
Theory Comput Syst (2011) 49:429–459
DOI 10.1007/s00224-011-9327-6

Containment of Conjunctive Queries on Annotated
Relations

Todd J. Green

Published online: 30 April 2011
© Springer Science+Business Media, LLC 2011

Abstract We study containment and equivalence of (unions of) conjunctive queries
on relations annotated with elements of a commutative semiring. Such relations and
the semantics of positive relational queries on them were introduced in a recent pa-
per as a generalization of set semantics, bag semantics, incomplete databases, and
databases annotated with various kinds of provenance information. We obtain pos-
itive decidability results and complexity characterizations for databases with lin-
eage, why-provenance, and provenance polynomial annotations, for both conjunctive
queries and unions of conjunctive queries. At least one of these results is surprising
given that provenance polynomial annotations seem “more expressive” than bag se-
mantics and under the latter, containment of unions of conjunctive queries is known
to be undecidable. The decision procedures rely on interesting variations on the no-
tion of containment mappings. We also show that for any positive semiring (a very
large class) and conjunctive queries without self-joins, equivalence is the same as
isomorphism.

Keywords Database theory · Provenance · Query optimization

A preliminary version of this paper [17] appeared in the Proceedings of the 12th International
Conference on Database Theory (ACM International Conference Proceeding Series, 361 ACM 2009,
ISBN 978-1-60558-423-2).

Our work was supported by the National Science Foundation under grants IIS-0447972, 0513778,
and 0629846.

Work performed while at the University of Pennsylvania.

T.J. Green (�)
University of California, Davis, CA 95616, USA
e-mail: green@cs.ucdavis.edu

mailto:green@cs.ucdavis.edu

430 Theory Comput Syst (2011) 49:429–459

1 Introduction

We study containment and equivalence of conjunctive queries (CQs) and unions of
conjunctive queries (UCQs) under a variety of database semantics, including the clas-
sical set semantics and the bag semantics used in practical DBMS implementations,
as well as a number of semantics involving provenance (aka lineage) data annota-
tions. Our goal is to provide a general framework for studying all of these problems
and use this framework to draw precise connections among them.

The unifying foundation for our study is that of K-relations, which are rela-
tions whose tuples are annotated with elements from a commutative semiring K .
These were introduced in a recent paper [20] as a generalization of sets, bags, the
Boolean c-tables used in incomplete databases [21, 23], probabilistic databases [15,
35], databases with lineage [13] or why-provenance [4] information, and other kinds
of annotated relations. The semantics of positive relational algebra queries extends to
K-relations via definitions in terms of the abstract “+” and “·” operations of K . For
K = B, the Boolean semiring, this specializes to the usual set semantics, while for
K = N, the semiring of natural numbers, it is bag semantics.

The introduction of annotations on relations presents new challenges in query
reformulation and optimization, however, as queries that are semantically equiva-
lent when posed over ordinary relations may become inequivalent when posed over
K-relations. Indeed, this phenomenon was already observed for the case of bag
semantics [8, 24], where, e.g., adding a “redundant” self-join to a query actually
changes the query’s meaning. The need to compare query equivalence for different
kinds of provenance annotations was also emphasized from early on in [4, 5] and
reiterated in [3]. A central theme of this paper is to compare different provenance-
annotated semantics among themselves and with the standard set and bag semantics.
The comparison is done w.r.t. containment1 and equivalence of conjunctive queries
(CQs) and unions of conjunctive queries (UCQs), leading to four different hierar-
chies among these semantics. Whether the steps in these hierarchies are strict or not
is always informative and sometimes surprising.

We consider in this paper five different kinds of provenance information that can
be captured using semiring annotations. These range from the very simple data ware-
housing lineage of [13], in which a tuple in the output is annotated with a set of tuple
ids of all “contributing” source tuples, to the why-provenance of [4], in which output
tuples are annotated with a set of sets of contributing source tuples, to the provenance
polynomials N[X] of [20], in which the annotations are polynomial expressions over
the source tuple ids which fully “document” how an output tuple is produced in the
result of a query. Provenance polynomials are as “general” as any other commutative
semiring, hence this is the most informative form of provenance annotations. N[X]-
relations are not just of theoretical interest, but also have practical applications as
the foundation of trust policies and incremental maintenance algorithms in systems
for collaborative data sharing [19]. We also consider a new form of provenance, the
Boolean provenance polynomials B[X], as well as the form of lineage used in the

1We define inclusion of K-relations by the natural order present in the semirings of interest to us (see
Sect. 3).

Theory Comput Syst (2011) 49:429–459 431

Trio project [31], which we show can also be captured using a semiring. These two
forms of provenance are intermediate between why-provenance and N[X].

To illustrate three of the models, for the annotated source relation R and query Q

R
def=

A B C

a b c p

d b e r

f g e s

Q
def= πAC

(
πABR �� πBCR ∪ πACR �� πBCR

)

(where p, r , and s are the tuple ids) the data warehousing lineage of (d, e) in the out-
put is {r, s}, the why-provenance of (d, e) is {{r}, {r, s}}, and the N[X]-provenance
is 2r2 + rs. Intuitively, lineage tells us which source tuples were involved in pro-
ducing a given output tuple—in this case, the source tuples labeled r and s; why-
provenance tells us which sets of source tuples were involved in producing the output
tuple—here either r alone, or r with s, can be used to produce the output tuple;
and N[X]-provenance tells us exactly how the tuple was produced from the source
tuples—here, there are two derivations of the output tuple involving a self-join of r

with itself (hence the 2r2 term), and one involving a join of r with s (correspond-
ing to the rs term). Additionally, note that by “plugging in” numeric values for the
variables (e.g., p = 2, r = 3, s = 1) and evaluating the N[X]-provenance of an output
tuple, we obtain the multiplicity of the tuple under bag semantics (e.g., 2 ·32 +1 = 19
for (d, e)).

Another central theme of this paper is to establish the complexity of containment
and equivalence of CQs/UCQs for various semirings. For the semirings B (resp., N)
this corresponds to set (resp., bag) semantics and the questions were studied in the
past [6, 8, 30] as was the case of bag-set semantics [11, 29] (In Sect. 7.5 we discuss
the relationship between the latter and our results.) Results for an entire class of
semirings (the distributive lattices) have already been established in [16, 20]. This
paper focuses primarily on the provenance semirings.

A priori, it is not clear that containment and equivalence for queries on relations
with provenance annotations should even be decidable, as bag containment is known
to be undecidable for UCQs [24], and N[X] seems related to bags. Nevertheless, we
are able to show that containment is decidable for all the forms of provenance annota-
tions we consider, for both CQs and UCQs. We also establish interesting connections
with the same problems for bag semantics. In particular our contributions are:

– We show that the various forms of provenance annotations we consider are related
by surjective semiring homomorphisms, which yields easy bounds on their relative
behavior with respect to query containment.

– We show that for UCQs, N[X]- containment implies K-containment for any semir-
ing K , and for any positive K (a very large class that includes all the semirings we
consider in this paper, see Sect. 3), K-containment implies containment under the
usual set semantics.

432 Theory Comput Syst (2011) 49:429–459

B PosBool(X) Lin(X) Why(X) Trio(X) B[X] N[X] N

CQs cont NP NP NP NP NP NP NP ? (�p
2 -hard)

equiv NP NP NP GI GI GI GI GI

UCQs cont NP NP NP NP in PSPACE NP in PSPACE undec
equiv NP NP NP NP GI NP GI GI

Fig. 1 Complexity of containment and equivalence. Non-shaded boxes indicate contributions of this pa-
per. NP is short for NP-complete. GI is short for GI-complete (i.e., complete for the class of problems
polynomial time reducible to graph isomorphism)

– For the case of CQs without self-joins, we show that for any positive K ,
K-equivalence is the same as isomorphism, and thus its complexity is complete
for the class GI of problems polynomial time reducible to graph isomorphism.2

– We show that containment of CQs and UCQs is decidable for lineage, why-
provenance, B[X], and N[X] annotations. The decision procedures involve in-
teresting variations on the concept of containment mappings, or (in the case of
N[X]-containment and Trio(X)-containment of UCQs) establishing a small coun-
terexample property (see Sects. 7.4 and 7.6). We also identify the complexity in
each case as NP-complete (with the exception of N[X]-containment and Trio(X)-
containment of UCQs, where we give PSPACE upper bounds).

– We show that for why-provenance, B[X], and N[X], equivalence of CQs implies
isomorphism, and the complexity is therefore somewhat lower than for contain-
ment (GI-complete). N[X]-equivalence of UCQs is also shown to be the same as
isomorphism and GI-complete. Lineage-equivalence of CQs and why-prov. and
B[X]-equivalence of UCQs are shown to remain NP-complete.

– We show that for CQs, why-prov. containment implies bag-containment, and bag
containment implies lineage-containment. We also show that for UCQs N[X]-
equivalence is the same as bag equivalence hence providing a proof that the latter
is the same as isomorphism and therefore GI-complete.

Figure 1 summarizes the complexity results mentioned above (for completeness we
include previously known results in the shaded boxes). Figure 2 summarizes the log-
ical relationships for containment/equivalence among the various semirings we con-
sider.

The rest of this paper is organized as follows. We define K-relations and the se-
mantics of queries on them in Sect. 2. We define the various semirings for provenance
in Sect. 4; we also establish there the existence of semiring homomorphisms relat-
ing the various models. We define containment of queries on K-relations in terms
of the natural order in Sect. 3 and discuss the connections with semiring homomor-
phisms. We review the background concepts of containment mappings and canoni-
cal databases in Sect. 5. We derive the bounds on containment based on surjective
semiring homomorphisms in Sect. 6. We present the main results on containment and
equivalence in Sect. 7. We discuss related work in Sect. 8. Finally, we conclude with
some ideas for future work in Sect. 9.

2Graph isomorphism is known to be in NP, but is not known or believed to be either NP-complete or in
PTIME, see [26].

Theory Comput Syst (2011) 49:429–459 433

Fig. 2 Logical implications of containment and equivalence. K1 ⇒ K2 indicates that K1-containment
(equivalence) implies K2-containment (equivalence). A ticked arrow “⇒́” indicates that the implication is
strict

2 Queries on K-Relations

Fix a countable domain D of constants, denoted by a, b, c, Let (K,+, ·,0,1)

be a commutative semiring, i.e., (K,+,0) and (K, ·,1) are commutative monoids, ·
is distributive over + and ∀a, 0 · a = a · 0 = 0. An n-ary K-relation is a function

R : D
n → K such that its support defined by supp(R)

def= {t : t ∈ D
n,R(t) �= 0} is

finite. This is a generalization of the usual notion of a relation to include semiring
annotations. We call a value t ∈ D

n an n-tuple (or simply a tuple). If R is an n-ary
K-relation and t is an n-tuple, we call the value R(t) ∈ K the annotation of t in R.
A K-instance is a mapping from predicate symbols to K-relations. This generalizes
the usual notion of database instances to work with K-relations. If A is a K-instance
and S is a predicate symbol, we denote by SA the value of S in A. We will sometimes

434 Theory Comput Syst (2011) 49:429–459

abuse notation by using R,S, . . . both for predicate symbols and for the K-relations
they represent.

