

@b | a @c | d

D———(—@
reachable reachable reachable reachable

Output table: @S |D @S |D @S |D @s|D
@a|b @b | a @c | a @d | a

@a | c @b | c @c | b @d| b

@a | d @b | d @c | d @d | c
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Network Datalog

R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)
query _(@a,N) <- reachable(@a,N)

link

@d | c

link link link
Input table: @D @b @s|D
@a|b @b | c @c
@b | a @c | d
(O——)——)
reachable )
Output table: @S | D
@a | b | yQuery: reachable(@a,N)
@a | c
@a | d] )
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Implicit Communication

* A networking language with no explicit communication:

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

\ t /

Data placement induces communication



Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

O ————
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* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

path=[c,d]

O—o)——)——)

c advertises [c,d]




Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

path=[b,c,d] path=[c,d]

Qo) ——)——)

b advertises [b,c,d] c advertises [c,d]




Path Vector Protocol Example

* Advertisement: entire path to a destination

 Each node receives advertisement, adds itself to path
and forwards to neighbors

path=[a,b,c,d] path=[b,c,d] path=[c,d]

Qo) ——)——)

b advertises [b,c,d] c advertises [c,d]




Path Vector in Network Datalog

R1: path(@S,D,P) <- link(@S,D), P=(S,D).
R2: path(@S,D,P) <-link(@Z,S), path(@Z,D,P,), P=SeP,.
query (@S,D,P) <- path(@S,D,P)

# |nput: link(@source, destination)
# Query output: path(@source, destination, pathVector)

Courtesy of Bill Marczak (UC Berkeley)



Path Vector in Network Datalog

R1: path(@S,D,P) <- Iink(@S,D

R2: path(@S,D,P) <-link(@Z,S), path(@Z,D,P,), P=SeP,.
query (@S,D,P) <- path(@S,D,P)

# |nput: link(@source, destination)
# Query output: path(@source, destination, pathVector)

Courtesy of Bill Marczak (UC Berkeley)



Path Vector in Network Datalog

R1: path(@S,D,P) <- Iink(@S,D
R2: path(@S,D,P) <-link(@Z,S), path(@Z,D,Pz)

query (@S,D,P) <- path(@S,D,P) Add S to front of P,

# |nput: link(@source, destination)
# Query output: path(@source, destination, pathVector)

Courtesy of Bill Marczak (UC Berkeley)



Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).
R2: path(@S,D,P) <- link(@2Z,S), path(@Zz,D,P,), P=SeP,,
query (@a,d,P) <- path(@a,d,P)

link

link

@ | D

@c

@S

@c

@d

path

Q)

link link
Neighbor @s | D @S | D
table: @a | b @b | c
@b | a
(H)—)
path path
Forwarding @s|p| P @s| b P

table:
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Query Execution

R1: path(@S,D,P) <- link(@$,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P,),
(ﬂ}1=e§xP(2@a,d,P) <- path(@a,d,P)

link

@S

D

@d

C

link link link

Neighbor @S |D @S | D @S| D
table: @a | b @b | c @c

@b | a @c | d

()——b) (©)

path path path

Forwarding @b P @s| b P @ |Db

table:

(@
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Query Execution

R1: path(@S,D,P) <- link(@$,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P,),
(ﬂ}1=e§xP(2@a,d,P) <- path(@a,d,P)

link

@S

@d

link link link

Neighbor @s | D @S | D @s| b

table: @a|b @b | c @c | b
@b | a 1@c| d »

(H)—) (o)

path path path

Forwarding @s|p| P @s|b| P @s | b
table: @c | d | [c,d]
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Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link link link link
Neighbor @S| D @S (D @S| D @S |D
table: @a | b @b | c @c| b @d | c
@b | a @c
O—o—O—@
path path path
Forwarding @b P @s|b| P @ b, P

table: @c | d | [c,d]
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Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.

query (@a,d,P) <- path(@a,d,P)

Neighbor
table:

Forwarding
table:

link

link

@s | D

@a

@r

path

Matching variable Z = “Join” M

link

S(D

@c

@
&bb
d

()

link

O

@S

@d

(@)

@S

&

path

—

@S

@c | d

[c,d

@
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Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link

