Theory Comput Syst (2011) 49:460-488
DOI 10.1007/s00224-011-9323-x

Reconcilable Differences

Todd J. Green - Zachary G. Ives - Val Tannen

Published online: 5 May 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper we study a problem motivated by the management of changes
in databases. It turns out that several such change scenarios, e.g., the separately stud-
ied problems of view maintenance (propagation of data changes) and view adaptation
(propagation of view definition changes) can be unified as instances of query refor-
mulation using views provided that support for the relational difference operator ex-
ists in the context of query reformulation. Exact query reformulation using views
in positive relational languages is well understood, and has a variety of applications
in query optimization and data sharing. Unfortunately, most questions about queries
become undecidable in the presence of difference (or negation), whether we use the
foundational set semantics or the more practical bag semantics.

We present a new way of managing this difficulty by defining a novel semantics,
Z-relations, where tuples are annotated with positive or negative integers. Z-relations
conveniently represent data, insertions, and deletions in a uniform way, and can apply
deletions with the union operator (deletions are tuples with negative counts). We show

A preliminary version of this paper [16] appeared in the Proceedings of the 12th International
Conference on Database Theory (ACM International Conference Proceeding Series, 361 ACM 2009,
ISBN 978-1-60558-423-2).

Our work has been supported by the National Science Foundation under grants I1S-0629846,
11S-0803524, 11S-0477972, 11S-0513778, and 11S-1050448.

Work of T. Green performed while at the University of Pennsylvania.

T.J. Green (X)
University of California, Davis, CA 95616, USA
e-mail: green@cs.ucdavis.edu

7Z.G. Ives - V. Tannen
University of Pennsylvania, Philadelphia, PA 19104, USA

Z.G. Ives
e-mail: zives @cis.upenn.edu

V. Tannen
e-mail: val@cis.upenn.edu

@ Springer

mailto:green@cs.ucdavis.edu
mailto:zives@cis.upenn.edu
mailto:val@cis.upenn.edu

Theory Comput Syst (2011) 49:460-488 461

that under Z-semantics relational algebra (R«) queries have a normal form con-
sisting of a single difference of positive queries, and this leads to the decidability
of their equivalence. We provide a sound and complete algorithm for reformulating
RA queries, including queries with difference, over Z-relations. Additionally, we
show how to support standard view maintenance and view adaptation over set or bag
semantics, through an excursion into the Z-semantics setting. Our algorithm turns
out to be sound and complete also for bag semantics, albeit necessarily only for a
subclass of . This subclass turns out to be quite large and covers generously the
applications of interest to us. We also show a subclass of R+ where reformulation
and evaluation under Z-semantics can be combined with duplicate elimination to ob-
tain the answer under set semantics. We investigate related complexity questions, and
we also extend our results to queries with built-in predicates.

Keywords View maintenance - View adaptation - Query optimization - Query
reformulation

1 Introduction

Fundamentally, databases are dynamic entities: data gets updated, and schemas and
view definitions get revised. In an increasing number of scenarios (e.g., data ware-
houses, data exchange, and collaborative data sharing systems), large numbers of
materialized views are derived from base data: a change to the base data, the view
definition, or the base schema might have a cascading effect on the views. A key
operation becomes reasoning about the most efficient way to recompute a view in-
stance (i.e., reformulate a query) given a set of materialized views, a set of changes,
and a set of base relations. A challenge is that updates include deletions as well as
insertions—and in general, deletions require a means of handling the relational dif-
ference operator.

In this paper we study the reformulation (rewriting) of relational queries that con-
tain the difference operator. Our goal for query reformulation is to optimize by reusing
existing information, such as materialized views. Since the objective is optimization,
we focus on exact reformulation, which finds only equivalent rewritings of the query.!

Query reformulation using views is well understood for positive fragments of re-
lational languages, such as conjunctive queries (CQs) or unions of CQs (UCQs), under
both set and bag semantics (see, e.g., [4, 28]). As we shall discuss in more detail in
the preamble to Sect. 4 in both cases (bag and set semantics), complete procedures
for finding UCQ rewritings using UCQ views exist, using finite search spaces. Also,
in both cases UCQ equivalence is decidable. In fact, in the same discussion we argue
that whenever a (reasonable) finite search space procedure exists, query equivalence
must also be decidable.

It follows that the initial outlook on doing reformulations involving the difference
operator is glum because even without views the equivalence of relational algebra

n data integration, one is also interested in maximally contained rewritings, see e.g., [22].

@ Springer

462 Theory Comput Syst (2011) 49:460—488

(RA) queries is undecidable, for both set and bag semantics.2 Hence, we cannot
hope for the approaches to UCQ reformulation under bag or set semantics to extend
to the entire R.A.

However, being able to solve this problem even partially would have an impact in
at least three major change propagation scenarios. With reformulation of queries that
include difference:

— Optimization using materialized views could be done over a broader space of plans.
Even if the original query and view were just CQs/UCQs it would be valuable if
we could find rewritings that, e.g., subtract one view from a larger view in order to
return a query answer. Sometimes only such rewritings using difference exist.

— View adaptation [19], the act of updating a materialized view instance when the
view definition has changed, could be seen as a reformulation using views. Here,
the updated view can be recomputed based on the old contents of the view, by
adding and/or subtracting queries over the base data and possibly other views. This
would be significant progress over existing approaches.

— Incremental view maintenance [20] could be seen as a reformulation using views,
since insertions and deletions could be treated as unions and differences. Conse-
quently, one can consider multiple rewritings as solutions, using a cost model to
choose the best one.

Since all these scenarios are highly relevant practical problems in databases, we
are led to ask the following natural question: is there a slightly less expressive class of
queries than R.A,—still including difference, and hence still providing the benefits
cited above—for which reformulation can be handled effectively. In this paper we
do this via an excursion through a non-standard semantics that is of interest in its
own right: what we term Z-relations. These are relations whose tuples are annotated
with integers (positive or negative) and the positive R.A operators are defined on
them according to the semiring-annotated semantics used in our previous [17, 18]. In
addition, difference has an obvious, natural definition on Z-relations.

Z-relations are a natural and uniform representation for both data and updates.
For example, they can represent updates to source relations (collections of tuple in-
sertions and deletions, a.k.a. deltas) which must be propagated in incremental view
maintenance applications. Indeed, “application” of a delta to a relation corresponds
to simply computing a union. We discuss this further in Sect. 2.

It turns out that reformulation of R.4 queries using R.A views can be solved ef-
fectively with respect to the Z-semantics since here equivalence of R.A queries with
respect to a set of R.A views is decidable. We provide a sound and complete algo-
rithm for finding rewritings of R.A queries using R.4 views under Z-semantics.

Moreover, we obtain practically useful results about the class of R.A queries for
which the reformulation with respect to Z-semantics remains valid with respect to bag
semantics. For example, the algorithm is complete for finding R.A-reformulations
of UCQs using UCQ views, provided we are only looking for well-behaved refor-
mulations that on N-instances produce the same results under Z-semantics as under

2The latter follows, e.g., from the undecidability of bag-containment of unions of conjunctive queries
(UCQs) [24], since for UCQs Q, Q" we have Q is contained in Q' iff Q — Q’ is equivalent to the empty
answer query.

@ Springer

Theory Comput Syst (2011) 49:460-488 463

N-semantics. We show two examples that fall in this category in Sect. 2: an optimiza-
tion using views example and a view adaptation example. Another case in which the
algorithm is nicely complete, for both bag and set semantics, is the application to
incremental view maintenance using the so-called delta rules [20], also discussed in
Sect. 2.

The main contributions of the paper are:

— We show that under Z-semantics every R.4 query is equivalent to the difference of
two queries in R.A™. The latter are selection/projection/join/union queries, form-
ing the positive relational algebra, and equivalent in expressiveness to UCQs. Then
the decidability of equivalence of R.A queries under Z-semantics is a corollary of
the decidability of equivalence of UCQs.

— It follows that in reformulation using views under Z-semantics we can work with
differences of unions of conjunctive queries (DUCQs). We give a terminating, con-
fluent, sound and complete rewrite system such that if two DUCQs are equivalent
under a set of views then they can be rewritten to the same query (modulo iso-
morphism). This leads to our procedure for exploring the space of reformulations
(using the opposites of the rewrite rules).

— In contrast to CQs/UCQs under set semantics, there is no inherent or natural,
instance-independent notion of “minimality” for DUCQs under Z-semantics that
would yield a finite reformulation search space. We bound the search under a sim-
ple cost model, which is an abstraction of the one used in a query optimizer.

— We examine when we can use the Z-semantics reformulation strategy to obtain
results that work for the bag semantics and set semantics. We show that the refor-
mulation procedure is complete for queries/views in a certain class of queries that
on N-instances produce the same results under Z-semantics as under N-semantics.
Membership in this class is necessarily undecidable but we give simple and prac-
tical sufficient membership criteria. We further examine when we can also obtain
results that are sound under set semantics provided we are allowed to add duplicate
elimination to the reformulations.

— Finally, we also show how to extend our results to queries with built-in predicates,
i.e., inequalities and non-equalities.