Example 2.1 We show below a simple example of an N-instance A, where N is the
semiring of natural numbers:

RA def=
a b 2
d b 1
b c 7

SA def= b g f 3
d a b 1

In the example, RA and SA are N-relations, and the annotation of (a,b) in RA is
RA(a,b) = 2. (The annotation of any tuple not shown in a table is understood to be
0.)

We use Datalog-style syntax for conjunctive queries and unions of conjunctive
queries. A conjunctive query (CQ) is an expression of the form

Q(ū) :- R1(ū1), . . . ,Rn(ūn)

where Q(ū) is the head of the query, denoted head(Q), the multiset (bag) of atoms
R1(ū1), . . . ,Rn(ūn) is the body of the query, denoted body(Q), ū is the tuple of
distinguished variables and constants, ū1, . . . , ūn are tuples of variables and constants
whose arities are consistent with their associated predicate symbols, and each variable
appearing in the head also appears somewhere in the body. We denote the set of
variables appearing in Q by vars(Q) and the set of constants by consts(Q). When ū

is empty we say that Q is a Boolean conjunctive query; for these we will sometimes
drop the parentheses in the head and write Q :- R1(ū1), . . . ,Rn(ūn). We say that a
CQ has a self-join if some predicate symbol appears more than once in the body of
a CQ. The degree of a CQ Q is the maximum number of occurrences of any single
predicate symbol in body(Q).

A union of conjunctive queries (UCQ) is a bag Q̄ = (Q1, . . . ,Qn) of CQs. The
arities of the heads of the CQs in a UCQ must all agree. The degree of a UCQ Q̄ is
the maximum degree of a CQ in Q̄.

The semantics of CQs on K-relations is based on the notion of valuations. A val-
uation is a function ν : vars(Q) → D extended to be the identity on constants. Valua-
tions operate component-wise on tuples in the expected way. Let Q be a CQ

Q(ū) :- R1(ū1), . . . ,Rn(ūn)

and let A be a K-instance of the same schema. The result of evaluating Q on A is the
K-relation defined

�Q�A(t)
def=

∑

ν s.t.ν(ū)=t

n∏

i=1

Ri
A(ν(ūi)) (2.1)

and the sums and products are in K . A valuation ν which maps ū to t such that the
product in (2.1) is non-zero is called a derivation of t , and we say that it justifies the

Theory Comput Syst (2011) 49:429–459 435

associated product. The meaning of (2.1) is unchanged if we assume the sum ranges
only over derivations of t .

We extend the semantics to UCQs as follows. If Q̄ = (Q1, . . . ,Qn) is a UCQ, then
the result of evaluating Q̄ on a K-instance A is the K-relation defined

�Q̄�A(t)
def=

n∑

i=1

�Qi �A(t) (2.2)

For the commutative semiring (B,∨, ∧, false, true) this specializes to the set
semantics for UCQs. For (N,+, ·,0,1) it is bag semantics. For (PosBool(X),∨,
∧, false, true) (see Sect. 4) it is the positive Boolean c-tables used in incomplete
databases [23].

A subtlety in the preceding definitions is that we allow the same atom to appear
multiple times in the body of a CQ (and similarly, we allow the same CQ to appear
multiple times in a UCQ). With set semantics the distinction is immaterial, but for
other K , where idempotence of multiplication (and addition) may not hold, the dis-
tinction does matter. The classic example is adding a “redundant” self-join to a query
in the case of K = N.

In contrast to repetitions, the order of atoms in the body of a CQ (and order of
CQs in a UCQ) is not important, since we are considering only K-relations where
K is commutative (cf. Proposition 3.4 in [20]). Thus the body of a CQ can be
viewed a bag of atoms. When comparing the bodies of CQs, we will use the nota-
tion body(P) ≤N body(Q) to mean bag containment of the query bodies. We will also
identify queries which are the same up to reordering of atoms in the body, i.e., P = Q

means head(P) = head(Q), body(P) ≤N body(Q), and body(Q) ≤N body(P).
We use the notation P ∼= Q (P̄ ∼= Q̄) to denote that P and Q (P̄ and Q̄) are

isomorphic, i.e., syntactically identical up to renaming of variables and reordering of
terms (and, for UCQs, reordering of CQs).

3 The Natural Order

We define containment of K-relations and queries over K-instances in terms of the

natural order. Let (K,+, ·,0,1) be a semiring and define a ≤ b
def⇐⇒ ∃c a + c = b.

When ≤ is a partial order we say that K is naturally-ordered. The semirings B,N,
PosBool(X) are naturally ordered, as are all of the semirings for provenance from
Sect. 4. For PosBool(X) the natural order corresponds to logical entailment: ϕ ≤ ψ

iff ϕ |= ψ . For B[X] we have a ≤ b iff every monomial in a also appears in b. For
N[X] we have a ≤ b iff every monomial in a also appears in b with an equal or
greater coefficient. Thus, 2x2y ≤ 5x2y + 2z, but x + 2y �≤ 5x + 3y2. For lineage
and why-provenance the natural order corresponds to set inclusion (n.b. for why-
provenance, this is only set inclusion “at the outer level”—e.g., {{x}} ≤ {{x}, {y, z}}
but {{x}, {y, z}} �≤ {{x, y}, {y, z}}).

436 Theory Comput Syst (2011) 49:429–459

Definition 3.1 Let K be a naturally-ordered semiring and let R1, R2 be two K-
relations. We define containment of R1 in R2 by

R1 ≤K R2
def⇐⇒ ∀t R1(t) ≤ R2(t)

We define containment of queries P,Q with respect to K-relation semantics by

P �K Q
def⇐⇒ for every K-instance A, �P �A ≤K �Q�A

When K = B (resp., K = N) we get the usual notion of query containment with
respect to set (resp., bag) semantics. For PosBool(X), we get the structural contain-
ment and structural equivalence of [32].3

Definition 3.2 (Semiring homomorphism) Let K1,K2 be semirings. A mapping h :
K1 → K2 is called a semiring homomorphism if h(0) = 0, h(1) = 1, and for all
a, b ∈ K1, we have h(a + b) = h(a) + h(b) and h(a · b) = h(a) · h(b).

Proposition 3.3 Let K1,K2 be naturally-ordered commutative semirings. If h :
K1 → K2 is a semiring homomorphism then for all a, b ∈ K1, a ≤K1 b =⇒
h(a) ≤K2 h(b). If h is also surjective, then for all a, b ∈ K1, a ≤K1 b ⇐⇒ h(a) ≤K2

h(b).

Proof Straightforward calculation. �

4 Semirings for Provenance

In this section we define several kinds of provenance annotations that can be cap-
tured in the semiring framework. We will also observe that the various models are
related by surjective semiring homomorphisms, as summarized in Fig. 3. In Sect. 6,
we will use the existence of surjective semiring homomorphisms to establish some
basic relationships among the provenance models with respect to query containment.

We fix a countable set X of variables, which can be thought of as tuple identifiers,
and parametrize all of the provenance models by this set X.

The most informative form of provenance annotations in the framework of
K-relations is the semiring of provenance polynomials [20]:

Definition 4.1 (Provenance Polynomials) The provenance polynomials semiring for
X is the semiring of polynomials with variables from X and coefficients from N, with
the operations defined as usual: (N[X],+, ·,0,1).

The provenance polynomials are the “most informative” among semiring annota-
tion by dint of their universality: any function ν : X → K (call it a “valuation”) can

3There are reasonable alternatives to the natural order for incomplete databases, such as considering vari-
ous orders on the sets of possible worlds they represent.

Theory Comput Syst (2011) 49:429–459 437

Fig. 3 Provenance hierarchy.
A path downward from K1 to
K2 indicates that there exists a
surjective semiring
homomorphism h : K1 → K2

be extended uniquely to a semiring homomorphism Evalν : N[X] → K . Formally, we
define Evalν recursively as follows:

• Evalν(x)
def= ν(x)

• Evalν(F + G)
def= Evalν(F) + Evalν(G)

• Evalν(F · G)
def= Evalν(F) · Evalν(G)

where + and · in the right-hand side of the last two equations are the operations in
K . Intuitively, Evalν operates by assigning the value ν(x) to each variable x in a
polynomial expression, then evaluating the resulting expression in K . For instance,
taking K = N, if ν maps p to 2 and r to 3 (and all other values to 0), then Evalν(2r2 +
rs) = 2 · 3 · 3 + 1 = 19, as in the example from the introduction.

Combined with the commutation with homomorphisms property (cf. Proposi-
tion 6.1), this allows the computations for any commutative semiring K to factor
through the computations for the provenance polynomials (see [20]). We shall make
use of this special ability of N[X] to “simulate” computations later in Sect. 7.4
(cf. Lemma 7.15). In Sect. 7.6, we shall note the failure of this property for Trio(X),
and how a weaker version of it can nevertheless be recovered for that semiring.

To illustrate, consider the N[X]-relation R in Fig. 4(a) and consider the UCQ Q̄

defined by

Q̄(x, z) :- R(x, y,u),R(v, y, z)

Q̄(x, z) :- R(x,u, z),R(v, y, z)

Figure 4(b) shows the result of Q̄ applied to R.
The second provenance model we consider is obtained from the provenance poly-

nomials by replacing natural number coefficients with Boolean coefficients:

Definition 4.2 (Boolean Provenance Polynomials) The Boolean provenance polyno-
mials semiring for X is the semiring of polynomials over variables X with Boolean
coefficients: (B[X],+, ·,0,1).

Considering the same UCQ Q̄ as before, Fig. 4(c) shows the result of applying Q̄

to R, where R is interpreted as a B[X]-relation. Note that the annotations in Fig. 4(c)

438 Theory Comput Syst (2011) 49:429–459

a b c p

d b e r

f g e s

(a) Source R

a c 2p2

a e pr

d c pr

d e 2r2 + rs

f e 2s2 + rs

(b) N[X]

a c p2

a e pr

d c pr

d e r2 + rs

f e s2 + rs

(c) B[X]

a c 2p

a e pr

d c pr

d e 2r + rs

f e 2s + rs

(d) Trio(X)

a c {{p}}
a e {{p, r}}
d c {{p, r}}
d e {{r}, {r, s}}
f e {{s}, {r, s}}

(e) Why(X)

a c p

a e p ∧ r

d c p ∧ r

d e r

f e s

(f) PosBool(X)

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

(g) Lin(X)

Fig. 4 Provenance annotations

can be obtained from those in Fig. 4(b) by simply dropping the numeric coefficients.
In fact, one can check that the operation f : N[X] → B[X] which “drops coefficients”
(i.e., by replacing non-zero coefficients with true) is a surjective semiring homomor-
phism.