@S

@d

link link link
Neighbor @S |D @S |D @S| D
table: @a | b @b | c @c
@b | a @c | d
path(@b,d,[b,c,d])
path path path
Forwarding @ Db P @ | D P @|b) P

table: @b | d | [b,c,d] @c | d

[c,d]
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Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link

@S

@d

link link link
Neighbor @S |D @S |D @S| D
table: @a | b @b | c @c
@b | a @c | d
path(@b,d,[b,c,d])
path path path
Forwarding @ Db P @ | D P @|b) P

table: @b | d | [b,c,d] @c | d

[c,d]
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Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link

@S

@d

link link link
Neighbor @S| D @S | D @S| D
table: @al b @b | c @c
@b | a @c | d
M @
path(@a,d,[a,b,c,d]) path(@b,d,[b,c,d])
path path path
Forwarding @ | D e @ | D * @ Db P
table: @a | d [a,b,c,d] @b | d [b,c,d] @c | d | [cd]
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Query Execution

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z3S), path(@Z,D,P,), P=SeP,.
query (@a,d,P) <- path(@a,d,P)

Matching variable Z = “Join” M

link link link link
Communication patterns are identical to those in E

the actual path vector protocol

e —o—@

path(@a,d,[a,b,c,d]) path(@b,d,[b,c,d])
path path path
Forwarding @ D e @ | D * @ Db P

table: @a | d | [a,b,c,d] @b | d | [b,cd] @c | d | [cd]
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All-pairs Shortest-path

R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).
R2: path(@S,D,P,C) <- link(@5,Z,C,), path(@Z,D,P,,C,), C=C,+C,, P=SeP.,.



All-pairs Shortest-path

R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).
R2: path(@S,D,P,C) <- link(@5,Z2,C,), path(@Z,D,P,,C,), C=C,+C,, P=SeP,,

R3: bestPathCost(@S,D,min<C>) <- path(@S,D,P,C).
R4: bestPath(@S,D,P,C) <- bestPathCost(@S,D,C), path(@S,D,P,C).
query_(@S,D,P,C) <- bestPath(@S,D,P,C)
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

2 1-hop

Link Table Path Table Network
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:

— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

/ M\{

Link Table Path Table Network
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table Network
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table Network
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table Network
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>k
6
/ \+ Z 2-hop
3
2 1-hop
1

Link Table Path Table
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Distributed Semi-naive Evaluation

* Semi-naive evaluation:
— Iterations (rounds) of synchronous computation
— Results from iteration ith used in (i+1)t

10
Z 3-hop
>l (F
6
/ \+ Z 2-hop
3
2 1-hop
1 o000 ®
Link Table Path Table Network

Problem: How do nodes know that an iteration is completed? Unpredictable delays and
failures make synchronization difficult/expensive. 116



Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\
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Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows
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Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:
— Computed tuples in any iteration are pipelined to next iteration
— Natural for distributed dataflows

/M\

Link Table Path Table Network
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Pipelined Semi-naive (PSN)

* Fully-asynchronous evaluation:

— Computed tuples in any iteration are pipelined to next iteration

— Natural for distributed dataflows

\

o

P>

9\

=l ESN RN [ O} {621 [0} [U8) [e)) Vo) T

Link Table Path Table

Relaxation of
semi-nailve

Network

422



Dataflow Graph

5% > > B > —l
|_+l—v
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2Q 52

> e > >
i <8
Messages o J LI LI L o Messages

R Q

! [ L ;.

3 c

g Ef —-— =3s

T link -

Local Tables

Single Node

# Nodes in dataflow graph (“elements”):
m  Network elements (send/recv, rate limitation, jitter)
m  Flow elements (mux, demux, queues)
m Relational operators (selects, projects, joins, aggregates)



Dataflow Graph

> > >
Network In Network Out
Messages L L L Messages

X1
ddan
—

It

Local Tables

[

Single Node

# Nodes in dataflow graph (“elements”):
m  Network elements (send/recv, rate limitation, jitter)
m  Flow elements (mux, demux, queues)
m Relational operators (selects, projects, joins, aggregates)
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Dataflow Graph

Strands
> >
B B gg
Network In 5[ Network Out
A
Messages L L _,i Messages
O
> 25
N link "l
ocal Tabl
Single Node