The paper is structured as follows. We discuss motivating applications in Sect. 2.
We define the semantics of RA on Z-relations, establish the decidability of Z-
equivalence of R.A queries and introduce DUCQs in Sect. 3. We introduce the rewrite
system for queries using views in Sect. 4. We present reformulation algorithms and
strategies in Sect. 5. We discuss reformulation for bag semantics/set semantics via
Z-semantics in Sect. 6. We extend our Z-equivalence results to R.A with built-in
predicates in Sect. 7. We conclude in Sect. 8 with a discussion of related work.

2 Applications of Differences
In this section, we illustrate the three motivating applications mentioned in the intro-
duction, and show how these problems are closely related. Given a uniform way of

representing data along with changes to the data—including deletions or difference

@ Springer

464 Theory Comput Syst (2011) 49:460—488

operations over data, as well as insertions—we can consider each of these problems
to be a case of query reformulation or query rewriting. We shall propose Z-relations
as a unifying representation for this purpose, since they can capture base data, inser-
tions, and deletions.

Optimizing Queries Using Views [4, 28] Given a query Q and a set of materialized
views V, the goal is to speed up computation of Q by (possibly) rewriting Q using
views in V. Sometimes, a view may be “nearly” applicable for answering a query, but
cannot be used unless difference is allowed in the rewriting. For example, consider a
view V with paths of length 2 and 3 in R:

Vi(x,y) - R(x,2), R(z, y)

V(x,)’) - R(X, u)7 R(M5 U), R(U, }’)
and a query Q for paths of length 3:

O(x,y) - R(x,u), R(u,v), R(v, y)

One can obtain an answer to Q from an instance of V by removing all paths of
length 2 from it: compute paths of length 2 (by joining R with itself), then compute
the difference between V and those paths under bag semantics. If our end goal is set
semantics, we would also add a duplicate elimination step at the end.

View Adaptation [19] Here, we have a set of base relations, an existing materialized
view, and an updated view definition, and we want to refresh the materialized view
instance to reflect the new definition. For example, the materialized view:

V(x,y,2) - R(x,y), R(x,2)
V(x,y,2) - R(x,y), R(y,2)
V(x,y,2) - R(x,y),R(y,2),y=z

might be redefined by deleting the second rule and projecting out the middle column:

V/(xv Z) - R()C, Y), R(x, Z)
V'(x,2) - R(x,y),R(y,2),y =2

In this case, the computation of V'(x, z) might be sped up under bag semantics by
computing the second rule V (x, y, z) :- R(x, y), R(y, 2), subtracting the tuples of the
result, and projecting only x and z. (Again, duplicate removal could be done at the
end to get a set-semantics answer.)

Incremental View Maintenance [20] We are given a source database, a materialized
view, and a set of changes to be applied to the source database (tuple insertions or
deletions), and the goal is to compute the corresponding change to the materialized
view. This can then be applied to the existing materialized view to obtain the new

@ Springer

Theory Comput Syst (2011) 49:460-488 465

version. For example, consider a source relation R and materialized view V, with
definitions and instances:

5 V(an) - R(xvz)vR(Zay) :

a SR
RS EEESEEAN

o a0 S Q Q
o Q T o Q

Suppose we update R by deleting (b, a) and inserting (c, d); to maintain V, we must
insert a new tuple (b, d). Note that deleting (b, a) does not result in deleting (b, b)
from V, because this tuple can still be derived by joining (b, ¢) with (c, b). Yet if we
now delete (c, b) from R, then (b, b) and (c, ¢) must be deleted from V.

In order to solve the incremental view maintenance problem, Gupta et al. [20]
proposed recording in V along with each tuple the number of derivations of that
tuple, i.e., the multiplicity of the tuple under bag semantics. To represent changes to a
(bag) relation, they introduced the concept of delta relations, essentially bag relations
with associated signs: “+” indicates an insertion and “—" a deletion. Finally, in order
to propagate updates, they proposed the device of delta rules. In the example above,
a set of delta rules for V corresponds to the UCQ:

VA, y) - R(x,2), Rz, y)
VAx,y) - RY(x,2), R'(z,y)

Here R’ denotes the updated version of R, obtained by applying the delta R® to R,
i.e., computing R’ & RA U R where union on delta relations sums the (signed) tuple
multiplicities. By computing V2 and then applying it to V, we obtain the updated
version of V, namely V’. Note that there may actually be more than one possible set

of delta rules for V, e.g.:

VA, y) - R(x,2), R(z,y)
VA(x,y) - R'(x,2), R%(z,y)

We would like to choose among the possible delta rules sets, as well as simply com-
puting V' “from scratch” via the query:

V'(x,y):- R'(x,2), R'(z,y)

based on the expected costs of the various plans. We model the relation R® with
Z-relations, presented in the next section. We consider this to again be a variant of
optimizing queries using views: the goal is to compute the view with deltas applied,
V', given not only the base data R and R2, but also the existing materialized view V,
and relation R’ resulting from applying the updates in R* to R. (We can compute V'
either before or after updating R to R’.) Since every delta relation includes deletions,
this version of the reformulation problem also incorporates a form of difference.

As we shall see, a unified treatment of these three applications is possible by us-
ing methods for representing data and changes via an excursion to an alternative

@ Springer

466 Theory Comput Syst (2011) 49:460—488

semantics (Z-relations), performing query reformulation in this context, and proving
sufficient conditions for cases in which the results agree with bag and set semantics.

3 Z-Relations

We use here the named perspective [1] of the relational model, in which tuples are
functions ¢ : U — D with U a finite set of attributes and D a domain of values. We
fix the domain D for the time being and we denote the set of all such U-tuples by
U-Tup. (Usual) relations over U are subsets of U-Tup; we will also refer to these as B-
relations, since they can also be viewed as mappings from U-Tup to B = {true, false}.

A bag relation over attributes U is a mapping R : U-Tup — N from U-tuples to
their associated multiplicities. Tuples with multiplicity O are those “not present” in R,

and we require of a bag relation that its support defined by supp(R) &of {t | R(t) #0}
is finite.

A Z-relation over attributes U is a mapping R : U-Tup — Z of finite support. In
other words, it is a bag relation where multiplicities may be positive or negative.

A bag instance (Z-instance) is a mapping from predicate symbols to bag relations
(Z-relations). A set instance I (or B-instance) is a mapping from predicate symbols
to B-relations. If is a K -instance (for K € {Z, B, N}), then R’ denotes the value of
the K -relation for R in 1.

We define the semantics of the relational algebra on Z-instances according to the
semiring-annotated relational semantics used in our previous papers [17, 18]. We
begin with the operations of the positive algebra (RA™). If I is a Z-instance and Q
is a positive algebra query, then the result of evaluating Q on I is the Z-relation [Q]’
defined inductively as follows:

empty relation For any set of attributes U, there is ¢} : U-Tup — Z such that
21 (1) =0

identity If R is a predicate symbol with attributes U then [R]! : U-Tup — Z is de-
fined by

def
[R) @) = R' ()
union Tf [R1]", [R2]! : U-Tup — Z then [R; U Ry]! : U-Tup — Z is defined by

[RiUR (1) & [Ri] @) + [Ra] (@)

projection If [R]! : U-Tup — Z and V C U then [y R]! : V-Tup — Z is defined by

[y R] (1) & 3 [R]" (")

t=t"on V and [R]! (t')#0

(here t =’ on V means ¢’ is a U-tuple whose restriction to V is the same as the
V-tuple #; note also that the sum is finite assuming [R] has finite support).

@ Springer

Theory Comput Syst (2011) 49:460-488 467

selection If [[R]}I : U-Tup — Z and the selection predicate P maps each U-tuple to
either 0 or 1 then [opR]! : U-Tup — Z is defined by

lopR] () & [R] (1) - P()
Which {0, 1}-valued functions are used as selection predicates is left unspecified, ex-
cept that we assume that false—the constantly O predicate, and true—the constantly
1 predicate, are always available.
natural join 1f [R;]! : U;-Tup — Z i = 1,2 then [Ry x R;])! is the Z-relation over
U1 U U, defined by

[Ri % R () € [Ri] @) - [Ra] (12)

where t; = on Uy and f, =t on U, (recall that ¢ is a Uy U Up-tuple).
renaming 1f [R]! : U-Tup — Z and B : U — U’ is a bijection then [pgR]’ is a Z-
relation over U’ defined by

lopRI' 1) = [R] (20)
For the time being we assume selection predicates correspond to equalities A = B
of attributes or equalities A = ¢ of attributes with domain values. (We extend this to
include inequality predicates in Sect. 7.)

Observe that if we start with Z-relations with just positive multiplicities, i.e. N-
relations, the results of the operations defined above are also N-relations (leading to
Lemma 3.1 below) and the resulting semantics is in fact the usual bag semantics.
B-relations correspond to reading the “+” as disjunction and the “-” as conjunction,
essentially “eliminating duplicates,” hence we get the usual set semantics.

We extend the above definition to the full relational algebra (R.4) on Z-instances
by defining the difference operator in the obvious way:

difference If [Ry]! : U-Tup — Z and [R]! : U-Tup — Z then [R; — Ry]' :
U-Tup — Z is defined by

[Ri — Ra] () & [Ri] (1) = [Ra] (1)

For bag semantics, the subtraction in the definition above is replaced by proper
subtraction (negative numbers are truncated to 0). For B-relations this becomes the
usual set difference in set semantics.

