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1. INTRODUCTION

Several applications of XML stream processing have emerged recently: content-
based XML routing [Snoeren et al. 2001], selective dissemination of information
(SDI) [Altinel and Franklin 2000; Chan et al. 2002; Diao et al. 2003], continuous
queries [Chen et al. 2000], and processing of scientific data stored in large
XML files [Higgins et al. 1992; Thierry-Mieg and Durbin 1992; Borne n.d.].
They commonly need to process a large collection of XPath expressions (say
10,000 to 1,000,000), on a continuous stream of XML data, at a high sustained
throughput.

For illustration, consider XML Routing [Snoeren et al. 2001]. Here a network
of XML routers forwards a continuous stream of XML packets from data pro-
ducers to consumers. A router forwards each XML packet it receives to a subset
of its output links (other routers or clients). Forwarding decisions are made by
evaluating a large number of XPath filters, corresponding to clients’ subscrip-
tion queries, on the stream of XML packets. Data processing is minimal: there
is no need for the router to have an internal representation of the packet, or
to buffer the packet after it has forwarded it. Performance, however, is crit-
ical, and Snoeren et al. [2001] reported very poor performance with publicly
available XPath processing tools.

Our goal is to develop techniques for evaluating a large collection of XPath
expressions on a stream of XML packets. First we describe a technique that
guarantees a sustained throughput, which is largely independent of the num-
ber of XPath expressions. In contrast, in all other techniques proposed for pro-
cessing XPath expressions the throughput decreases as the number of XPath
expressions increases. [Altinel and Franklin 2000; Chan et al. 2002; Diao et al.
2003]. Second, we describe a lightweight binary data structure, called Stream
IndeX (SIX), which can be added to the XML packets for further speedups.

The first and main contribution is to show that a Deterministic Finite Au-
tomaton (DFA) can be used effectively to process a large collection of XPath
expressions, at guaranteed throughput. Our approach is to convert all XPath ex-
pressions into a single DFA, then evaluate it on the input XML stream. DFAs are
the most efficient means to process XPath expressions, but they were thought
to be useless for workloads with a large number of XPath expressions, because
their size grows exponentially with size of the workload.

Our solution to the state explosion problem consists of constructing the DFA
lazily. A lazy DFA is one whose states and transitions are computed from the
corresponding NFA at runtime, not at compile time. A new entry in the tran-
sition table or a new state is computed only when the input data requires the
DFA to follow that transition or enter that state. The transitions and states in
the lazy DFA form a subset of those in the standard DFA, which we call eager
DFA in this article. As a consequence, the lazy DFA can sometimes be much
smaller than the eager DFA.
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We show that, for XML processing, the number of states in the lazy DFA is
small and depends only on the structure of the XML data. It is largely inde-
pendent on the number of XPath expressions in the workload. More precisely,
the size of the lazy DFA is at most the size of the data guide [Goldman and
Widom 1997] of the XML data, which is typically very small for XML data that
has a fairly regular structure. In hindsight, after we first announced this re-
sult in Green et al. [2003], this fact may sound obvious, but it was far from
obvious before. Previous work in this area [Altinel and Franklin 2000; Chan
et al. 2002; Diao et al. 2003] explicitly avoided using DFAs, and developed al-
ternative processing techniques that are slower, but have guaranteed space
bounds.

To support the claim that the number of states in the lazy DFA is small,
we present here a series of theoretical results characterizing the size of both
the eager and the lazy DFA for XPath expressions. These results are of general
interest in XPath processing, beyond stream applications.