# Nodes in dataflow graph (“elements”):
m  Network elements (send/recv, rate limitation, jitter)

m  Flow elements (mux, demux, queues)

m Relational operators (selects, projects, joins, aggregates)
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Rule — Dataflow “Strands”

S| ——» S T -
R2: path(@S,D,P) <- link(@S5,Z), path(@Z,D,P,),
P=SeP2.
Eg —— r— g;
> > > >

! 23
fcf — >t > > vV
i 9
- [ Bl B B vV
3

2 < 4G
1 | link °

Local Tables
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Rule — Dataflow “Strands”
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Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S5,2), path(@Z,D,P,), P=SeP,,

~_ 7

Matching variable Z = “Join” M



Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M
Rewritten rules:
R2a: linkD(S,@D) <« link(@S,D)

R2b: path(@S,D,P) < linkD(S,@Z2), path(@Z,D,P,), P=SeP,.



Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M

Rewritten rules:

R2a: linkD(S,@D) <« link(@S,0) >

R2b: path(@S,D,P) < linkD(S,@Z2), path(@Z,D,P,), P=SeP,.




Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M
Rewritten rules:

R2a: linkD(S,@D) « link(@S,D)

R2b: path(@5,D,P) < IiD(S,@2), path(@Z,D,P,), P=SeR.

Matching variable Z = “Join” M




Localization Rewrite

* Rules may have body predicates at different locations:

R2: path(@$,D,P) <- link(@$,2), path(@Z,D,P,), P=SeP,.

~_ 7

Matching variable Z = “Join” M
Rewritten rules:
R2a: linkD(S,@D) <« link(@S,D)

R2bGath(@S,D,P) JinkD(S,@2), path(@7Z,D,P,), P=SsP,.

Matching variable Z = “Join” M



Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S,@2), path(@Z,D,P,), P=SeP,,

Strand Elements

u| yJoMi1aN

u| JJOMIaN




Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S, @1%), path(@Z,@ P=SeP,.

Apath |

Strand Elements

u| yJoMi1aN

u| JJOMIaN




Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S, @1%), path(@Z,@ P=SeP,.

u| yJoMi1aN

Apath

Strand Elements

Join
path.Z =
linkD.Z

linkD

u| JJOMIaN
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Physical Execution Plan

RZb@(@S,D,P) <JlinkD(S,@Z), path(@Z,D,P,), P=SeP,.

u| yJoMi1aN

Apath

Strand Elements

Join
path.Z =
linkD.Z

b

Project
path(S,D,P)

linkD

u| JJOMIaN
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RZb@(@S,D,P) <JlinkD(S,@Z), path(@Z,D,P,), P=SeP,.

u| yJoMi1aN

Apath

Strand Elements

Join
path.Z =
linkD.Z

b

Project
path(S,D,P)
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path.S
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Physical Execution Plan

R2b: path(@S,D,P) <- linkD(S,@2), path(@Z,D,P,), P=SeP,,

u| yJoMi1aN

Apath

AlinkD

Strand Elements

Join

Project

pach = # path(SrDrP)
linkD.Z
linkD
Join Project
||nkDZ = # path(S,D,P)
path.zZ

path

Send to
path.S

Send to
path.S

u| JJOMIaN
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Pipelined Evaluation

* Challenges:

— Does PSN produce the correct answer?
— Is PSN bandwidth efficient?

* |.e.does it make the minimum number of inferences?

* Theorems [SIGMOD’06]:

— RS¢\(pP) = RSpsp(P), Where RS is results set
— No repeated inferences in computing RS,¢\(p)

— Require per-tuple timestamps in delta rules and FIFO and
reliable channels



Incremental View Maintenance

Leverages insertion and deletion delta rules for state
modifications.

Complications arise from duplicate evaluations.

Consider the Reachable query. What if there are many ways to
route between two nodes a and b, i.e. many possible derivations

for reachable(a,b)?



Incremental View Maintenance

Leverages insertion and deletion delta rules for state
modifications.

Complications arise from duplicate evaluations.

Consider the Reachable query. What if there are many ways to
route between two nodes a and b, i.e. many possible derivations
for reachable(a,b)?