Every bag instance is also a Z-instance. Relational queries on set or bag instances
can be evaluated under bag semantics or under Z-semantics. To disambiguate we use
the notation [[QM(to mean the evaluation of Q on bag instance / under K -semantics,
for K € {N, Z}.

For Q, Q' € RA and K € {B, N, Z} we say that Q and Q' are K -equivalent (de-
noted Q =g Q') if for every K-instance I, [Q]’ =[Q’]’. The following simple but
useful observation relates N-equivalence and Z-equivalence of positive queries:

Lemma3.1 If 0, Q' e RAT then Q=7 Q' iff Q =n Q.

@ Springer

468 Theory Comput Syst (2011) 49:460—488

Proof “=" follows from the fact that every bag instance is also a Z-instance and
the two semantics agree for positive queries on bag instances. “<" follows from the
fact that bag equivalent positive queries, when transformed into UCQs, are isomor-
phic [9]. O

3.1 Normal Form and Decidability

Equivalence of relational queries under set semantics has long been known to be
undecidable [34]. We have also seen (cf. footnote in Sect. 1) that bag equivalence
of relational queries is undecidable, via an easy reduction from containment of UCQs
(which makes essential use of proper subtraction). In contrast, the form of subtraction
used in Z-relations turns out to be surprisingly well-behaved: we will show in this
section that Z-equivalence of relational queries is actually decidable. The key idea is
that in contrast to bag and set semantics, under Z-semantics, every relational query is
equivalent to a single difference of positive queries.

Definition 3.2 For any Q € RA we define a difference normal form denoted by
DiffNF(Q) by structural recursion on Q as follows:

— If R is a predicate symbol then DiffNF(R) =R — @.

— If DiffNF(Q) = A — B then
DiffNF(rx(Q)) = nx(A) —mx(B), and
DiffNF(op(Q)) = op(A) —op(B).

— If DiffNF(Q;) = A| — B; and DiffNF(Q2) = A — B, then

DiffNF(Q1 x O2) = (A1 X A, U By X By) — (A; X By U By X Aj),
DiffNF(Q1 U Q) = (A1 UAp) — (B1U By), and
DiffNF(Q1 — Q2) = (A1 U Bz) — (A2 U By).

Moreover, the above rules clearly also define an effective procedure for comput-
ing DiffNF(Q).

Theorem 3.3 (Normalization) For any Q € R.A we can effectively find A, B € RA"
such that Q =7 A — B.

Proof Clearly DiffNF(Q) has the form A — B with A, B € RA™ . It is straightforward
to show by induction on Q that Q =y DiffNF(Q) using the algebraic Z-semantics
identities in Fig. 1. Note that in general DiffNF(Q) may be of size exponential in the
size of Q.

The given definition of DiffNF(Q) proliferates redundant occurrences of . We
will assume that simplifications are made based on identities such as AU = A
or A X ¢} =0 (true for Z-semantics, bag semantics, set semantics, and in fact all
semiring-annotated semantics). As a result, it is easy to check that for R.A™ queries
QO we have DiffNF(Q) = 0 — @. a

@ Springer

Theory Comput Syst (2011) 49:460-488 469

(A-B)-C=z A-(BUC) op(A—B) =z 0p(A) —op(B)

AX(B—-C)=7 (AXxB)—(AxC) () (A-B)UC =y (AUC)—B
0 A-(B-C)=z(AUC)—-B () 7x(A = B) =z 7x(A) —7wx(B)

(A-B)xC=7 (AxC)-(BxC) pp(A —B) =7, pg(A) — pg(B)

() AUB—-C)=7 (AUB)-C

Fig. 1 Algebraic identities for the difference operator under Z-semantics

Note that the two identities in Fig. 1 that are flagged by (!) fail in fact for both
set and bag semantics. For instance, consider binary relations R and S. For the first
identity marked (!), we have (R — (RU R)) U R =7 (RU R) — (R U R), but the
two queries are inequivalent under set or bag semantics; while for the second identity
marked (!), we have 71 (R — S) =z m1(R) — m1(S), but again the two queries are
inequivalent under either set or bag semantics. Indeed, Theorem 3.3 fails for set or
bag semantics.

Corollary 3.4 Z-equivalence of RA queries is decidable.

Proof Let Q, Q' € RA. By Theorem 3.3, Q =z Q' iff DiffNF(Q) =z DifiNF(Q’).
Let A, B, C, D € RA™ such that DiffNF(Q) = A — B and DiffNF(Q') = C — D. But
A—B=yC—-Diff AUD=7BUCiIff AUD=yBUC.ButAUDand BUC
are in RAT and hence equivalent to UCQs so the result follows from the decidability
of UCQ bag equivalence [9]. O

Corollary 3.4 can be used to show a PSPACE upper bound on the complexity of
checking Z-equivalence of R.A queries; however, the exact complexity remains open.
A lower bound is given by Proposition 3.8 which shows that the problem is at least
GI-hard.?

Remark 3.5 Converting RA™T queries to UCQs may increase their size exponen-
tially, and it is well-known that for set semantics, there is a corresponding jump
in the complexity of checking containment/equivalence: for UCQs, checking con-
tainment/equivalence is NP-complete but for RA™ queries it is l'[é7 -complete [34].
However, for bag-equivalence/Z-equivalence of RA™T queries, the question seems
to be open and may be difficult to resolve. There are intriguing connections with
the polynomial identity testing problem (PIT), an important open problem in theo-
retical computer science. PIT is known to be solvable in probabilistic polynomial
time and conjectured to be perhaps solvable in PTIME (via a derandomization of
the probabilistic procedure). In fact, we can show that for the cross product-union
fragment of RA™, at least, bag-equivalence/Z-equivalence is interreducible with the
non-commutative variant of PIT, which is known to lie in PTIME [33].

Another useful consequence of Theorem 3.3 is the following:

3GI is the class of problems polynomial time reducible to graph isomorphism. Graph isomorphism is
known to be in NP, but is not known or believed to be either NP-complete or in PTIME.

@ Springer

470 Theory Comput Syst (2011) 49:460—488

Lemma 3.6 For any Q1, Q2 € RA, we have Q1 =7 Q> iff [[Q]]]% = [[Qz]]% for
every N-instance I .

Proof “=>" is immediate. For “<”, suppose Q1 #7 Q>. By Theorem 3.3, we have
Qi=7A—Band Q=7 C—DwithA,B,C,DecRA".Since A— B#7C —D,
we have AU D #7 B U C. By Lemma 3.1, this implies A U D #y B U C. Therefore
for some N-instance I, we have [A U D]{ # [B U C]{, hence [A U D]}, # [B U
C]%. Now consider some output tuple such that [A U D]/ (t) # [B U C]L (). It
follows that [A]L (t) + [D]4(t) # [B]L(t) + [C]4 (). But then [A]L (1) — [B]L (1) #
[CTL @) — [D]4(1). 1t follows that [A — B]! (1) # [C — D]%(t). Hence [Q1]} #
[Qa]f. O

We shall see an application of Lemma 3.6 in Sect. 6.
3.2 DUCQs

As we shall see below, our reformulation algorithm uses R.A queries in difference
normal form. In, fact as with CQs and UCQs it is notationally convenient to use a
Datalog-style syntax for the queries on which reformulation operates directly. We
define differences of unions of conjunctive queries (DUCQs) for this purpose, for ex-
ample:

Q(-xvz) - R(xvy)is(yiz)
O(x,y) = R(x,u), R(u,v), R(v,y)
_Q(-xay) - R(x’y)aT(y7y)

The “~” marks a “negated” cQ. If A, B, C are the RA™ queries encoding the first,
second, and third rules above, respectively, the equivalent R.4 query is

0=AUB-C.

DUCQs are related to the elementary differences of [34]. Under Z-semantics, any R.A
query can be written equivalently as a DUCQ; this follows from Theorem 3.3 and the
fact that any R.A™ query can be rewritten as a UCQ. The semantics of DUCQs on bag
relations/Z-relations/set relations can be given formally by translation to R.A.

Definition 3.7 If Q = Q; — Q5 is a DUCQ which is the difference of UcQs Q; and
0>, and [is a K-instance (for K € {Z, N, B}), then the result of evaluating Q on 1
is the K -relation

101k (1) & [trans(Q)L (1) — [trans(Q2)]% (1)

where trans : UCQ — R.A™ is the standard translation of UCQs to positive relational
queries.

@ Springer

Theory Comput Syst (2011) 49:460-488 471

Although we do not have a precise complexity for the Z-equivalence of R.A
queries, we can fully characterize the complexity of checking Z-equivalence of
DUCQs. For this and further developments we recall the standard notion of isomor-
phism of UCQs. CQs A, B are said to be isomorphic, denoted A = B, if there is a
bijective mapping & of variables of A to variables of B (extended to the identity on
constants) that induces a bijection of atoms from the body of A to the body of B.
UCQs A=A U---UA,, and B= By U---U B, are said to be isomorphic, again
denoted A = B, if there is a bijection g : {1,...,m} — {1,...,n} (hence m = n)
such that A; = Bg(;) for 1 <i < n. Finally, we say that DUCQSA — B and C — D are
isomorphic, denoted A— B=C — D,if A=ZC and B= D.