The second contribution in this article consists of a light-weight technique for
speeding up processing XML documents in a network application. The obser-
vation here is that, in many applications processing streams of XML messages,
the main bottleneck consists of parsing, or tokenizing each message. To address
that, some companies use a proprietary tokenized format instead of the XML
text representation [Florescu et al. 2003], but this suffers from lack of interop-
erability. We propose a more lightweight technique that adds a small amount
of binary data to each XML document, facilitating access into the document.
We call this data a Stream IndeX (SIX). The SIX is computed once, when the
XML document is first generated, and attached somehow to the document (for
example using DIME [Corp. n.d.]). All applications receiving the document that
understand the SIX can then access the XML data much faster. If they don’t
understand the SIX, then they can fall back on the traditional parse/evaluate
model. Space-wise, the overhead of a SIX is very small (typical values are, say,
7% of the data, and can be reduced further), so there is little or no penalty from
using it. We note that the general principle of adding a small amount of binary
data to facilitate access in the XML document also admits other implementa-
tions, see [Gupta et al. 2002, 2003].

Finally, we illustrate an application of our techniques by describing the XML
Toolkit (XMLTK), for highly scalable processing of XML files. Our goal is to
provide to the public domain a collection of stand-alone XML tools, in analogy
with Unix commands for text files. Current tools include sorting, aggregation,
nesting, unnesting, and a converter from a directory hierarchy to an XML file.
Each tool performs one single kind of transformation, but can scale to arbitrarily
large XML documents in, essentially, linear time, and using only a moderate
amount of main memory. By combining tools in complex pipelines users can
perform complex computations on the XML files. There is a need for such tools
in user communities that have traditionally processed data formatted in line-
oriented text files, such as network traffic logs, Web server logs, telephone call
records, and biological data. Today, many of these applications are done by
combinations of Unix commands, such as grep, sed, sort, and awk. All these data
formats can and should be translated into XML, but then all the line-oriented
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Fig. 1. System’s architecture.

Unix commands become useless. Our goal is to provide tools that can process
the data after it has been migrated to XML.

Discussion. This article focuses only on linear XPath expressions. Applica-
tions rarely have such simple workloads, and are more likely to use XPath
expressions with nested predicates. Scalable techniques for such workloads
require a separate investigation and are out of the scope of this article. How-
ever, the techniques described here are relevant to the general XPath processing
problem, for two reasons. First, processing linear expressions is a subproblem
in processing more complex workloads, and needs to be addressed somehow. In
fact we describe here a simple way to evaluate XPath expressions with nested
predicates by decomposing them into linear fragments, and we found this sim-
ple technique to work well on small workloads. Second, at a deeper level, it has
been shown in Gupta and Suciu [2003] that our results about the DFA extend,
although not in a trivial way, to a pushdown automaton, which can process
an arbitrarily complex workload of XPath expressions with nested predicates.
Thus, the results and techniques discussed in this article can be seen as building
blocks for more powerful processors.

Paper organization. We begin with an overview in Section 2 of the processing
model and the system’s architecture. We describe in detail processing with a
DFA in Section 3, then discuss its construction in Section 4 and analyze its
size. We describe the SIX in Section 5. We report our experimental results in
Section 6 and describe the XML Toolkit in Section 7. Section 8 contains related
work, and we conclude in Section 9. The electronic appendix contains some of
the proofs and more details on the XML Toolkit.

2. OVERVIEW

2.1 The Event-Based Processing Model

The architecture of our XML stream processing system is shown in Figure 1.
The user specifies several correlated XPath expressions arranged in a tree,
called the query tree. An input stream of XML packets is first parsed by a SAX
parser that generates a stream of SAX events, or SAX tokens; this is sent to
the query processor, which evaluates the XPath expressions and generates a
stream of application events. The application is notified of these events, and
usually takes some action such as forwarding the packet, notifying a client, or
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Fig. 2. A Query tree.

computing some values. An optional Stream Index (called SIX) may accompany
the XML stream to speed up processing (Section 5).

We consider linear XPath expressions, P , given by the following grammar:

P ::= /N | //N | PP,
(1)

N ::= E | A | ∗ | text() | text() = S.