The third provenance model we consider, Trio(X), is inspired by the form of lin-
eage used in the Trio project [31]. Like B[X], this semiring can be viewed as being
obtained from N[X], but instead of “dropping coefficients,” this time we “drop expo-
nents.” We formalize this using the notion of quotient semirings:

Definition 4.3 (Congruence relation) If K is a semiring and ≈ is an equivalence
relation on K , then we say that ≈ is a congruence relation on K if a ≈ a′ and b ≈ b′
implies a + b ≈ a′ + b′ and a · b ≈ a′ · b′.

Definition 4.4 (Quotient semiring) Let K be a semiring and let ≈ be a congruence
relation on K . If a ∈ K then denote the equivalence class of a in ≈ by a/≈. Then
the quotient of K by ≈ is the semiring whose domain is the set K/≈ of equivalence

classes of ≈, 0
def= 0K/≈, 1

def= 1K/≈, (a/≈) + (b/≈) = (a + b)/≈, and (a/≈) ·
(b/≈)

def= (a · b)/≈.

Now, let f : N[X] → N[X] be the mapping that “drops exponents”, e.g., f maps
2x2y + 3xy + 2z3 + 1 to 5xy + 2z + 1. Denote by ≈f the equivalence relation on

N[X] defined by a ≈f b
def⇐⇒ f (a) = f (b). One can check that ≈f is a congruence

relation. This justifies the following:

Definition 4.5 (Trio Semiring) The Trio semiring for X is the quotient semiring of
N[X] by ≈f , denoted Trio(X).

As an example, considering again the same UCQ Q̄, Fig. 4(d) shows the result of
applying Q̄ to R, where R is interpreted as a Trio(X)-relation, and an annotation A is

Theory Comput Syst (2011) 49:429–459 439

understood to represent its equivalence class A/≈f in ≈f . Note that the mapping h :
N[X] → Trio(X) defined by h(A) �→ A/≈f is a surjective semiring homomorphism.

The fourth provenance model we consider is the why-provenance of [4]. The why-
provenance of a tuple is the set of sets of “contributing” source tuples, which is called
the proof witness basis in [4]. This can be captured using a semiring [3] (called the
proof why-provenance semiring in [3]):

Definition 4.6 (Why-Provenance) The why-provenance semiring for X is (Why(X),

∪, �, ∅, {∅}) where Why(X)
def= P (P (X)) and � denotes pairwise union:

A � B
def= {a ∪ b : a ∈ A,b ∈ B}

Considering again the same query Q̄, we can interpret the source relation in
Fig. 4(a) as a why-provenance relation by doubly-nesting the variables (e.g., p be-
comes {{p}}). Figure 4(e) shows the query output and the resulting why-provenance
annotations. Note that these annotations can be obtained from the B[X]-annotations
by dropping exponents (and writing the result as a set of sets rather than sum of mono-
mials). One can check that the corresponding operation g : B[X] → Why(X) which
“drops exponents” is in fact a surjective semiring homomorphism. Note also that the
annotations can be obtained from the Trio(X)-annotations by dropping coefficients,
and it is easy to verify that the corresponding operation h : Trio(X) → Why(X) which
does this is also a surjective semiring homomorphism.

An interesting variation on the why-provenance semiring is obtained by requiring
that the witness basis for an output tuple be minimal. Here the domain is irr(P (X))

the set of irredundant subsets of P (X), i.e., W is in irr(P (X)) if for any A,B in
W neither is a subset of the other. We can associate with any W ⊆ P (X) a unique
irredundant subset irr(W) by repeatedly looking for elements A,B such that A ⊆ B

and deleting B from W . Then we define a semiring (irr(P (X)),+, ·,0,1) as follows:

I + J
def= irr(I ∪ J) I · J def= irr(I � J)

0
def= ∅ 1

def= {∅}
This is the semiring in which we compute the minimal witness basis [4]. It is a
well-known semiring: the construction above is the construction for the free dis-
tributive lattice generated by the set X. Moreover, it is isomorphic to the semiring
of positive Boolean expressions (PosBool(X),∨,∧, false, true) used in incomplete
databases [23].4 The domain of this semiring is the set of all Boolean expressions
over variables X which are positive, i.e., they involve only disjunction, conjunction,
and constants for true and false.5

Containment of UCQs for PosBool(X) is known to coincide with containment
under the usual set semantics:6

4This characterization of minimal witness basis and its relationship to PosBool(X) are due to Val Tannen.
5Also, we identify those expressions that are equivalent modulo the axioms of Boolean algebra.
6This result was claimed in [20], but Gösta Grahne recently pointed out to the author that [16] had already
proved this in a more general form, for queries on relations annotated with elements of a distributive

440 Theory Comput Syst (2011) 49:429–459

Theorem 4.7 ([16]) If K is a distributive lattice then for any UCQs P̄ , Q̄

P̄ �K Q̄ iff P̄ �B Q̄

PosBool(X) is a distributive lattice, so Theorem 4.7 justifies the “⇔” between B and
PosBool(X) in the diagrams in Fig. 2. Other interesting examples of annotations from
distributive lattices include the semiring of full Boolean expressions (including nega-
tion), the fuzzy semiring [20], and finite total orders such as the semiring of security
clearances proposed in [14].

Taking again the same query Q̄ and applying it to the source table in Fig. 4(a)
viewed as a PosBool(X)-relation, we obtain the PosBool(X)-relation shown in
Fig. 4(f).

The last and simplest form of provenance information we consider is the data
warehousing lineage of [13]. In this scheme, a tuple t in a query output is annotated
with the set of all contributing source tuples (its lineage). This can be captured using
the following semiring [3]:

Definition 4.8 (Lineage Semiring) The lineage semiring for X is (P (X) ∪ {⊥}, +,
·, ⊥, ∅) where X is a set of variables, ⊥ + S = S + ⊥ = S, ⊥ · S = S · ⊥ = ⊥, and
S + T = S · T = S ∪ T if S,T �= ⊥.

We can interpret the source relation in Fig. 4(a) as a lineage annotated relation by
nesting the annotations, e.g., p becomes {p}. Applying the same query Q̄ as before
to this relation, we obtain the lineage annotated relation shown in Fig. 4(g). Note
that the lineage for an output tuple can be obtained from the why-provenance of the
tuple by flattening the set of sets, i.e., applying the function h : Why(X) → Lin(X)

defined by h(I) = ⋃
S∈I S. Once again, we can show that h is a surjective semiring

homomorphism.

5 Containment Mappings

In characterizing K-containment of CQs we will use variations on the notion of
containment mappings. Let P,Q be conjunctive queries, and let h be a mapping
h : vars(Q) → vars(P)∪ consts(P) extended to be the identity on constants (we will
typically use the shorthand h : Q → P). We define h to operate component-wise on
tuples, atoms, and CQs by replacing each occurrence of a variable x with h(x). We
say that h : Q → P is a containment mapping if h(head(Q)) = head(P) and for
every atom Ri(ū) in the body of Q the atom Ri(h(ū)) occurs in the body of P .

We will also make use of the notion of the canonical database (or tableau) for
a query. This is the instance can(Q) obtained by viewing the body of a CQ Q as a
database. In doing this we blur the distinction between variables and domain values.
To make the notion precise, we work with an extended domain D ∪ X where X

bilattice. Related results have also been established in the contexts of parametric databases [27] and
deterministic XML [4].

Theory Comput Syst (2011) 49:429–459 441

contains new constants to use for “freezing” variables into domain values. We also
assume the existence of a function c[·] that maps a variable x to a unique constant
cx from X . We extend c[·] to be the identity on ordinary constants from D. Then we
define can(Q) to be the database instance containing a tuple Ri(cu1 , . . . , cuk

) for each
atom Ri(u1, . . . , uk) in the body of Q. Note that when a query has duplicate atoms
in the body, this does not result in duplicate tuples in the canonical database.

Example 5.1 To illustrate, consider the CQ Q defined

Q(x,y) :- R(x, a), S(a, y,u), S(y,u,u)

The canonical database for Q is shown below:

Rcan(Q) = cx a Scan(Q) = a cy cu

cy cu cu

The classical result of [6] relates containment mappings, canonical databases, and
containment of CQs under set semantics:

Theorem 5.2 ([6]) For CQs P,Q the following are equivalent:

1. P �B Q.
2. �P �can(P) ≤B �Q�can(P).
3. There is a containment mapping h : Q → P .

We will also exploit the device of canonical databases, but for the provenance
models we will use various abstractly-tagged versions. The abstractly-tagged version
abK(R) of a K-relation R is obtained by annotating each tuple in the support of R

with its own tuple id from X. For N[X], B[X], and Trio(X) this is simply a fresh
variable x from X. For lineage the variable is nested in a singleton set, {x}, and
for why-provenance the variable is doubly-nested, {{x}}. We will use the shorthand
canK(Q) to mean abK(can(Q)). Abstractly-tagged instances will also play a role
outside of the context of canonical databases (cf. Lemmas 7.15 and 7.25).

Example 5.3 Consider again the CQ Q from Example 5.1. The abstractly-tagged
canonical databases for Q for K ∈ {Lin(X),Why(X),N[X]} are shown below:

canLin(X)(Q):

RcanLin(X)(Q) = cx a {p}

ScanLin(X)(Q) = a cy cu {q}
cy cu cu {r}

canWhy(X)(Q):

RcanWhy(X)(Q) = cx a {{p}}

SabWhy(X)(Q) = a cy cu {{q}}
cy cu cu {{r}}

442 Theory Comput Syst (2011) 49:429–459

canN[X](Q):

RcanN[X](Q) = cx a p

ScanN[X](Q) = a cy cu q

cy cu cu r

6 Bounds from Semiring Homomorphisms

In this section we establish some initial bounds on the “relative behavior” of the vari-
ous provenance models w.r.t. query containment and equivalence, based on surjective
semiring homomorphisms.

A function h : K → K ′ can be made to transform a K-relation R into a K ′-
relation h(R) by applying h to each tuple annotation in R. Performing this trans-
formation component-wise on the K-relations of a K-instance A transforms it into a
K ′-instance h(A). It was shown in [20] that semiring homomorphisms work nicely
with UCQs on K-relations:

Proposition 6.1 ([20]) Let h : K → K ′ and assume that K,K ′ are commutative
semirings. Then �Q̄�h(A) = h(�Q̄�A) for all Q̄ ∈ UCQ and K-instances A iff h is a
semiring homomorphism.