Proposition 3.8 For pucQs Q = A — B, Q' =C — D we have Q =y Q' iff for
UCQs AUD and BUC, AU D = BUC. As a consequence, checking Q =7 Q' is
Gl-complete.

Proof Following similar reasoning as in the proof of Corollary 3.4, we have A —
B=7C—-Diff AUD =7 BUC iff AU D =y B U C. But by the results of [9], this
holds iff AUD = BUC. Thus Z-equivalence of DUCQs is polynomial time many-one
interreducible with the GI-complete problem of checking isomorphism of UCQs. U

4 Reformulation Using Views

Let ¥ be a relational schema and) a finite set of views over X. Let Xy, be the
schema consisting of the view names (disjoint from ¥). A ¥ U Xy, instance is V-
compatible if it consists of a T-instance I and a Ty -instance J such that J = [V]’.
Orthogonally, these instances may consist of Z-relations, N-relations or B-relations.
For K € {B, N, Z} we say that two relational queries Q, Q' over ¥ U Xy, are K-
equivalent under V, denoted Q =¢ Q’, if Q and Q' agree on all V-compatible K -
instances.

Given a X-query Q, a reformulation of Q using V is a ¥ U Zy-query Q' such that
Q =¢ Q'. We also call Q' an equivalent rewriting using V.

Query reformulation algorithms typically work by effectively enumerating certain
queries, call this a search space, filtering the queries that are not equivalent rewritings,
and finding a minimum-cost query (according to some cost model). There are three
requirements for designing such algorithms; (1) the search space must be finite so the
algorithm terminates, (2) the returned rewriting should be actually equivalent so the
algorithm is sound, and (3) if equivalent rewritings exist then at least one of them
should be found so the algorithm is complete. A more subtle requirement is that the
returned rewriting has smaller cost than any rewriting, even when there are infinitely
many ones.

In the case of set semantics one can construct infinitely many rewritings of CQs
even without views, simply by adding to their bodies atoms that can be homomor-
phically mapped to existing ones [1]. This can be dealt with by considering only
queries that have no non-trivial endomorphism, call them locally minimal. It was
shown in [28] that the space of locally minimal CQ reformulations of a CQ query

@ Springer

472 Theory Comput Syst (2011) 49:460—488

Q using CQ views V is finitely bounded. Further work focused on pruning and effi-
ciently exploring this search space (looking for not just equivalent rewritings but also
maximally contained rewritings) [13, 29, 31, 32]. Even if certain classes of integrity
constraints (capturing views and more) are considered, a corresponding notion of
minimality can be used to define a finite search space for rewritings, using the chase
and backchase technique [12]. For CQs and bag semantics a finite search space explo-
ration is described in [4]. Interestingly, the UCQ and/or bag-semantics analogs of the
complexity results in [28] do not seem to appear anywhere (to the best of our knowl-
edge). For bag semantics, we attempt to remedy this omission in Sect. 4.1 below.

In the reformulation procedures we have mentioned, the search spaces are con-
structed and enumerated combinatorially, thus including non-equivalent rewritings.
One takes advantage of the decidability of E}é to filter them out. But such decid-
ability is not just sufficient, it is also necessary. Indeed, all such reasonable ap-
proaches describe a total recursive function that associates to each X-query Q a fi-
nite set searchSpace(Q) of ¥ U Xy -queries. Moreover, procedures like local min-
imization can be abstracted by another total recursive function that associates to
each -query Q and each ¥ U Zy-query Q' another ¥ U Zy-query w(Q, Q")
such that Q' =g u(Q, Q). And finally, one shows that Q’ E}é Q if and only if
u(Q, Q') € searchSpace(Q). Since the latter is decidable, so is E}é.

In particular, K-equivalence of ¥-queries must also be decidable which is why
under bag or set semantics we cannot hope to extend the ideas that have worked for
positive queries to rewritings of relational queries with difference.

We have seen that shifting to Z-semantics however leads to the decidability of Z
equivalence of R.A queries (hence DUCQs). According to the discussion above, next
we need to explore Z-equivalence under a set of views and we do so in Sect. 4.2 using
a uniquely terminating ferm rewrite system.

In the same subsection we discuss adding the reverse of the term rewrite rules
as the basis for a reformulation algorithm. In the last two subsections we consider
limiting our search to diff-irredundant rewritings, and we develop a cost model and a
procedure for limiting the search space further.

4.1 Complexity of Bag Reformulation

In the case of bag semantics, UCQ queries and UCQ views there are only finitely many
rewritings (modulo symbol renaming). This is essentially because under bag seman-
tics, positive query equivalence is the same as isomorphism (see [5] for CQs and [9]
for UCQs). For CQs, that is, select-project-join queries, an algorithm for exploring the
resulting finite search space in conjunction with System-R style query optimization
was given in [4].

We consider here, for UCQs and bag semantics, the analogs of the complexity
results shown in [28] for the existence of rewritings of CQs using CQ views under set
semantics.

Theorem 4.1 Given a query Q € UCQ and a set of views V C UCQ, it is NP-complete
to determine whether:

@ Springer

Theory Comput Syst (2011) 49:460-488 473

(i) There exists a UCQ reformulation under bag semantics of Q using at least one
predicate in V (the problem is NP-hard even for CQs).

(ii) There exists a UCQ reformulation under bag semantics of Q that is complete,
i.e., using only predicates in V (the problem is NP-hard even for CQs).

Proof To show membership in NP for both cases, we observe that in each case we
can guess the rewriting along with an isomorphism between Q and the rewriting
with unfolded view definitions needed to demonstrate bag-equivalence, and these are
easily verifiable in polynomial time. It remains to show NP-hardness in each case.

(i) NP-hardness when Q and)V are all Qs (and hence also for the case where Q
and V may be UCQs) is established by a straightforward reduction from the subgraph
isomorphism problem: given directed graphs G, G» is there a subgraph of G| which
is isomorphic to G2? (In contrast to graph isomorphism, the subgraph isomorphism
problem is known to be NP-complete.) Indeed, given directed graphs G, G2, we
construct CQs Q1, Q> whose bodies encode the graphs in the standard fashion using
a single binary predicate £ and a variable x; for each graph vertex v;, and whose
heads return all the variables occurring in the bodies. Q1 has a rewriting using Q>
iff there is a safe substitution [4] of Q> in Q1. But such a safe substitution exists iff
there is a subset of the body of Q1 which is isomorphic to the body of Q,, which is
true iff there is a subgraph of G| which is isomorphic to G».

(i1) NP-hardness when Q and V are CQs is again established by a reduction from
the subgraph isomorphism problem. This time, we work with a slightly specialized
version of the problem: if m is the number of edges in G, and n is the number of
edges in G, we assume that m — n does not divide m. It can be shown that this
version of the problem remains NP-complete. Next, given directed graphs G and
G satisfying this assumption, we construct a Boolean CQ Q encoding the edges of
G, acqQ view V] encoding the edges of G», and whose head contains all the vertices
of G, as distinguished variables, and an additional CQ view V; defined as follows:

Vo(x1, ..oy X20n—n)) - E(x1,%2), E(X3,%4), ..., E(2(n—n)—1, X2(0n—n))

Intuitively, V, will be used to “cover the remainder” of a reformulation of Q us-
ing Vi. Now we need to show that there exists a complete reformulation of Q using
{V1, V2} iff there exists a subgraph isomorphism from G; to G,. Suppose there is a
complete reformulation of Q using {Vi, V»}. Then, the reformulation must use V; at
least once (a reformulation using V5 is not possible since V; contains m — n subgoals,
V1 contains m subgoals, and we have assumed that m — n does not divide m). The
safe substitution associated with the use of Vj in the reformulation yields the required
subgraph isomorphism. In the other direction, if there is a subgraph of G that is iso-
morphic to G, then there is a reformulation of Q using V. It is easy to see that this
can be extended to a reformulation of Q using V7 and V, each exactly once. g

By the way, for DUCQs, the first question in the theorem has a trivial answer:
aDUCQ Q can always be rewritten as the equivalent (V U —V)U Q (equivalent under
bag semantics, Z-semantics, and even set semantics). As for the second question in
the theorem, for DUCQs, we do not even know if this problem is decidable.

@ Springer

474 Theory Comput Syst (2011) 49:460—488

4.2 Term Rewriting System and Decidability of Equivalence under Views

For the dual purposes of checking equivalence under views and—as we shall see
later—enumerating reformulations we introduce here a term rewriting system [26]
for DUCQs under Z-semantics. We fix a relational schema ¥ and a set of views V
given by DUCQs over the relations in X. The terms of our rewrite system are the
DUCQs over any combination of the source predicates in X and the view predicates
inV.