Mechanisms: still use delta rules, but additionally, apply
— Count algorithm (for non-recursive queries).
— Delete and Rederive (SIGMOD’93). Expensive in distributed settings.

Maintaining Views Incrementally. Gupta, Mumick,
Ramakrishnan, Subrahmanian. SIGMOD 1993.



Recent PSN Enhancements

* Provenance-based approach

— Condensed form of provenance piggy-backed with each tuple for
derivability test.

— Recursive Computation of Regions and Connectivity in Networks. Liu,
Taylor, Zhou, Ives, and Loo. ICDE 2009.

* Relaxation of FIFO requirements:

— Maintaining Distributed Logic Programs Incrementally.
Vivek Nigam, Limin Jia, Boon Thau Loo and Andre Scedrov.
13th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP), 2011.
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Optimizations

e Traditional:
— Aggregate Selections
— Magic Sets rewrite
— Predicate Reordering

* New:
— Multi-query optimizations:
* Query Results caching
* Opportunistic message sharing

— Cost-based optimizations
* Network statistics (e.g. density, route request rates, etc.)
* Combining top-down and bottom-up evaluation

} PV/DV — DSR



Suggested Readings

 Networking use cases:

— Declarative Routing: Extensible Routing with Declarative Queries. Loo,
Hellerstein, Stoica, and Ramakrishnan. SIGCOMM 2005.

— Implementing Declarative Overlays. Loo, Condie, Hellerstein, Maniatis,
Roscoe, and Stoica. SOSP 2005.

* Distributed recursive query processing:

— *Declarative Networking: Language, Execution and Optimization. Loo,
Condie, Garofalakis, Gay, Hellerstein, Maniatis, Ramakrishnan, Roscoe, and
Stoica, SIGMOD 06.

— Recursive Computation of Regions and Connectivity in Networks. Liu, Taylor,
Zhou, lves, and Loo. ICDE 20009.



Challenges and Opportunities

e Declarative networking adoption:

— Leverage well-known open-source software-based projects, e.g. ns-3,
Quagga, OpenFlow

— Wrappers for legacy code
— Usability studies
— Open-source code release and demonstrations

* Formal network verification:

— Integration of formal tools (e.g. theorem provers, SMT solvers), formal
network models (e.g. routing algebra)

— Operational semantics of Network Datalog and subsequent extensions

— Other properties: timing, security

* Opportunities for automated program synthesis



Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog

* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

* Modern System Implementations

* Open Questions
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

* Refresher: basics of Datalog
* Application #1: Data Integration and Exchange
* Application #2: Program Analysis

* Application #3: Declarative Networking

 Conclusions



What Is A Program?

prograim = aﬂ@ﬁjﬁhmﬁ
EI}J
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Robert Kowalski

I‘ Imperial College, London

An algorithm can be regarded as consisting of a
logic component, which specifies the knowledge to be

-} — used in solving problems, and a control component,
which determines the problem-solving strategies by
means of which that knowledge is used. The logic

component determines the meaning of the algorithm
whereas the control component only affects its
effkiency. The effkiency of an algorithm can often be
improved by improving the control component without
changing the logic of the algorithm. We argue that
computer programs would be more often correct and
more easily improved and modified if their logic and
control aspects were identified and separated in the
program text.
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What Is A Program?
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lucid, systematic,
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treatment of busic
and dynomic data
structures, surting,

Programming
Languages

Algorithm =
Logic + Control

Robert Kowalski
Imperial College, London

I ] Homing
Editor

An algorithm can be regarded as consisting of a
logic component, which specifies the knowledge to be
used in solving problems, and a control component,
which determines the problem-solving strategies by
means of which that knowledge is used. The logic
component determines the meaning of the algorithm
whereas the control component only affects its
effkiency. The effkiency of an algorithm can often be
improved by improving the control component without
changing the logic of the algorithm. We argue that
computer programs would be more often correct and
more easily improved and modified if their logic and
control aspects were identified and separated in the
program text.

Key Words and Phrases: control language, logic
programming, nonpr l  language, programming
methodology, program specification, relational data
structures

CR Categories: 3.64, 4.20, 4.30, 5.21, 5.24 453




Logic + Control + Data Structures

Implementation

Control R
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THE END... OR IS IT THE
BEGINNING?