The observations we have made in Sect. 4 about the existence of surjective semir-
ing homomorphisms relating the various provenance models turn out to yield some
easy bounds on their “relative behavior” with respect to query containment (and
therefore also equivalence). We write K1 ⇒ K2 to mean that for all UCQs Q̄1, Q̄2,
if Q̄1 �K1 Q̄2 then Q̄1 �K2 Q̄2. Then we have the following:

Lemma 6.2 For naturally-ordered semirings K1,K2, if there exists a surjective ho-
momorphism h : K1 → K2, then K1 ⇒ K2.

Proof Suppose that h : K1 → K2 is a surjective semiring homomorphism and that
Q̄1 �K1 Q̄2. Consider an arbitrary K2-instance B. We want to show that �Q̄1 �B ≤K2

�Q̄2 �B. Since h is surjective, there exists a K1-instance A such that B = h(A).
Since Q̄1 �K1 Q̄2 we have that �Q̄1 �A ≤K1 �Q̄2 �A. By Proposition 3.3, this implies
h(�Q̄1 �A) ≤K2 h(�Q̄2 �A). But by Proposition 6.1, h(�Q̄1 �A) = �Q̄1 �h(A) = �Q̄1 �B,
and likewise, h(�Q̄2 �A) = �Q̄2 �h(A) = �Q̄2 �B. It follows that �Q̄1 �B ≤K2 �Q̄2 �B.
Since B was chosen arbitrarily, it follows that Q̄1 �K2 Q̄2, as required. �

Based on our previous observations, we can conclude the following about the “rela-
tive behavior” of the semirings for provenance w.r.t. containment (and therefore also
equivalence) of UCQs:

Theorem 6.3 If there is a path downward from K1 to K2 in Fig. 3, then K1 ⇒ K2.

Theory Comput Syst (2011) 49:429–459 443

We shall see in Sect. 7 which of the implications are strict (as indicated by the ticked
arrows “⇒́” in Fig. 2).

Finally, we note that using similar reasoning, it is possible to establish bounds
for containment/equivalence of UCQs for arbitrary semirings. To state the result, we
first recall the standard definition of a positive semiring. Given a semiring K define
† : K → B as follows:

†(0)
def= false

†(a)
def= true when a �= 0

Proposition 6.4 The following are equivalent:

1. † is a semiring homomorphism
2. K satisfies

(a) 0 �= 1
(b) a + b = 0 implies a = 0 or b = 0
(c) ab = 0 implies a = 0 or b = 0

A semiring K is called positive if it satisfies either of the (equivalent) statements
in Proposition 6.4. This is a large class of semirings: B, N, PosBool(X), and all of
the semirings for provenance we have considered in this paper are positive.

Now we are ready to state the theorem.

Theorem 6.5 For all K , N[X] ⇒ K . For all positive K , K ⇒ B.

Proof N[X] ⇒ K follows from similar reasoning as in Proposition 6.2, but using
the universality of the provenance polynomials rather than the existence of surjective
semiring homomorphisms to establish the relationship. K ⇒ B follows immediately
from Proposition 6.2 using the definition of positive semiring. �

For the special case of CQs containing no self-joins, we shall see in Sect. 7.4
(cf. Corollary 7.13) that the bounds of Theorem 6.5 collapse to a uniform condition
for equivalence.

7 Main Results

We are now ready to present our main results on containment and equivalence.
For Lin(X), Why(X), and B[X], the decision procedures for containment of CQs

(and the accompanying complexity results) extend easily to UCQs because of the
following general fact which was first noted for the case of set semantics in [30]:

Proposition 7.1 If a semiring K is idempotent, then for all UCQs P̄ , Q̄, we have
P̄ �K Q̄ iff for every CQ P in P̄ there is a CQ Q in Q̄ such that P �K Q. As a
consequence, for such a given idempotent K , we have K-containment of CQs is in C

iff K-containment of UCQs is in C, for C ∈ {PTIME, NP}.

444 Theory Comput Syst (2011) 49:429–459

(A semiring K is called idempotent if addition in K is idempotent, i.e., a + a =
a for all a ∈ K .) Lin(X), Why(X), and B[X] are all idempotent semirings. N[X]
and Trio(X) are not idempotent, nor is the semiring of natural numbers used for bag
semantics (and the failure of Proposition 7.1 for bag semantics was noted in [8]).

We also note that for idempotent semirings, containment and equivalence of UCQs
are easily inter-reducible (and polynomially equivalent). This again generalizes a
well-known fact for set semantics [30]:

Proposition 7.2 For UCQs Q̄1, Q̄2 and idempotent K we have

1. Q̄1 �K Q̄2 iff Q̄1 ∪ Q̄2 ≡K Q̄2
2. Q̄1 ≡K Q̄2 iff Q̄1 �K Q̄2 and Q̄2 �K Q̄1

(The second item is just the definition of K-equivalence of UCQs.)

7.1 Lineage

Theorem 7.3 For CQs P,Q the following are equivalent:

1. P �Lin(X) Q.
2. �P �canLin(X)(P) ≤Lin(X) �Q�canLin(X)(P).
3. For every atom R(ū) ∈ body(P) there is a containment mapping h : Q → P with

R(ū) in the image of h.

Proof (1) ⇒ (2) is trivial. For (2) ⇒ (3), let t = head(P) and let A = canLin(X)(P).
Observe that �P �A(t) = {x1, . . . , xn} where {x1}, . . . , {xn} are all the annotations
occurring in A. Since �P �A ≤Lin(X) �Q�A, and {x1, . . . , xn} is the top element in
the subsemiring of Lin(X) generated by {x1}, . . . , {xn}, it follows that �Q�A(t) =
{x1, . . . , xn} as well. Now, for each such xi , there must be a derivation ν : Q → A of
t mapping some atom R(v1, . . . , vk) in the body of Q to a tuple R(cu1 , . . . , cuk

)

such that RA(cu1, . . . , cuk
) = {xi} (and R(u1, . . . , uk) is an atom in the body of

P). But this valuation ν may also be viewed as a containment mapping from Q to
P with R(u1, . . . , uk) in the image. More precisely, from ν we define a mapping
h : vars(Q) ∪ consts(Q) → vars(P) ∪ consts(Q) as follows:

• h(c)
def= c for c ∈ consts(Q)

• h(x)
def= y for x ∈ vars(Q) such that ν(x) = cy for some cy ∈ X

• h(x)
def= ν(x) otherwise

It is clear that h is a containment mapping from Q to P , with R(u1, . . . , uk) in the
image.

For (3) ⇒ (1), consider an arbitrary Lin(X)-instance A and output tuple t . We
want to show that for all x ∈ X, if x ∈ �P �A(t), then x ∈ �Q�A(t). If x ∈ �P �A(t),
then there exists a derivation ν : vars(P) → D of t in �P �A such that x ∈ RA(ν(ū))

for some atom R(ū) in the body of P . By assumption, there exists a containment
mapping h : Q → P such that R(ū) = R(h(v̄)) for some atom R(v̄) in the body of
Q. But then ν ◦ h is a derivation of t in �Q�A, and moreover, x ∈ R((ν ◦ h)(v̄)). It
follows that x ∈ �Q�A(t), as required. �

Theory Comput Syst (2011) 49:429–459 445

It is easy to find examples of CQs P,Q such that there is a containment mapping
h : Q → P , but condition (3) above is not satisfied, e.g.:

P(x, y) :- R(x, y),R(x, z) Q(x, y) :- R(x, y)

There is no containment mapping h : Q → P with R(x, z) in the image of h, so
P ��Lin(X) Q. However, one can find containment mappings h′ : P → Q and h′′ :
Q → P in both directions, so by Theorem 5.2, P ≡B Q. This justifies the “⇒́”
between lineage and PosBool(X)/B in Figs. 2(a)–(d).

Note that the above example seems to contradict7 Theorem 4.8 of [13] which
claims that P ≡Lin(X) Q iff P ≡B Q. In fact, the contradiction is explained by the fact
that the definition of lineage given in that paper only makes sense for CQs without
self-joins. We have already seen (Corollary 7.13) that for this class of queries, K-
equivalence is the same as isomorphism, for any positive K (including the lineage
semiring).

Also, condition (3) of Theorem 7.3 was identified previously in [8] as a necessary
(but not sufficient) condition for bag containment of CQs. This justifies the “⇒́”
between N and lineage in Fig. 2(a).

While the conditions for checking lineage containment and set containment of
CQs or UCQs are different, the complexity turns out to be the same:

Corollary 7.4 The problems of checking Lin(X)-containment of CQs (or UCQs) and
of checking Lin(X)-equivalence of CQs (or UCQs) are all NP-complete.

Proof For CQs, membership in NP follows from part (3) of Theorem 7.3. To estab-
lish NP-hardness, we use a variation on the reduction from graph 3-coloring showing
NP-hardness of ordinary set-containment of CQs [6]. As there, we use the fact that
a directed graph G = (V ,E) is 3-colorable iff there exists a graph homomorphism
h : G → C, where C is the complete directed graph (without self-loops) on 3 ver-
tices. Next, given a directed graph G = (V ,E), we encode G as the Boolean CQ QG

whose body contains an atom E(u,v) for each edge in the graph, and we similarly
encode C as a Boolean CQ QC . To complete the reduction showing NP-hardness
of ordinary set containment, it suffices to observe that there exists a graph homo-
morphism h : G → C iff there exists a containment mapping h′ : QG → QC . With
Lin(X)-containment, there is one more step: we assume w.l.o.g. that vars(QG) and
vars(QC) are disjoint, and we let Q′

G be the Boolean CQ whose body is the conjunc-
tion of the bodies of QG and QC . It is clear that there exists a containment mapping
h : QG → QC iff there exists a containment mapping h′ : Q′

G → QC . Moreover,
any containment mapping h′ : Q′

G → QC has in its image every atom in the body of
QC , thus satisfying condition (3) of Theorem 7.3. It follows that checking Lin(X)-
containment of CQs is NP-hard.

For UCQs, NP-hardness follows immediately from NP-hardness for CQs, and
membership in NP follows using Proposition 7.1. �

7The example and this observation are due to James Cheney and Wang-Chiew Tan.

446 Theory Comput Syst (2011) 49:429–459

7.2 Why-Provenance

To characterize Why(X)-containment of CQs, we define the concept of onto contain-
ment mappings. A mapping h : Q → P is an onto containment mapping if it is a
containment mapping and body(P) ≤N h(body(Q)).