In the rewrite rules we use an auxiliary view unfolding relation on CQs, defined
Q —vy Q,if Q' can be obtained from a cQ Q by unfolding (in the standard way)
a single occurrence of the view predicate V in Q. This can be extended to CQs
containing “—” marks by defining the result to have a “—” mark iff exactly one of
the query and view have a “—” mark (in other words, we “multiply” the signs). For
instance, if U is the CQ

—U(x) - S(x,y,2)
and Q is the query
00 - Ux), W(x)
then Q — vy Q' where Q' is the CQ
—Q0 = Sx,y,2), Wx)

We extend — y to work with DUCQ views by unfolding repeatedly (once for each
CQ in the view) and producing a DUCQ as output (with the same number of rules as
the view). For example, if V is the DUCQ view:

Vi(x,y) - R(x,2),R(z,y)
—V(x,y) - R(x,u), R(u,v), R(v,y)
and Q is the CQ:
—0@(x,y) - V(x,2),V(z,y)
then Q —y Q' where Q' is the UCQ:

_Q/(-xa y) - V(X, Z)v R(Zv w)7 R(wv y)
Q'(x,y) - V(x,2), R(z,u), R(u,v), R(v,y)
Note that the second rule for Q' has no “—> mark because the marks on Q and the

second rule for V have cancelled each other.
Now we define a rewrite relation — on terms as follows:

P,O,RepucQ VeV P—yQ
PUR— QUR

(UNFOLD)

A,BecQ QeDUCQ AZ=B
QUAU(—B)—> Q

(CANCEL)

@ Springer

Theory Comput Syst (2011) 49:460-488 475

Next we establish the salient properties of our rewrite system. We denote the tran-

sitive reflexive closure of — by —. A term is a normal form if no rewrite rule applies
to it. A reduction sequence Q1 — --- — Q, is terminating if Q, is a normal form.

Proposition 4.2 The rewrite system above is uniquely terminating, i.e., it satisfies the
following two properties:

1. (Confluence) For all Q, Q1, Q2 € DUCQ if Q =X Q1 and Q 5 Q> then there exist
Q3, Q% € DUCQ such that Q, 5 Q3 and 0y > Q% and Q3 = Q5.

2. (Termination) Every reduction sequence Q1 — Qo — --- eventually must termi-
nate.

Proposition 4.3 The rewrite system above is sound and complete w.r.t. Z-equivalence
with respect to V, i.e., for any Q1, Q2 € DUCQ we have

1. (Soundness) If Q1 =5 0> then Q| E% 0>.
2. (Completeness) If Q1 =Y 0, then there exist 0/, Q) such that Q, > Q) and
0> > Q) and Q) = Q5.

Proof of Propositions 4.2 and 4.3 (Termination) Let n be the number of occurrences
of view predicate symbols in DUCQ (7, and let m be the maximum number of
CQs in a DUCQ view definition. Then one can show that any reduction sequence
Q1 — Q2 — --- uses UNFOLD at most m" times. Next, note that if | — Q; using
CANCEL, and Q1 has k CQs, then k > 2 and Q5 has k — 2 cQs. Thus CANCEL may
only be applied |k/2] times in a row to Q1. It follows that any reduction sequence is
finite and therefore terminating.

(Soundness) It is easy to verify that UNFOLD and CANCEL are equivalence-
preserving, and the general result follows by induction on the reduction sequence.

(Confluence) Suppose Q = 01 and Q = Q»>. Then there are terminating se-
quences Q — Q) > Q) and Q — Q> =5 Q). Since the rewrite system is sound,
0 E‘Z) Q). Moreover, Q) and Q) contain no view predicates (else UNFOLD would
have applied), so Q) =z Q. Letting 0| = A — B and Q, = C — D, Proposition 3.8
implies that AU D = B U C. Since the reduction sequences were terminating, CAN-
CEL does not apply to Q' or 0, hence no €Q in A (resp. C) is isomorphic to a CQ
in B (resp. D). It follows that A — B=C — D.

(Completeness) Suppose Q1 E% Q»>. Then there exist terminating sequences
0> Q) and 0> =X 0/, and Q] E% Q). However, Q) and Q) contain no view
predicate symbols (else UNFOLD would have applied). It follows that Q) =z Q5. O

Corollary 4.4 7Z-equivalence of DUCQs (and thus R.A queries) with respect to a set
of DUCQ (and thus R.A) views V is decidable.

The corollary holds for R.A queries and views because we can always convert
them first to DUCQs. Note that converting them to DUCQs may increase the size ex-
ponentially, and there can be a separate exponential blowup when unfolding the views
in the DUCQs. We leave open the exact complexity of the problems in Corollary 4.4.

@ Springer

476 Theory Comput Syst (2011) 49:460—488

Remark 4.5 Proposition 3.8 gives a GI-hard lower bound on the problems, and we
conjecture that Z-equivalence of R.A queries w.r.t. R.A views can be checked in
PSPACE (by comparing counts of isomorphic CQs in the converted and unfolded
DUCQs, without actually performing the full conversion and unfolding). Establishing
the exact complexity may be difficult, for the same reasons we gave in Remark 3.5.

In addition to their use for showing decidability, the term rewrite rules can be very
valuable in the search for reformulations. By the soundness property above, using
the rules guarantees that we only explore equivalent rewritings. By the completeness
property, if an equivalent rewriting exists, it will be reachable by a sequence of rewrite
steps or—and this is the main difficulty we will have to face—converse rewrite steps.

Thus, in Sect. 5 we develop an enumeration algorithm for Z-equivalent refor-
mulations, which uses the above rewrite system combined with the converse of the
UNFOLD and CANCEL operations, called FOLD and AUGMENT, respectively. FOLD
rewrites a query by removing some of its CQs and replacing them with an equivalent
view (recall that under bag semantics two UCQs are equivalent iff they are isomor-
phic.) In general we may need to AUGMENT first before FOLD is applicable.

P,Q,RebpucQ VeV P—-yQ
QUR— PUR

(FOLD)

A,BecQ QeDucQ A=B
00— QUAU(—B)

(AUGMENT)

4.3 Diff-Irredundant Rewritings

While UNFOLD and CANCEL only give terminating sequences of rewritings, the ad-
dition of the converse rules destroys this property. For example AUGMENT can be
used to “grow” a DUCQ arbitrarily by adding more and more CQs: for example,
0—>QUAU—-A—> QUAUBU—AU—B— ---.

Therefore the space of queries reachable in this way is infinite. How do we cut
it down to a finite size? Given the success of considering locally minimal rewritings
for set semantics, we could try to find a similar notion of minimality for DUCQs,
hopefully one that is compatible with useful cost models. In this subsection, we define
such a notion based on removing certain redundant computations, and we consider
whether the space of non-redundant rewritings is finite.

Definition 4.6 A DUCQ Q = A — B is said to be diff-redundant if for some subset of
cQs A’ C A and B’ C B, we have A’ E% B’. In this case the pair of terms A, B’ is
said to be diff-redundant.

In the example above, Q UAU —A and Q U AU BU —A U —B are both diff-
redundant.

A diff-redundant DUCQ can be minimized by repeatedly finding and removing diff-
redundant pairs of terms until a diff-irredundant query is obtained. In the examples
above, this leads back to Q (assuming Q itself is irredundant). More generally:

@ Springer

Theory Comput Syst (2011) 49:460-488 477

Proposition 4.7 If Q, Q' are DUCQs that do not contain view predicates and
Q =g Q, then minimizing Q and minimizing Q' produces the same query (up to
isomorphism).

However, when queries may contain view predicates, this property fails dramati-
cally:

Theorem 4.8 The set Irr,(Q) of diff-irredundant rewritings of a DUCQ Q with re-
spect to a set of views V is in general infinite.

Proof If R and § are binary relations, then denote by RS the relational composition
of R and S, i.e., the query:

Q(-xs y) - R(xs Z)a S(Z»)’)

We will use exponents to mean repeated relational composition (e.g., R = RRR),
and to simplify notation we use here + for union.
Now let Q = R?, and let V contain the single view V = R + R3. Then we have:
0 =R
_V 4
=, VR—R
=/ VR—VR®+R®
=/ VR—VR’+VR>—R®

and more generally:

n
i=1

for all n > 0. Clearly, there are infinitely many rewritings of this form. Moreover,
one can check that every such rewriting is diff-irredundant. It follows that Irry)(Q) is
infinite. 0

Thus, considering diff-irredundant queries does not suffice to establish a finite
bound on the set of possible rewritings for a DUCQ.

4.4 A Cost Model

Another notion of minimality we might consider is the global minimality of [28],
where the goal is to minimize the total number of atoms in a CQ reformulated using
views. We find this notion problematic for several reasons. First, in contrast to the
classical CQ minimization techniques (where minimizing the number of atoms coin-
cides with computing the core of the query), the mathematical justification is unclear.
Second, it is not clear how global minimality should be extended to UCQs/DUCQs
(total number of atoms in all cQs?). Third, in the practical applications of interest

@ Springer

478 Theory Comput Syst (2011) 49:460—488

to us, the real goal is to minimize the cost of executing a query, and the number of
atoms is often not indicative of query performance. This is because of many factors,
especially the different costs of computing with different source relations (which may
be of drastically different cardinalities, have different indexes, etc.).

To illustrate this last point, recall that in Sect. 2 we had a view maintenance exam-
ple, where the original view was defined as:

Vi(x,y) - R(x,y),R(z,y)
and our updated view could be defined as:
V/(-xv y) - R/(-xs y)a R/(Zv)’)

where R’(x, y) represents R(x,y) U RA(x, y). The reformulation problem has two
materialized views: the original V in terms of the base R, and R’ (R after updates are
applied, which we can compute either before or after computing V'). If R? is large,
then V’ may be most efficient to compute in terms of R’, as specified in the second
rule above. Alternatively, if R is small, then it may be more efficient to compute V’
using V and delta rules:

Vi(x,y):-V(x,y)
V/(x,y) - R®(x,2), R(z, y)
V/(x,y) - R(x,2), R®(z, y)

Note that the latter query has three rules compared to only one in the first case, and
five atoms to only two. Yet, intuitively, for small RAs, the second case is more effi-
cient.

In practical DBMS implementations, a cost model [35] predicts query performance
given known properties (such as cardinalities) of the input relations. Thus we will
seek here an abstract cost model that captures the essence of the detailed models
implemented in real optimizers while allowing us to establish finite bounds on the
set of possible rewritings for DUCQs using the FOLD + AUGMENT + UNFOLD +
CANCEL rules.

Our cost model, cost: RA — N, is instance-dependent, and makes use of exter-
nal calls to a cardinality estimation function, card : RA — N, which returns the esti-
mated number of tuples in the result of a subquery (for the current database instance).
We define cost inductively on R.A expressions:

cost(R) = card(R)
cost(r E) = cost(E)
cost(o E) = cost(FE)
cost(E| U E») = cost(E|) + cost(Ey)
cost(E| — E3) = cost(E|) + cost(Ey)
cost(E; X Ep) = cost(E1) + cost(E>)
+ card(E; X Ej)

@ Springer

Theory Comput Syst (2011) 49:460-488 479

This cost model intuitively focuses on the cost of producing new tuples in expen-
sive operations, namely joins and tablescans. (Union in Z-semantics is inexpensive,
as it is in bag-semantics; difference in Z-semantics is in fact a union operation that
negates counts, and hence it is also inexpensive.) Our cost model essentially com-
putes a lower bound on the amount of work a join must perform: it considers tuple
creation cost but ignores the cost of matching tuples. (For an index nested loops join
or a hash join, matching is in fact inexpensive, so this is a fairly realistic lower bound.)
Our model satisfies the principle of optimality [11] required by a real query optimizer
cost model.

The cost model above is based on queries represented as relational algebra ex-
pressions (with a specific order of evaluation). However it can be extended to CQs by
defining the cost of a CQ as the cost of the cheapest equivalent algebraic expression,*
and to UCQs and DUCQs by summing the costs of all the CQs in the UCQ or DUCQ.
Assuming every source relation is non-empty, a simple observation is that the cost of
any CQ is at least equal to the number of atoms in the CQ, and any DUCQ Q has a
cost that is at least equal to the number of CQs in Q.

Now we can establish a bound on the search space in which we wish to look for
rewritings of minimum cost:

Proposition 4.9 (Completeness under cost) Let Q € DUCQ, and let V be a set of
DUCQ views. Let k = cost(Q), and let w be the maximum number of CQs in Q or in
a view in V. Assume w.l.o.g. that Q does not contain any view predicates (they can
always be removed by applying UNFOLD repeatedly). Then, any DUCQ of minimum
cost among those equivalent to Q using V can be reached from Q in at most O (kw*)
steps of (FOLD + AUGMENT)-rewriting.

Proof Suppose that Q' is a DUCQ reformulation of Q of minimum cost. Then using
our observations above, Q' contains at most k CQs each containing at most k view
predicates. We can rewrite Q' into Q by a sequence of u UNFOLD steps (removing
all view predicate occurrences), followed by a sequence of v CANCEL steps. (Read
in the reverse direction, this will yield a sequence of v AUGMENT steps followed by
a sequence of u FOLD steps, rewriting Q into Q’.)

Consider a single CQ in Q’. We claim that UNFOLD can be applied to it at most
w times, replacing the single CQ with at most w* cQs. Doing this for all of the < k
CcQs in Q’, we have u < kw* UNFOLD steps, and the result is a DUCQ containing
< kwk cgs.

Next, since each application of CANCEL removes 2 CQs, it follows that CANCEL
can be applied at most | kw* /2 times. Thus, the total length of the sequence rewriting
Q' to Q is at most kwk + [kw* /2] = O (kw*). O

This yields a finite bound (which can be effectively computed from Q, V), and cost)
on the region of the rewrite space that must be explored in order to find a rewriting of
minimum cost (for a given instance).

4This is in fact done by dynamic programming in real query optimizers.

@ Springer

480 Theory Comput Syst (2011) 49:460—488

5 Finding Query Rewritings

Now that we understand the conditions under which reformulation can be bounded to
a finite search space, we develop an enumeration algorithm for exploring the space of
possible query reformulations, for the problems of optimizing queries using views,
view adaptation, and view maintenance. Recall from Sect. 2 that the optimizing
queries using views problem takes a set of materialized views, plus a query to be
reformulated, as input. View adaptation takes a single materialized view (the “old”
view definition and materialized instance), with the modified view definition as the
query to be reformulated. View maintenance takes the pre-updated view instance and
updated versions of the base relations as input views, with the maintained view (i.e.,
the view computed over the updated base relations) as the query to be reformulated.

5.1 Reformulation Algorithm

Section 4.2 presented four rewrite rules, UNFOLD, CANCEL, AUGMENT and FOLD,
which are required for enumerating the space of plans. However, as they are currently
specified, they can lead to inefficient exploration. We observe that in isolation AUG-
MENT can add/subtract arbitrary CQs to the query, regardless of whether this will turn
out to be “useful” (by enabling a subsequent FOLD). Hence we do not use AUGMENT
directly, but rather define a compound AUGMENT-FOLD operation, which augments
the query only with the CQs necessary to perform a FOLD operation with a given
view. (The AUGMENT step of AUGMENT-FOLD may be skipped if FOLD can be di-
rectly applied to the query.) Additionally, we restrict AUGMENT-FOLD to apply only
if there exists at least one rule in common between the query and the view. After
applying AUGMENT-FOLD, we may be able to CANCEL some rules introduced into
the query. Hence, we will also always apply CANCEL after an AUGMENT-FOLD re-
peatedly until it is no longer applicable. We denote the rule which corresponds to this
sequence of AUGMENT-FOLD followed by repeated CANCEL by AUGMENT-FOLD-
CANCEL.

Algorithm 1 shows how the UNFOLD, CANCEL, and AUGMENT-FOLD-CANCEL
primitives can be composed to enumerate the space of plans. The normalize function
(omitted) repeatedly applies UNFOLD and CANCEL to the input query until they are
no longer applicable. Next, the main loop simply applies AUGMENT-FOLD-CANCEL
to rewrite portions of each “frontier” query g in F, in terms of any views that overlap
with g.

The prune function determines whether the rewritten query ¢’ should be added
to the frontier set, or disregarded during exploration. For the rewrite algorithm to be
guaranteed to terminate and find an optimal rewriting according to the cost model,
it suffices to define prune(q, k) to return true iff k is less than the bound given by
Proposition 4.9. (In practice, we would add additional heuristics to prune to limit the
search space, sacrificing the guarantee of a minimum-cost rewriting.) Once the full
space has been explored, reformulate returns the rewriting from Q with the lowest
cost according to our cost model.

@ Springer

Theory Comput Syst (2011) 49:460-488 481

Algorithm 1 Reformulate (query g, set of views V') returns query

1: for each view v in V do
2: v:=normalize(v)

3: end for

: Let g; := normalize(q)
5: Let Q:=0

6: Let F :={(q;,0)}

7: for each (g, k) in F do
8

9

A~

Remove (g, k) from F and add it to Q
for each v in V do

10: Let ¢’ := AUGMENT-FOLD-CANCEL(q,v)
11: if ¢’ notin Q and not prune(q’, k + 1) then
12: Add (¢'.k+1)to F

13: end if

14: end for

15: end for

16: return the g in O with lowest cost

5.2 Rewriting in a Query Optimizer

In principle, one could search the space of query rewritings by building a layer above
the query optimizer, which enumerates possible rewritings; then separately optimizes
each. However, a more efficient approach is to extend an existing optimizer to incor-
porate the rewriting system into its enumeration. Unlike with rewriting of conjunc-
tive queries, most existing cost-based optimizers cannot easily be extended to DUCQ
rewritings. The System-R optimizer [35] only does cost-based optimization of joins,
instead relying on heuristics for applying unions and differences. Starburst [21] can
rewrite queries with unions and differences, but only at its heuristics-based query
rewrite stage. Starburst only has limited facilities for cost-based comparison of alter-
native rewritings.

Fortunately, the Volcano [14] optimizer generator (as well as its successors) can
be modified to incorporate our rewrite scheme within an optimizer. Volcano models
a query initially as a plan of logical operators representing the algebraic operations,
including unions and differences; it uses transformation rules to describe algebraic
equivalences that can be used to find alternate plans. Implementation rules describe
how to rewrite a logical operator (or set of operators) into a series of physical algo-
rithms, which have associated costs.

Our rewrite rules of Sect. 4.2 can be expressed as transformation rules for Volcano,
and we would not need to change any implementation rules. However, we would also
need to modify Volcano’s pruning algorithm: we must place a finite bound on the size
of the rewritings explored, as with our prune function in the previous subsection.