Theorem 7.5 For CQs P,Q the following are equivalent:

1. P �Why(X) Q .
2. �P �canWhy(X)(P) ≤Why(X) �Q�canWhy(X)(P).
3. There is an onto containment mapping h : Q → P .

Proof (1) ⇒ (2) is trivial. The remaining two cases are similar to the proof of Theo-
rem 7.3.

For (2) ⇒ (3), let t = head(P) and let A = canWhy(X)(P). Observe that
{x1, . . . , xn} ∈ �P �A(t), where {{x1}}, . . . , {{xn}} are all the annotations of tuples in
A. Since �P �A ≤Why(X) �Q�A, it follows that {x1, . . . , xn} ∈ �Q�A(t) as well. Now,
to produce {x1, . . . , xn} for t in the query result, there must be a justifying valuation
ν : Q → A mapping each atom R(ū) in the body of Q to a tuple R(x̄) in A, such
that the valuation is surjective on A. This valuation may also be viewed as an onto
containment mapping from Q to P .

For (3) ⇒ (1), consider an arbitrary Why(X)-instance A and output tuple t . Let
R1(ū1), . . . ,Rn(ūn) be the body of P , and let S1(v̄1), . . . , Sm(v̄m) be the body of Q.
We want to show that for all X′ ⊆ X, if X′ ∈ �P �A(t), then X′ ∈ �P �A(t). Now,
if X′ ∈ �P �A(t), then there exists a justifying valuation ν : vars(P) → D for t in
�P �A such that X′ = �n

i=1Ri
A(ν(ūi)). By assumption, there exists an onto con-

tainment mapping h : Q → P . But ν ◦ h : vars(Q) → D is a valuation justifying
X′ ∈ �Q�A(t). �

The existence of an onto containment mapping is a strictly stronger requirement
than condition (3) of Theorem 7.3. For example, consider the queries

P(x) :- R(x, y),R(x, x) Q(u) :- R(u, v)

There is no onto containment mapping from Q to P , hence P ��Why(X) Q, but one can
find containment mappings satisfying condition (3) of Theorem 7.3 in both directions:
g that sends x to u and y to v is a containment mapping from P to Q, while h that
sends u to x and v to y is a containment mapping from Q to P . Thus P ≡Lin(X) Q.
This justifies the “⇒́” between why-prov. and lineage in Fig. 2(a)–(d).

We note that the existence of onto containment mappings was identified in [8] as
a sufficient (but not necessary) condition for bag containment of CQs. This justifies
the “⇒́” between Why(X) and N in Fig. 2(a).

The existence of onto containment mappings in both directions leads to a simple
characterization of Why(X)-equivalence of CQs:

Theorem 7.6 For CQs P,Q, P ≡Why(X) Q iff P ∼= Q.

Theory Comput Syst (2011) 49:429–459 447

Proof Clearly isomorphism implies K-equivalence for any K , in particular for why
provenance. In the other direction, if P ≡Why(X) Q by Theorem 7.5 there must exist
onto containment mappings h : Q → P and g : P → Q. But since both mappings are
surjective they must also be injective. It follows that P ∼= Q. �

It was shown in [8] that bag equivalence of CQs is also the same as isomorphism,
hence the “⇔” between N and Why(X) in Fig. 2(b). Also, note that there are Lin(X)-
equivalent CQs which are not isomorphic, for example:

P(x) :- R(x, y) Q(x) :- R(x, y),R(x, z)

Thus we have the “⇒́” between Why(X) and Lin(X) in Fig. 2(b).
For UCQs P̄ and Q̄, we note that Theorem 7.6 does not imply that for UCQs

P̄ ≡Why(X) Q̄ iff P̄ ∼= Q̄ (and indeed this is not the case). As an example, suppose
P,Q are non-isomorphic CQs such that P �Why(X) Q. Then (P,Q) ≡Why(X) (Q) but
(P,Q) �∼= (Q).

Corollary 7.7 Checking Why(X)-containment for CQs or UCQs and Why(X)-
equivalence for UCQs is NP-complete. Checking Why(X)-equivalence for CQs is
GI-complete.

Proof For Why(X)-containment of CQs, membership in NP follows from part (3) of
Theorem 7.5, and this along with Proposition 7.1 implies the same for UCQs.

To show NP-hardness of Why(X)-containment of CQs (and therefore also UCQs),
we use a straightforward variation on the reduction from graph 3-coloring from
Corollary 7.4. Given a directed graph G = (V ,E), we again construct a Boolean
CQ QG encoding G as in Corollary 7.4, and Boolean CQ QC encoding the complete
graph on 3 vertices. This time, however, we now also construct a Boolean CQ Q′

G

whose body is the disjoint union of QG and QC ; we include the copy of QC to ensure
that any containment mapping from QG to QC can be extended to an onto contain-
ment mapping from Q′

G to QC . We observe that there exists a 3-coloring of G iff
there exists an onto containment mapping from Q′

G to QC to complete the proof of
NP-hardness.

GI-completeness of Why(X)-equivalence follows immediately from Theorem 7.6.
�

7.3 B[X]-Provenance

To characterize B[X]-containment of CQs we will need another variation on contain-
ment mappings, which we call exact containment mappings. A containment mapping
h : Q → P is an exact containment mapping if it induces a bijection of atoms in the
bodies of P and Q. Note that there is an exact containment mapping from Q to P iff
P can be obtained from Q (up to isomorphism) by unifying variables in Q.

Theorem 7.8 For CQs P,Q, the following are equivalent:

1. P �B[X] Q.

448 Theory Comput Syst (2011) 49:429–459

2. �P �canB[X](P) ≤B[X] �Q�canB[X](P).
3. There is an exact containment mapping h : Q → P .

Proof (1) ⇒ (2) is trivial. (3) ⇒ (1) is straightforward to check. For (2) ⇒ (3), we
assume for simplicity that body(P) contains no duplicate atoms, but the argument
generalizes easily. Suppose (2) holds. Then in particular,

�P �canB[X](P)(t) ≤ �Q�canB[X](P)(t),

where t is the tuple of distinguished variables in head(P). Also, the polynomial
�P �canB[X](P)(t) contains as a term (i.e., with Boolean coefficient true) the product
x1 · · ·xn of all tags occurring in canB[X](P), since this term is derived via the “iden-
tity” valuation ν that maps constants to themselves and variables x ∈ vars(P) to cx .
Since containment holds, the polynomial �Q�canB[X](P)(t) must also contain the same
term. Working backwards, there must be some derivation ν : vars(Q) → D ∪ X of
the term. Moreover, in order to yield all variables x1, . . . , xn in the term, ν must map
the atoms of body(Q) surjectively onto the tuples of canB[X](P); and in order for all
the exponents in the term to all equal one, the mapping of atoms to tuples must be
injective. An exact containment mapping h from Q to P can be constructed from ν

via the same procedure given in the proof of Theorem 7.3. �

Every exact containment mapping is also an onto containment mapping, but the
converse is not true. For example, the mapping h : Q → P which sends w to u, z to
v, and everything else to itself in

P(x, y) :- R(x, y), S(u, v) Q(x, y) :- R(x, y), S(u, v), S(w, z)

is an onto containment mapping, but not an exact containment mapping. This justifies
the “⇒́” between B[X] and Why(X) in Fig. 2(a),(c). To justify the “⇒́” between
B[X] and Why(X) in Fig. 2(d), consider P,Q as above and define the UCQs P̄ = (P)

and Q̄ = (P,Q). Then P̄ ≡Why(X) Q̄ but P̄ �≡B[X] Q̄.
Like Why(X)-equivalence, B[X]-equivalence of CQs turns out to be the same as

isomorphism:

Theorem 7.9 For CQs P,Q, P ≡B[X] Q iff P ∼= Q.

This justifies the “⇔” between Why(X) and B[X] in Fig. 2(b).
Checking for the existence of an exact containment mapping turns out to have the

same complexity as checking for the existence of a containment mapping:

Corollary 7.10 Checking B[X]-containment of CQs or UCQs, or B[X]-equivalence
of UCQs, is NP-complete. Checking B[X]-equivalence of CQs is GI-complete.

Proof (Sketch) GI-completeness of checking B[X]-equivalence of CQs follows from
Theorem 7.9 and the fact that we can view directed graphs as Boolean CQs (and
vice versa), as in the proof of Corollary 7.4. The proofs of the other results are again
similar to Corollary 7.4. �

Theory Comput Syst (2011) 49:429–459 449

7.4 Provenance Polynomials

We now prove the results for N[X]-containment. For CQs, this turns out to be the
same as for B[X]-containment (thus justifying the “⇔” between N[X] and B[X] in
Fig. 2(a)):

Theorem 7.11 For CQs P,Q the following are equivalent:

1. P �N[X] Q.
2. �P �canN[X](P) ≤N[X] �Q�canN[X](P).
3. There is an exact containment mapping h : Q → P .

Proof (1) ⇒ (2) is trivial, and (2) ⇒ (3) is exactly the same as in Theorem 7.8. For (3)
⇒ (1) some additional care is required because addition in N[X] is not idempotent.
We need to make sure that the coefficient of an arbitrary term in the polynomial
�Q�A(t), for some arbitrary N[X]-instance A and tuple t , is at least as large as the
coefficient of the same term in the polynomial �P �A(t). To check this, it suffices
to observe that for any valuations ν, ν′ : vars(P) → D justifying a monomial term
in �P �A(t), the valuations ν ◦ h and ν′ ◦ h justify the same monomial in �Q�A(t);
and moreover, since h is surjective on the variables of P , if ν �= ν′ then ν ◦ h �=
ν′ ◦ h. Hence every justification for �P �A(t) corresponds to a unique justification for
�Q�A(t). Since addition in N is monotone this implies the required inequality for the
term coefficients. �

Since N[X]-containment of CQs holds exactly when B[X]-containment holds, the
same is true for N[X]-equivalence:

Theorem 7.12 Let P,Q be two CQs. Then P ≡N[X] Q iff P ∼= Q.

This justifies the “⇔” between N[X] and B[X] (and therefore also Why(X) and N)
in Fig. 2(b).

This result actually has wider implications beyond N[X]-equivalence: for the spe-
cial case of CQs containing no self-joins, it can be used to show that the bounds of
Theorem 6.5 collapse to a uniform condition for equivalence:

Corollary 7.13 (of Theorem 6.5 and Theorem 7.12) If CQs P,Q contain no self-
joins (i.e., neither query’s body contains multiple occurrences of a predicate symbol),
then for any positive K , we have P ≡K Q iff P ∼= Q.

Proof It is clear that P ∼= Q implies K-equivalence of P and Q for any K . In the
other direction, assume P,Q contain no self-joins and suppose P ≡K Q for some
positive K . Then by Theorem 6.5, P ≡B Q. Therefore (using Theorem 5.2) there
exist containment mappings g : P → Q and h : Q → P . Since neither query has a
self-join, it is not hard to see that g and h must both be bijective, and hence either
serves as the required isomorphism between P and Q. �

Therefore, for conjunctive queries without self-joins, every “⇒́” in Fig. 2(b) becomes
a “⇔”.

450 Theory Comput Syst (2011) 49:429–459

Next we consider N[X]-containment of UCQs. Using similar reasoning as in The-
orem 7.11, it is not hard to see that a weaker version of the Sagiv-Yannakakis property
for set-containment of UCQs [30] holds for N[X]:

Lemma 7.14 For UCQs P̄ , Q̄, if P̄ �N[X] Q̄, then for every Pi ∈ P̄ there exists
Qj ∈ Q̄ s.t. Pi �N[X] Qj .

Proof Consider an arbitrary Pi ∈ P̄ . Since P̄ �N[X] Q̄, then in particular, we have
�P̄ �canN[X](Pi)(t) ≤N[X] �Q̄�canN[X](Pi)(t) where t is the head of Pi . Clearly, the term
x1 + · · · + xk , where x1, . . . , xk are the abstract tags of canN[X](Pi), will have non-
zero coefficient in �P̄ �canN[X](Pi)(t), and therefore also in �Q̄�canN[X](Pi)(t). As a result
there must be some CQ Qj ∈ Q̄ such that there exists a valuation ν : vars(Qj) →
D∪ X justifying the term. Using the same reasoning as in Theorem 7.11, we construct
from this valuation an exact containment mapping from Qj to Pi . It follows, using
Theorem 7.11, that Pi �N[X] Qj . �

A natural question to ask is whether the lemma above can be strengthened to
require that each Pi ∈ P̄ correspond to a unique Qj ∈ Q̄; as this is clearly also a
sufficient condition for containment, this would therefore yield a decision procedure
for containment. However, the strengthened version is not true: consider the UCQs
P̄ = (P1,P2) and Q̄ = (Q1) where

P1 :- R(x, y),R(x, x) Q1 :- R(x, y),R(u,u)

P2 :- R(x, y),R(y, y)

Clearly, there is no unique assignment of the CQs in P̄ to CQs in Q̄; both P1 and P2
must be assigned to Q1. Nevertheless, we can show that P̄ �N[X] Q̄. To see this, we
note that Q̄ is N[X]-equivalent to the UCQ Q̄′ with inequalities

Q′
1 :- R(x, y),R(x, x)

Q′
2 :- R(x, y),R(y, y)

Q′
3 :- R(x, y),R(u,u), x �= u, y �= u

It is clear that P̄ ≡N Q̄′, since P1 ∼= Q′
1 and P2 ∼= Q′

2.
Another natural idea is to check containment of P̄ in Q̄ by evaluating both queries

on the canonical database for P̄ , in analogy with Theorem 7.11; unfortunately, one
can easily find counterexamples showing that this procedure is unsound.

However, we are able to show that N[X]-containment of UCQs is decidable in
PSPACE by establishing a “small counterexample” property. In particular we show
that if P̄ ��N[X] Q̄, then �P̄ �A �≤N[X] �Q̄�A for some N[X]-instance A whose size is
bounded by the sizes of P̄ and Q̄.

We begin by bounding the sizes of the annotations of the required counterexample,
by observing that if a counterexample exists, then its abstractly-tagged version is also
a counterexample:

Theory Comput Syst (2011) 49:429–459 451

Lemma 7.15 For any naturally-ordered semiring K , if P̄ , Q̄ ∈ UCQ and �P̄ �A �≤K

�Q̄�A for some K-instance A, then �P̄ �B �≤N[X] �Q̄�B where B = abN[X](A).

Proof Suppose �P̄ �A �≤K �Q̄�A for some K-instance A. Let K ′ denote the subsemir-
ing of K generated by the annotations actually occurring in A. Let B = abN[X](A),
and let ν : X → K ′ be the valuation which maps the variables used in B to the corre-
sponding annotations in A. By the universality of N[X], ν can be extended uniquely
to a semiring homomorphism Evalν : N[X] → K ′. Observe that Evalν(B) = A. It fol-
lows, using Proposition 6.1, that Evalν(�P̄ �B) = �P̄ �A and Evalν(�Q̄�B) = �Q̄�A.
Moreover, observe that Evalν is surjective on K ′. But since �P̄ �A �≤K �Q̄�A and Evalν
is surjective, Proposition 3.3 implies that �P̄ �B �≤N[X] �Q̄�B, as required. �

Of course, the lemma holds in particular for K = N[X]. Next, we show that the
number of tuples in a counterexample can also be bounded:

Theorem 7.16 P̄ ��N[X] Q̄ iff �P̄ �A �≤N[X] �Q̄�A for some abstractly-tagged N[X]-
instance A containing at most k tuples, where k is the degree of Q̄.

Proof “⇐” is trivial. For “⇒”, suppose P̄ ��N[X] Q̄. Then for some N[X]-instance
A, we have �P̄ �A �≤N[X] �Q̄�A. By Lemma 7.15, we may assume that A is abstractly-
tagged. Choose some tuple t such that �P̄ �A(t) �≤ �Q̄�A(t). There must be some
monomial μ in the polynomial �P̄ �A(t) with coefficient a such that the same mono-
mial μ in the polynomial �Q̄�A(t) has coefficient b and a > b. Now let A′ be the
N[X]-instance obtained from A by discarding (by setting their annotations in A′ to
0) any tuples whose annotations do not occur in μ. Note that A′ has at most k tu-
ples. Moreover, the coefficients for μ in the polynomials for �P̄ �A′

(t) and �Q̄�A′
(t)

are unchanged. Hence �P̄ �A′
(t) �≤ �Q̄�A′

(t), and therefore, �P̄ �A′ �≤N[X] �Q̄�A′
. This

completes the proof. �

Theorem 7.16 leads immediately to a decision procedure for checking N[X]-
containment of UCQs: simply test �P̄ �A ≤N[X] �Q̄�A for all instances A containing
at most k tuples; there are still infinitely many of these, but only finitely many up
to isomorphism. This can be carried out effectively by considering, for instance, in-
stances over the first (kn)kn values of the domain, where n is the maximum arity of a
relation in the schema. (If P̄ and Q̄ contain constants, these must be included among
the values considered as well.) Moreover, one can check that this can be done using
only polynomial space:8

Corollary 7.17 N[X]-containment of UCQs is decidable in PSPACE.

We leave the exact complexity of the problem open.

8The reader may notice that for classical set semantics, the preceding argument leads immediately to a

coNPNP = �
p
2 bound on the complexity, by guessing the counterexample instance, then evaluating both

queries. However, with N[X] semantics, the combined complexity of query evaluation is #P -hard (and in
PSPACE), rather than NP-complete. Thus we only get a coNPPSPACE = PSPACE bound.

452 Theory Comput Syst (2011) 49:429–459

Finally, what about N[X]-equivalence of UCQs? Theorem 7.16 tells us that it is
decidable, but not much else. However, it turns out we can use Theorem 7.11 along
with Lemma 7.14 to show that, as with CQs, N[X]-equivalence of UCQs is the same
as isomorphism.

Theorem 7.18 For UCQs P̄ , Q̄, we have P̄ ≡N[X] Q̄ iff P̄ ∼= Q̄.

In the proof we make use of the following simple proposition which states that
removing N[X]-equivalent CQs from N[X]-equivalent UCQs yields N[X]-equivalent
UCQs:

Proposition 7.19 Let P̄ , Q̄ ∈ UCQ and suppose P̄ ≡N[X] Q̄. Then for all P ∈
P̄ ,Q ∈ Q̄, if P ∼= Q, then P̄ ′ ≡N[X] Q̄′, where P̄ ′ (Q̄′) is the UCQ obtained from
P̄ (Q̄) by removing P (Q).

Proof (of Theorem 7.18) “⇐” is trivial. For “⇒” we argue by induction on |P̄ |+|Q̄|.
In the base case, |P̄ | + |Q̄| = 0, and the queries are trivially N[X]-equivalent and
isomorphic. In the inductive case, consider P̄ = (P1, . . . ,Pn) and Q̄ = (Q1, . . . ,Qm)

with n + m > 0, and assume inductively that for all P̄ ′, Q̄′ s.t. |P̄ ′| + |Q̄′| < n +
m, if P̄ ′ ≡N[X] Q̄′ then P̄ ′ ∼= Q̄′. If P̄ ≡N[X] Q̄, then using Lemma 7.14, one can
show that there exists a pair of non-empty sequences i1, . . . , ik and j1, . . . , jk such
that Pi1 �N[X] Qj1 �N[X] · · · �N[X] Pik �N[X] Qjk

and Qjk
�N[X] Pi1 . It follows

that all the CQs in the sequence are N[X]-equivalent, and hence (by Theorem 7.16)
isomorphic. In particular, we have Pi1

∼= Qj1 . Denote by P̄ ′ the UCQ obtained by
removing Pi1 from P̄ , and denote by Q̄′ the UCQ obtained by removing Qj1 from
Q̄. By Proposition 7.19, we have P̄ ′ ≡N[X] Q̄′. Using the induction hypothesis, this
implies P̄ ′ ∼= Q̄′. Since P̄ ′ ∼= Q̄′ and Pi1

∼= Qj1 , it follows that P̄ ∼= Q̄ as required. �

Since B[X] is idempotent, but N[X] is not, it is easy to find examples of P̄ , Q̄

where P̄ ≡B[X] Q̄ but P̄ �≡N[X] Q̄, e.g., P̄ = (P) and Q̄ = (P,P) where P is an ar-
bitrary CQ. This justifies the “⇒́” between N[X] and B[X] in Fig. 2(c) and Fig. 2(d).

7.5 Bag Semantics

In this section, we discuss some further connections between provenance annotations
and bag semantics.