6 Applications to Bag and Set Semantics

Having obtained a sound and complete algorithm for reformulation of R.A queries
using R.A views under Z-semantics, we wish to see for which R.A queries/views

@ Springer

482 Theory Comput Syst (2011) 49:460—488

this same algorithm actually provides reformulations under bag or set semantics. We
begin with bag semantics, where we are naturally led to study the following class of
queries:

Definition 6.1 We denote by R.A the class of all queries Q € R.A such that for all
bag-instances I, [Q]L = [Q]%.

Right away we see that:

Lemma 6.2 For any Q1, Q> € RA we have Q1 =7 Q1 iff 01 =n Q>.

Proof Straightforward consequence of Lemma 3.6 and the definition of RA. O
Then

Lemma 6.3 IfA, Bc RAY then A— B € RA if and only if B Ey A.

Proof “=": suppose A — B € RA and consider an arbitrary bag instance I and
tuple 7. Since [A — B]%(t) = [A — B]L(#) > 0, and by definition, [A — B]. (1) =
[A]% () — [B]% (1), it follows that [A]%(r) > [B]%(¢). Since A and B are positive
queries, by Lemma 3.1, [A]}, = [A]4 and [B]!, = [B]{ and therefore [A]L (1) >
[[Bﬂll\l(t). Since I and ¢ were chosen arbitrarily, it follows that B C A.

“&": suppose B Cn N and consider an arbitrary bag instance /. By Lemma 3.1
[A]§ = [A]L and [B]L = [B]%. But since [B]f < [A]L, it follows
that [A — B]% = [A — B]}, > 0. Since I was chosen arbitrarily, it follows
that A — B € RA. O

Proposition 6.4 If Q € RA then DiffNF(Q) € RA and Q =y DiffNF(Q).

Proof Suppose Q € RA, let DiffNF(Q) = A — B (with A, B € RA"), and choose
an arbitrary bag instance / and tuple . Then [Q]L(t) = [Q]} () =[A — B]L (1) =
[A]L @) — [B]L(t) = 0. It follows that [A]%(#) > [B]4(t) and therefore (using
Lemma 3.1) that [A — B] %(t) =[A - B] II\I(t). Since I and ¢ were chosen arbitrarily,
it follows that Q =y A — B, as required, and also that B Ty A. By Lemma 6.3 this
in turn implies that A — B € RA. d

Corollary 6.5 Bag-equivalence of RA queries is decidable.

Next we show that if we start with a DUCQ in R.A and a set of DUCQ views also in
R.A, then the exploration of the space of reformulations prescribed by the algorithm
of Sect. 5 examines only queries in R.A which are bag-equivalent under the views to
the original DUCQ.

Suppose that V is a set of views in R.A expressed as DUCQs.

@ Springer

Theory Comput Syst (2011) 49:460-488 483

Theorem 6.6 If Q and the views in V are DUCQs in RA, then the reforﬂtlation
algorithm of Sect. 4.2 is sound and complete with respect to N-equivalent R.A refor-
mulations of Q.

Proof Use Lemmas 6.2 and 6.3 and Proposition 4.3. |

Therefore, the reformulation algorithm can be used with R.A queries and views.
Unfortunately, but not unexpectedly, it is undecidable whether an R.4 query or even
a DUCQ is actually in RA (Lemma 6.3 provides a reduction from bag-containment
of UCQs). But there are interesting classes of queries for which membership in R.A
is guaranteed. The simplest but still very useful case is based on the observation
that RAT C R.A. It follows that our algorithm is also complete for finding buCQ
reformulations of UCQs using UCQ views, as in the example in Sect. 2.

Next we identify a subclass of RA for which, while still undecidable in general,
membership may be easier to check in certain cases.

Definition 6.7 We denote by RA the class of all RA queries Q such that for every
occurrence A — B of the difference operator in Q, we have B C A.

Theorem 6.8 (Normalization for RA) For any Q € RA, one can find A, B € RA*
such that Q =y A — B.

Proof Straightforward induction on Q, using the same algebraic identities as in The-
orem 3.3. Although these identities fail under bag semantics for R.A queries, they
hold for R.A queries. O

Corollary 6.9 Bag-equivalence of RA queries is decidable.
Theorem 6.10 RA C RA.

Proof Checking RACTRAisa straightforward application of Theorem 6.8. To see

that the inclusion is proper, consider the query Q def (R—(RUR))—(R—(RUR)).
Q is both Z-equivalent and N-equivalent to the unsatisfiable query #; it follows that
Q is in RA. However, since R U R [Zy R, itis clear that Q & R.A. O

Although R.A contains queries which are not in RA (because of their syntactic
structure), it turns out that, semantically, R.A captures R.A, as the following theorem
makes precise:

Theorem 6.11 For all Q € RA there exists Q' € RA such that Q=n0.

Proof For any Q € RA, we show that there must exist A, B € RAT such that
BEn Aand Q =y A — B.Fixa Q € RA. By Theorem 3.3, there exist A, B € RAT
such that Q =7 A — B. We argue by contradiction that B E A. Suppose B Z A.
Then there exists a bag instance / and tuple ¢ such that [A]{(r) < [B]%(r). Then
[A—B]L1) <0,ie., [A— B]% =[Q]% is not even a bag-instance. However, this is a

@ Springer

484 Theory Comput Syst (2011) 49:460—488

contradiction, because by assumption (since Q € R.A), we must have [Q]/, = [Q][.
Finally, we argue that Q =y A — B. To see this, fix an arbitrary bag instance /. We
want to show that [Q]4 = [A — B]. Since Q € RA, we have [Q]] = [Q]%. Since
0 =z A — B we have [Q]}, = [A — B]%. Finally, since A — B € RA, by Theo-
rem 6.10 we have [A — B]/, = [A — B]. This completes the proof. O

Membership in RA is also undecidable. However in some practical situations,
such as incremental view maintenance of RAT views using delta rules [20], the dif-
ference operator is used in a very controlled way where the containment requirement
is satisfied (e.g., it is just necessary for the system to enforce that only tuples actually
present in source tables are ever deleted from the sources).

6.1 Set Semantics

We are also interested in reformulating and answering queries under Z-semantics,
but then “eliminating duplicates” to obtain the answer under set semantics. Even for
RA queries, this is not in general straightforward: for example, consider the query
Q0 = (RU R) — R. Under set semantics, this is equivalent to the unsatisfiable query,
while under bag semantics or Z-semantics, it is equivalent to the identity query R. We
can, however, restrict the use of negation in R.A further to obtain another fragment
of RA suitable for this purpose.

Definition 6.12 An R.A query Q over a schema X is said to be a base-difference
query if A — B can appear in Q only when A and B are both base relations (names
in). Further, a base-difference query Q is said to be positive-difference w.r.t. a set-
instance I if for each A — B appearing in Q we have A’ D B! (where A’ is the
relation in [that corresponds to A € X).

Although the use of negation in base-difference queries considered on instances
w.r.t. which they are positive-difference is highly restricted, it still captures the form
needed for incremental view maintenance, where negation just relates old and new
versions of source relations via the tables of deleted and inserted tuples.

For conversion between bag semantics/Z-semantics and set semantics we also de-
fine the duplicate elimination operator § : Z — B which maps 0 to false and every-
thing else (positive or negative) to true. Conversely, we can view any set instance as
a bag/Z instance by replacing false with 0 and true with 1. With this we can state the
salient property of base-difference queries:

Proposition 6.13 . Ler Q € RA be a base-difference query and let I be a set instance
w.r.t. which Q is positive-difference. Then, we can compute [[Q]]I under set semantics
by viewing I as a Z-instance, computing [Q] and finally applying 5.

Consequently, the optimization techniques in this paper (which replaces a query
with a Z-equivalent one) will also apply to set semantics, provided we restrict our-
selves to base-difference queries applied to instances w.r.t. which they are positive-
difference.

@ Springer

Theory Comput Syst (2011) 49:460-488 485

7 Built-in Predicates

To this point, our approach to query rewriting has assumed equality predicates only.
Clearly, any practical implementation would also consider inequality (<, <) and non-
equality (#) predicates. In this section we discuss the extensions necessary to support
such built-in predicates.

We assume our domain D comes equipped with a dense linear order <, and we
define RA<, RA~, cQ<, etc. as the previously defined classes of queries extended
to allow use of the predicates <, <, =, and #. In general, the predicates in a CQ~
induce only a partial order on the variables. We shall call a CQ= fotal if the pred-
icates in the query induce a total order on the variables, and partial otherwise. To
facilitate syntactic comparison of queries we shall assume w.1.0.g. for total CQ=s that
a minimal number of predicate atoms are used, i.e., if the predicates induce the total
order x < y < z then the predicate atoms x < y and y < z and no others appear in the
query. A UCQ™< or DUCQ* is fotal if all of its CQ<s are total, and partial if it contains
a partial CQ~.