We note that by Theorem 6.5, N[X]-containment of UCQs implies bag-contain-
ment. Since the former is decidable and the latter is not, it follows that there exist
UCQs for which bag-containment holds but N[X]-containment does not. This justi-
fies the “⇒́” between N[X] and N in Fig. 2(d). Also, we can show that:

Proposition 7.20 For containment of UCQs, we have

1. N �⇒ B[X] and B[X] �⇒ N

2. N �⇒ Why(X) and Why(X) �⇒ N

Theory Comput Syst (2011) 49:429–459 453

Proof Consider the UCQs listed below:

U1 :- R(x) P :- R(x) Q :- R(x),R(y)

U2 :- R(x)

For the first claim, to show N �⇒ B[X], we observe that (P) �N (Q) but (P) ��B[X]
(Q); and to show B[X] �⇒ N, we observe that (U1,U2) ≡B[X] (P) but (U1,U2) ��N

(P).
For the second claim, we observe that (U1,U2) ≡Why(X) (P) (but, again,

(U1,U2) ��N (P)), hence Why(X) �⇒ N. At the same time, we already showed in
Sect. 7.2 that for CQs, Why(X)⇒́ N. It follows that N �⇒ Why(X) for UCQs. �

Next, the “⇔” between N and N[X] in Fig. 2(d) follows from the following result:

Theorem 7.21 For UCQs P̄ , Q̄ we have P̄ ≡N Q̄ iff P̄ ≡N[X] Q̄

Proof N[X] ⇒ N follows from Theorem 6.5. We prove N ⇒ N[X] by contrapos-
itive. Suppose P̄ �≡N[X] Q̄. Then for some N[X]-instance A and tuple t , we have
�P̄ �A(t) = A and �Q̄�A(t) = B and A �= B . Since A and B are non-identical poly-
nomials, one can always find a valuation ν : X → N such that Evalν(A) �= Evalν(B).
By Proposition 6.1, we have �P̄ �ν(A)(t) �= �Q̄�ν(A)(t). Since ν(A) is an N-instance,
it follows that P̄ �≡N Q̄, as required. �

By Theorem 7.18 it follows from the above that bag equivalence of UCQs is also
the same as isomorphism. This provides a new proof of a result due originally to
Cohen et al. [11].9

7.6 Trio

For CQs, Trio(X)-containment turns out to coincide with Why(X)-containment:

Theorem 7.22 For CQs P,Q we have P �Trio(X) Q iff P �Why(X) Q.

Proof We must show that Theorem 7.5 holds verbatim when Why(X) is replaced by
Trio(X). (1) ⇒ (2) continues to hold trivially.

For (2) ⇒ (3), we replay the same argument from Theorem 7.5, mutatis mutandis,
as follows. Let t = head(P) and let A = canTrio(X)(P). Observe that x1 +· · ·+xn is a
term with non-zero coefficient in �P �A(t), where x1, . . . , xn are all the annotations of
tuples in A. Since �P �A ≤Trio(X) �Q�A, it follows that x1 +· · ·+xn is a term with non-
zero coefficient in �Q�A(t) as well. Now, to produce that term for t in the query result,
there must be a justifying valuation ν : Q → A mapping each atom R(u1, . . . , uk) in
the body of Q to a tuple R(cv1, . . . , cvk

) in A, such that R(v1, . . . , vk) is an atom in

9The paper by Cohen et al. [11] stated the result that bag-set equivalence of UCQs (called disjunctive
queries there) is the same as isomorphism, and added as an observation that this also holds for bag seman-
tics. The outline of the proof of the bag-set semantics result is provided in [9].

454 Theory Comput Syst (2011) 49:429–459

the body of P , and where the valuation is surjective on A. This valuation may also be
viewed as a containment mapping from Q to P , using the standard procedure given
in the proof of Theorem 7.3. Moreover, since the valuation is surjective on A, the
corresponding containment mapping must also be an onto containment mappings.

For (3) ⇒ (1), the argument is much like that of Theorem 7.11. Let h be an onto
containment mapping from Q to P , and consider an arbitrary Trio(X)-instance A and
output tuple t . Let R1(ū1), . . . ,Rn(ūn) be the body of P , and let S1(v̄1), . . . , Sm(v̄m)

be the body of Q. We want to show that for every monomial term μ = x1 · · ·xk , if
M has coefficient c in �P �A(t), then μ has coefficient c′ ≥ c in �P �A(t). To show
this, it suffices to observe that for any valuations ν, ν′ : vars(P) → D justifying μ

in �P �A(t), the valuations ν ◦ h and ν′ ◦ h justify the same monomial in �Q�A(t);
and moreover, since h is surjective on the variables of P , if ν �= ν′ then ν ◦ h �=
ν′ ◦ h. Hence every justification for �P �A(t) corresponds to a unique justification for
�Q�A(t). Since addition in N is monotone this implies the required inequality for the
term coefficients. �

Therefore, Theorem 7.5 (resp., Theorem 7.6) applies to Trio(X)-containment
(resp., equivalence) as well, and we have a “⇔” between Trio(X) and Why(X) in
Fig. 2(a) and Fig. 2(b).

To establish the decidability of Trio(X)-equivalence of UCQs, we note that Trio(X)

contains an embedded copy of N, hence Trio(X) ⇒ N for UCQs. Combined with
Theorem 7.21 this implies:

Theorem 7.23 For UCQs P̄ , Q̄ we have P̄ ≡Trio(X) Q̄ iff P̄ ∼= Q̄.

This justifies the “⇔” between Trio(X) and N in Fig. 2(d).
To establish decidability in PSPACE of Trio(X)-containment of UCQs, we follow

a similar argument as used for N[X] in Sect. 7.4. However, this time the argument is
complicated by the fact that unlike N[X], Trio(X) cannot easily “simulate its own
computations” by factoring them through calculations involving abstractly-tagged
databases. As a simple example, consider the CQs

Q1(x, y) :- R(x, z),R(z, y) Q2(x, y) :- R(x, y)

and consider the following Trio(X)-relation R and its abstractly-tagged version:

R
def= a a 2

b c pq
abTrio(X)(R) = a a r

b c s

Note that �Q1 �R(a, a) = 4 while �Q2 �R(a, a) = 2. On the other hand,
�Q1 �abTrio(X)(R)(a, a) = �Q2 �abTrio(X)(R)(a, a) = r . (Recall that Trio(X) “drops expo-
nents” in its computations.) Hence, we do not have enough information to recover
the answers over the original table.

To overcome this limitation, we introduce variation of abstractly-tagged instances
called k-abstractly tagged instances. The tags in these instances are sums of k fresh
variables from X. As we shall see, these turn out to suffice for Trio(X) to “simulate
its own computations” for UCQs of degree ≤ k.

Theory Comput Syst (2011) 49:429–459 455

To make this precise, we order the variables of X = {x1, x2, . . . }, and we define
the set Sk ⊆ Trio(X) of sums of k fresh variables from X:

Sk
def= {(x1 + · · · + xk), (xk+1 + · · · + x2k), . . . }

The k-abstractly tagged version abk(A) of a Trio(X)-instance A is the Trio(X)-
instance obtained by replacing each tuple’s annotation in A with a fresh element
of Sk . For example, considering again the Trio(X)-relation R from earlier, we have

abk(R) = a a r + s

b c u + v

Now, we define Triok(X) ⊆ Trio(X) to be the set of annotations from Trio(X) obtained
via calculations of degree ≤ k involving elements of Sk :

Triok(X)
def= {Evalν(a) : a ∈ N[X], ν : X → Sk s.t. a has degree ≤ k and ν is injective}

Proposition 7.24 Suppose valuation ν : X → Sk is injective. Then for any a, b ∈
N[X] of degree ≤ k, a = b iff Evalν(a) = Evalν(b). As a consequence, any element
c ∈ Triok(X) decomposes uniquely into a sum of products of elements of Sk .

Proof Obviously, a = b implies Evalν(a) = Evalν(b). Now suppose Evalν(a) =
Evalν(b) = c1μ1 + · · · + ckμk . �

To illustrate, consider the previous example, and note that �Q1 �abk(R)(a, a) = r +
2rs + s which decomposes uniquely to the expression (r + s)(r + s) involving only
tags from abk(R). On the other hand, �Q2 �abk(R)(a, a) = r + s and now we have
enough information to recover the results of �Q1 �R and �Q2 �R (by replacing r + s

with 2 in the calculations).
We are now ready to state the analogue of Lemma 7.15 for Trio(X):

Lemma 7.25 Suppose P̄ , Q̄ ∈ UCQ have degree ≤ k, and suppose A is a Trio(X)-
instance such that �P̄ �A �≤Trio(X) �Q̄�A. Then �P̄ �abk(A) �≤Trio(X) �Q̄�abk(A).

Proof (Sketch) Let A′ = abk(A) and let ν : Sk → Trio(X) be the valuation which
records how the annotations from A were replaced by elements of Sk . (Thus ν(A′) =
A.) We claim that ν extends to a mapping hν : Triok(X) → Trio(X) that behaves like
a semiring homomorphism, so long as the computations stay within Triok(X):

1. hν(0) = 0 and hν(1) = 1
2. for all a, b ∈ Triok(X), hν(a + b) = hν(a) + hν(b)

3. for all a, b ∈ Triok(X), if a · b ∈ Triok(X) then hν(a · b) = hν(a) · hν(b)

Using Lemma 7.25, we can show that hν exists and is uniquely determined by the
above properties. Since P̄ , Q̄ have degree ≤ k, it is not hard to see that all annotations
in �P̄ �A′

and �Q̄�A′
are in Triok(X). Also, it is not hard to show that hν enjoys

two relevant properties of proper semiring homomorphisms with respect to query
evaluation:

456 Theory Comput Syst (2011) 49:429–459

– hv is compatible with the natural order: ∀a, b ∈ Triok(X), if a ≤Trio(X) b then
hν(a) ≤Trio(X) hν(b)

– Query evaluation commutes with hν : hν(�P̄ �A′
) = �P̄ �hν(A′) = �P̄ �A and

hν(�Q̄�A′
) = �Q̄�h(A′) = �Q̄�A

As a consequence, we have that �P̄ �A′ ≤Trio(X) �Q̄�A′
implies �P̄ �A ≤Trio(X)

�Q̄�A. �

Thus, we have established a bound on the size of annotations of the counterexam-
ples that need to be considered. The last step is to bound the number of tuples and
establish our “small counterexample property”:

Theorem 7.26 For UCQs P̄ , Q̄ of degree ≤ k, if P̄ ��Trio(X) Q̄, then �P̄ �A �≤Trio(X)

�Q̄�A for a k-abstractly tagged Trio(X)-instance A containing at most k tuples.

Proof “⇐” is trivial. For “⇒”, suppose P̄ ��Trio(X) Q̄. Then for some Trio(X)-
instance A, we have �P̄ �A �≤Trio(X) �Q̄�A. Assume that P̄ , Q̄ have degree ≤ k. By
Lemma 7.25, we may assume that A is k-abstractly tagged. From this point on,
the proof is nearly identical to that of Theorem 7.16. Choose some tuple t such
that �P̄ �A(t) �≤Trio(X) �Q̄�A(t). There must be some monomial μ in the polynomial
�P̄ �A(t) with coefficient a such that the same monomial μ in the polynomial �Q̄�A(t)

has coefficient b and a > b. Now let A′ be the Trio(X)-instance obtained from A by
discarding any tuples whose annotations do not contain a variable from μ. Observe
that A′ has at most k tuples. Moreover, the coefficients for μ in the polynomials for
�P̄ �A′

(t) and �Q̄�A′
(t) are unchanged. Hence �P̄ �A′

(t) �≤Trio(X) �Q̄�A′
(t), and there-

fore, �P̄ �A′ �≤Trio(X) �Q̄�A′
. This completes the proof. �

Corollary 7.27 Trio(X)-containment of UCQs is decidable in PSPACE.

Finally, we note that one can find examples of UCQs showing that N[X]⇒́ Trio(X)

and Trio(X)⇒́ N, as indicated in Fig. 2(d).

8 Related Work

The seminal paper by Chandra and Merlin [6] introduced the fundamental concepts
of containment mappings and canonical databases in showing the decidability of con-
tainment of CQs under set semantics and identifying its complexity as NP-complete.
The extension to UCQs is due to Sagiv and Yannakakis [30]. We have built upon the
techniques from these papers.

The papers by Ioannidis and Ramakrishnan [24] and Chaudhuri and Vardi [8]
initiated the study of query containment under bag semantics. Chaudhuri and Vardi
showed that bag-equivalence of CQs is the same as isomorphism, established the
�

p

2 -hardness of checking bag-containment of CQs, and gave partial conditions for

Theory Comput Syst (2011) 49:429–459 457

checking bag-containment (see Sect. 7 for further connections with our results).10

Ioannidis and Ramakrishnan showed that bag-containment of UCQs is undecidable
and introduced a framework of annotations from algebraic structures similar in spirit
to the semiring annotations we consider.

In Sect. 7.5 we have discussed the results of Cohen et al. [11] and Cohen [9] on bag
equivalence and bag-set equivalence of UCQs. The decidability of bag-containment
of CQs remains open. Recent progress was made on the problem by Jayram et al. [25]
who established the undecidability of checking bag-containment of CQs with in-
equalities.

Semiring-annotated relations are also related to the lattice-annotated relations used
in parametric databases by Lakshmanan and Shiri [27]. That paper also studied query
containment and equivalence, giving a number of positive decidability results. None
of our provenance models fall into this framework (with the exception of PosBool(X),
cf. Theorem 4.7).

We have already mentioned in Sect. 4 the paper by Grahne et al. [16], which stud-
ied containment and equivalence of positive relational queries on bilattice-annotated
relations.

Green et al. [18] proposes Z-relations, which are relations whose tuples are an-
notated with integer counts (positive or negative), and shows that Z-equivalence is
decidable for the full relational algebra (including difference). The proof makes es-
sential use of the earlier results for bag semantics [8, 11].

Tan [34] showed that query containment is decidable for CQs on relations with
where-provenance information. Our results here on why-provenance complement the
where provenance results (why-provenance and where-provenance were introduced
together in [4]).

Green et al. [20] showed that when K is a distributive lattice, K-containment of
UCQs is the same as set containment of UCQs. This was essentially a rediscovery of
an earlier result due to Buneman et al. [4] presented there in the context of queries
over tree-structured data with minimal witness why-provenance (see Sect. 4). The
result was generalized to complex values and XML trees in [14].

Cohen [10] recently initiated the study of query optimization under combined se-
mantics, which generalizes bag semantics and bag-set semantics by enriching the
relational algebra with a duplicate elimination operator. “Duplicate elimination” also
makes sense for K-relations in the form of the support operator:

supp(R)
def= λt.

{
0 if R(t) = 0
1 otherwise

For K = N, this is duplicate elimination; for K = PosBool(X) it corresponds to the
poss operator of [1] which returns the “possible” tuples of an incomplete relation.

10Chaudhuri and Vardi [8] also introduced the study of bag-set semantics, and showed that bag-set equiv-
alence of CQs (without repeated atoms in the body) is the same as isomorphism. This was essentially
a rediscovery of a well-known result in graph theory due to Lovász [28] (see also [22]), who showed
that for finite relational structures F,G, if |Hom(F,H)| = |Hom(G,H)| for all finite relational structures
H , where Hom(A,B) is the set of homomorphisms h : A → B , then F ∼= G. In database terminology,
this says that bag-set equivalence of Boolean CQs (without repeated atoms in the body) is the same as
isomorphism.

458 Theory Comput Syst (2011) 49:429–459

It would be interesting to see whether the decidability results presented here can be
extended to queries using supp.

Finally, the work in AI on soft constraint satisfaction problems [2] is closely re-
lated to the framework of K-relations. Their constraints over semirings are in fact the
same as our K-relations and the two operations on constraints correspond indeed to
relational join and projection. The semirings used in [2] are such that + is idempo-
tent and 1 is a top element in the resulting order. This rules out N, B[X], N[X], and
Trio(X).

9 Conclusion

We have mapped out some of the foundations of query optimization for databases
with provenance information, by giving positive decidability results and complexity
characterizations for checking K-containment/equivalence for CQs/UCQs, for vari-
ous semirings K used to track provenance information. We also used these results to
establish some necessary and some sufficient conditions for K-containment of CQs
for any semiring K , and we showed that for the special case of CQs without self-joins
and positive K , K-equivalence is the same as isomorphism. We also highlighted con-
nections between query containment under set and bag semantics and containment
under the various provenance semantics.

Moving beyond UCQs, it would be interesting to consider the same questions for
Datalog programs on K-relations [20]. Unlike with UCQs, it is easy to see that N[X]-
equivalence of Datalog programs does not reduce to isomorphism, and it seems likely
that the undecidability results for set semantics [33] will carry over to the forms of
provenance information we have considered here. On the other hand, the positive
decidability results concerning containment/equivalence of a Datalog program and a
UCQ [7] might also carry over. We conjecture that when K is a distributive lattice,
K-containment of Datalog programs holds exactly when the same holds for ordinary
set semantics.

We assumed a Datalog-style representation for UCQs, which is expressively
equivalent to the positive relational algebra (RA+) on K-relations, but exponentially
less concise. Under set semantics, it is well-known [30] that checking containment of
RA+ queries is correspondingly harder (�p

2 -complete rather than NP-complete). An
obvious question is how the move to an algebraic representation affects the results
presented here.

Finally, semiring annotations also make sense for a positive version of XQuery on
unordered XML data, as shown in [14]. It would be worthwhile to investigate how
the same issues of query containment and equivalence considered here play out for
annotated XML.

Acknowledgements James Cheney, Zack Ives, Grigoris Karvounarakis, and Stijn Vansummeren offered
useful comments on earlier revisions of this paper. Val Tannen suggested many of the semirings and their
constructions described in Sect. 4 and offered guidance and encouragement in preparing this paper. We
thank the anonymous referees from ICDT 2009 for bringing the papers [11, 12] and [28] to our attention,
and we thank Gösta Grahne for pointing out [16] and [27].

Theory Comput Syst (2011) 49:429–459 459

References

1. Antova, L., Koch, C., Olteanu, D.: From complete to incomplete information and back. In: SIGMOD
(2007)

2. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. Springer, Berlin (2004)
3. Buneman, P., Cheney, J., Tan, W.-C., Vansummeren, S.: Curated databases. In: PODS (2008)
4. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data provenance. In:

ICDT (2001)
5. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through views. In:

PODS (2002)
6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases.

In: STOC, pp. 77–90 (1977)
7. Chaudhuri, S., Vardi, M.Y.: On the equivalence of recursive and nonrecursive datalog programs. In:

PODS (1992)
8. Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive queries. In: PODS (1993)
9. Cohen, S.: Containment of aggregate queries. SIGMOD Rec. 34(1), 77–85 (2005)

10. Cohen, S.: Equivalence of queries combining set and bag-set semantics. In: PODS (2006)
11. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In: PODS (1999)
12. Cohen, S., Sagiv, Y., Nutt, W.: Equivalences among aggregate queries with negation. ACM Trans.

Comput. Log. 6(2), 328–360 (2005)
13. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment.

TODS, 25(2) (2000)
14. Foster, J.N., Green, T.J., Tannen, V.: Annotated XML: Queries and provenance. In: PODS (2008)
15. Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and

database systems. TOIS 14(1), 32–66 (1997)
16. Grahne, G., Spyratos, N., Stamate, D.: Semantics and containment of queries with internal and exter-

nal conjunctions. In: ICDT (1997)
17. Green, T.J.: Containment of conjunctive queries on annotated relations. In: ICDT (2009)
18. Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable differences. In: ICDT (2009)
19. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with mappings and prove-

nance. In: VLDB (2007)
20. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS (2007)
21. Green, T.J., Tannen, V.: Models for incomplete and probabilistic information. In: IIDB, March 2006

(2006)
22. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)
23. Imieliński, T., Witold Lipski, J.: Incomplete information in relational databases. J. ACM, 31(4) (1984)
24. Ioannidis, Y.E., Ramakrishnan, R.: Containment of conjunctive queries: Beyond relations as sets.

TODS 20(3), 288–324 (1995)
25. Jayram, T.S., Kolaitis, P.G., Vee, E.: The containment problem for real conjunctive queries with in-

equalities. In: PODS (2006)
26. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: its Structural Complexity.

Birkhäuser, Basel (1993)
27. Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty. IEEE

Trans. Knowl. Data Eng. 13(4), 554–570 (2001)
28. Lovász, L.: Operations with structures. Acta Math. Hung. 18(3–4), 321–328 (1967)
29. Nutt, W., Sagiv, Y., Shurin, S.: Deciding equivalences among aggregate queries. In: PODS (1998)
30. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the union and difference

operators. J. ACM 27(4), 633–655 (1980)
31. Sarma, A.D., Theobald, M., Widom, J.: Exploiting lineage for confidence computation in uncertain

and probabilistic databases. In: ICDE (2008)
32. Senellart, P., Abiteboul, S.: On the complexity of managing probabilistic XML data. In: PODS (2007)
33. Shmueli, O.: Equivalence of datalog queries is undecidable. J. Logic Programming 15 (1993)
34. Tan, W.-C.: Containment of relational queries with annotation propagation. In: DBPL, September

2003 (2003)
35. Zimányi, E.: Query evaluation in probabilistic relational databases. TCS, 171(1–2) (1997)

	Containment of Conjunctive Queries on Annotated Relations
	Abstract
	Introduction
	Queries on K-Relations
	The Natural Order
	Semirings for Provenance
	Containment Mappings
	Bounds from Semiring Homomorphisms
	Main Results
	Lineage
	Why-Provenance
	B[X]-Provenance
	Provenance Polynomials
	Bag Semantics
	Trio

	Related Work
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