As in [8, 9], we note that a partial CQ= Q can always be converted into an equiv-
alent total UCQ=, denoted lin(Q), that contains one CQ= for each linearization of the
partial order on the variables. For example:

Q(x7y) - R(xvy)iR(y7Z)7x<yv-xSZ

can be rewritten into:

Qx,y) - R(x,y), R(y,2),x =2,x <y
Qx,y) - R(x,y),R(y,2),x <y, y=z
Qx,y) - R(x,y), R(y,2),x <y,y<z
Q(x,y) - R(x,y), R(y,2),x <z,z2<Yy

Likewise a partial UCQ™ (DUCQ<) Q can be converted into an equivalent total UCQ™
(DUCQ™) lin(Q) by replacing each partial CQ< with its equivalent total UCQ=. Note
that if Q is already total, then Q =1in(Q).

Theorem 7.1 Forall Q, Q' € UCQ™ the following are equivalent:

1. 0=n0Q’
2. 0=7 0
3. 1n(Q) = lin(Q")

Proof (2) = (1) because every bag instance is a Z-instance. (1) = (3) follows by
results of [9]. (3) = (1) follows from the observation that Q =7 lin(Q). O

Corollary 7.2 Z-equivalence of RA= queries is decidable and so is bag-equivalence
of RA™ queries.

This leads to an approach to enumerating rewritings of queries with predicates
with respect to views: linearize the queries and views into total UCQs/DUCQs as above

@ Springer

486 Theory Comput Syst (2011) 49:460—488

and reformulate using the linearized representations. As an optional final step, the
reformulated query could then be “de-linearized” to a partial query.

8 Related Work

Exact query reformulation using views has been studied extensively, due to its appli-
cations in query optimization, data integration, and view maintenance, starting with
the papers by Levy et al. [28] and Chaudhuri et al. [4]. The former paper established
fundamental results for UCQ <under set semantics. The latter paper considered CQ<s
under bag semantics, but it did not provide a complete reformulation algorithm or
consider UCQs or UCQ=s. Cohen, Nutt, and Sagiv [7] considered the problem for
CQ=s with aggregate operators and built-in predicates under bag-set semantics, and
developed sound and complete reformulation algorithms. In contrast to our term-
rewrite system based approach, which considers only equivalent rewritings, their al-
gorithm considers non-equivalent candidate rewritings, using an equivalence check
to filter candidates. Afrati and Pavlaki [2] give results on rewriting with views for
CQs with safe negation. These queries/views are considered under set semantics but
their expressive power seems to be incomparable to that of the queries we consider
in Proposition 6.13.

The seminal paper by Chandra and Merlin [3] introduced the fundamental con-
cepts of containment mappings and canonical databases in showing the decidability
of containment of CQs under set semantics and identifying its complexity as NP-
complete. The extension to UCQs is due to Sagiv and Yannakakis [34], where the
undecidability of set-equivalence of R.A queries was also established.

The papers by Ioannidis and Ramakrishnan [24] and Chaudhuri and Vardi [5] ini-
tiated the study of query optimization under bag semantics. Chaudhuri and Vardi
showed that bag-equivalence of CQs is the same as isomorphism and established
the l'[g -hardness of checking bag-containment of CQs. Ioannidis and Ramakrish-
nan showed that bag-containment of UCQs is undecidable. The decidability of bag-
equivalence of UCQs can be derived from the results on bag-set semantics in [6, 9]
and also from results on provenance-annotated semantics (see the discussion in [15]).
The decidability of bag-containment of CQs remains open. Recent progress was made
on the problem by Jayram, Kolaitis and Vee [25] who established the undecidability
of checking bag-containment of CQs with built-in predicates (our CQ=<s).

Chaudhuri and Vardi also introduced in [5] the study of bag-set semantics (where
source tuple multiplicities are O or 1 only, and queries are evaluated under bag se-
mantics), and showed that bag-set equivalence of CQs is the same as isomorphism.
This was essentially a rediscovery of a much earlier result due to Lovasz [30] (see
also [23]). Cohen, Nutt, and Sagiv [8] give decidability results for bag-set equiva-
lence of cQs with comparisons and aggregate operators. Cohen, Sagiv, and Nutt [10]
give decidability results for bag-set equivalence of UCQs with comparisons, aggregate
operators, and a limited form of negation (only on extensional predicates).

The view adaptation problem was introduced in [19], which gives a case-based
algorithm for adapting materialized views under changes to view definitions (under
bag semantics). In contrast, our methods apply to view adaptation, but use a more

@ Springer

Theory Comput Syst (2011) 49:460-488 487

general term rewrite system to develop a sound and complete query reformulation
algorithm.

Our Z-relations appeared in an early form as the delfas in the count incremental
view maintenance algorithm for UCQs of [20]. That paper did not consider query
equivalence for deltas or make a general study of query reformulation.

More recently, a paper by Koch [27] presents new strategies for performing in-
cremental view maintenance based on a “ring of databases.” Like us, the approach
of [27] involves constructing an analogue of bag relational algebra with a difference
operator that behaves as an inverse of the union operator. However, there is a funda-
mental technical difference in that [27] considers untyped relations, allowing union
and join to be defined as total operations and yielding a ring structure over the domain
of untyped database instances.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
2. Afrati, F, Pavlaki, V.: Rewriting queries using views with negation. Al Commun. 19, 229-237 (2006)
3. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases.
In: STOC (1977)
4. Chaudhuri, S., Krishnamurthy, R., Potamianos, S., Shim, K.: Optimizing queries with materialized
views. In: ICDE (1995)
5. Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive queries. In: PODS, pp. 59-70 (1993)
6. Cohen, S.: Containment of aggregate queries. SIGMOD Rec. 34(1), 77-85 (2005)
7. Cohen, S., Nutt, W., Sagiv, Y.: Rewriting queries with arbitrary aggregation functions using views.
ACM Trans. Database Syst. 31(2), 672-715 (2006)
8. Cohen, S., Nutt, W., Sagiv, Y.: Deciding equivalences among conjunctive aggregate queries. J. ACM
54(2) (2007)
9. Cohen, S., Nutt, W., Serebrenik, A.: Rewriting aggregate queries using views. In: PODS (1999)
10. Cohen, S., Sagiv, Y., Nutt, W.: Equivalences among aggregate queries with negation. ACM Trans.
Comput. Log. 6(2), 328-360 (2005)
11. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill/MIT Press,
New York/Cambridge (1990)
12. Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIGMOD Rec. 35(1), 65-73
(2006)
13. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In: PODS (1997)
14. Graefe, G., McKenna, W.J.: The Volcano optimizer generator: extensibility and efficient search. In:
ICDE (1993)
15. Green, T.J.: Containment of conjunctive queries on annotated relations. In: ICDT (2009)
16. Green, T.J., Ives, Z.G., Tannen, V.: Reconcilable differences. In: ICDT (2009)
17. Green, T.J., Karvounarakis, G., Ives, Z.G., Tannen, V.: Update exchange with mappings and prove-
nance. In: VLDB (2007). Amended version available as Univ. of Pennsylvania report MS-CIS-07-26
18. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS (2007)
19. Gupta, A., Mumick, L.S., Rao, J., Ross, K.A.: Adapting materialized views after redefinitions: tech-
niques and a performance study. Inf. Syst. 26(5), 323-362 (2001)
20. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: SIGMOD (1993)
21. Haas, L.M., Freytag, J.C., Lohman, G.M., Pirahesh, H.: Extensible query processing in Starburst. In:
SIGMOD (1989)
22. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4) (2001)
23. Hell, P, Nesetfil, J.: Graphs and Homomorphisms. Oxford University Press, London (2004)
24. loannidis, Y.E., Ramakrishnan, R.: Containment of conjunctive queries: beyond relations as sets.
TODS 20(3), 288-324 (1995)
25. Jayram, T.S., Kolaitis, P.G., Vee, E.: The containment problem for real conjunctive queries with in-
equalities. In: PODS (2006)

@ Springer

488 Theory Comput Syst (2011) 49:460—488

26. Klop, J.W.: Handbook of Logic in Computer Science, vol. 2. Oxford University Press, London (1992),
Chap. 1

27. Koch, C.: Incremental query evaluation in a ring of databases. In: PODS, pp. 87-98 (2010)

28. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using views. In: PODS
(1995)

29. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources using source
descriptions. In: VLDB (1996)

30. Lovisz, L.: Operations with structures. Acta Math. Hung. 18(3—4), 321-328 (1967)

31. Mitra, P.: An algorithm for answering queries efficiently using views. In: Proceedings of the Aus-
tralasian Database Conference (2001)

32. Pottinger, R., Levy, A.: A scalable algorithm for answering queries using views. In: VLDB (2000)

33. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative models. Comput.
Complex. 14(1), 1-19 (2005)

34. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the union and difference
operators. J. ACM 27(4), 633-655 (1980)

35. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path selection in
a relational database management system. In: SIGMOD (1979)

@ Springer

	Reconcilable Differences
	Abstract
	Introduction
	Applications of Differences
	Optimizing Queries Using Views Surajit95,Levy95
	View Adaptation Gupta01
	Incremental View Maintenance gms93-dred

	Z-Relations
	Normal Form and Decidability
	DUCQs

	Reformulation Using Views
	Complexity of Bag Reformulation
	Term Rewriting System and Decidability of Equivalence under Views
	Diff-Irredundant Rewritings
	A Cost Model

	Finding Query Rewritings
	Reformulation Algorithm
	Rewriting in a Query Optimizer

	Applications to Bag and Set Semantics
	Set Semantics

	Built-in Predicates
	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