Here E and A are element label and attribute label respectively, / denotes
the child axis, // denotes the descendant axis, ∗ is the wild card, and S is a
string constant. As explained earlier, nested predicates are not discussed here,
and have to be decomposed into linear XPath expressions, as shown below.

A query tree, Q , has nodes labeled with variables and the edges with linear
path expressions. There is a distinguished variable, $R, which is always bound
to the root node of the XML packet. Each node in the tree also carries a Boolean
flag, called sax f. When its value is true, then the SAX events under that
node are forwarded to the application; otherwise they are not forwarded to the
application. The sax f can be set on and off at various nodes in the query tree.
The sax f flag is used by the stream index, Section 5.

Example 2.1. The following is a query tree (tags taken from the NASA
dataset [Borne n.d.]):

$D IN $R/datasets/dataset
$H IN $D/history
$T IN $D/title sax f = true
$TH IN $D/tableHead sax f = true
$N IN $D//tableHead//*
$F IN $TH/field
$V IN $N/text()="Galaxy"

Figure 2 shows this query tree graphically. Here the application requests the
SAX events under $T, and $TH only. Figure 3 shows the result of evaluating this
query tree on an XML input stream: the first column shows the XML stream,
the second shows the SAX events generated by the parser, and the last column
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Fig. 3. Events generated by a query tree.

Fig. 4. A query tree Q and an equivalent query set Q ′ of absolute XPath expressions.

shows the events forwarded to the application. Only some of the SAX events
are seen by the application, namely, exactly those that occur within a $T or $TH
variable event.

2.1.1 Nested Predicates. When an XPath expression contains nested pred-
icates, then the application needs to decompose them into linear XPath
expressions. For example, given the expression:

$X IN $R/catalog/product[@category="tools"]
[sales/@price > 200]/quantity

the application needs to decompose it into four linear XPath expression, which
form the query tree Q shown in Figure 4. The query processor will notify the
application of five events, $R, $Y, $Z, $U, $X, and the application needs to do
extra work to combine these events, as follows. It uses two Boolean variables,
b1, b2. On a $Z event, it sets b1 to true; on a $U event test the following text
value and, if it is > 200, then sets b2 to true. At the end of a $Y event, it checks
whether b1=b2=true. Some extra care is needed for the descendant axis, //.
This simple method works well in the case when there are few XPath expres-
sions, like in the XML Toolkit described in Section 7. Workloads with large
numbers of XPath expressions and nested predicates require more complex
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processing techniques, and this is outside of the scope of this article. We note,
however, that the DFA-based processing method that we study in this article
has been incorporated into a highly scalable technique for XPath expressions
with nested predicates [Gupta and Suciu 2003].

2.1.2 The Event-Based Processing Problem. The problem that we address
is: given a query tree Q , preprocess it, and then evaluate it on an incoming
XML stream. The goal is to maximize the throughput at which we can process
the XML stream.

The special case that we will study in Section 4 is that of a query tree in
which every XPath expression is absolute, that is, it starts at the root node. In
that case we call Q a query set, or simply a set, because it just consists of a
set of absolute XPath expressions. For the purpose of application events only, a
query tree Q can be rewritten into an equivalent query set Q ′, as illustrated in
Figure 4. Moreover the DFAs for Q and Q ′ are isomorphic, so it suffices to study
the size of the DFA only for absolute path expressions (Section 4). However, in
practice the DFA for Q is somewhat more efficient to compute than that for Q ′,
and for that reason the query processor works on the query tree Q directly.

3. PROCESSING WITH DFAs

3.1 Generating a DFA from a Query Tree

Our approach is to convert a query tree into a Deterministic Finite Automaton
(DFA). Recall that the query tree may be a very large collection of XPath expres-
sions: we convert all of them into a single DFA. This is done in two steps: convert
the query tree into a Nondeterministic Finite Automaton (NFA), then convert
the NFA to a DFA. We review here briefly the basic techniques for both steps
and refer the reader to a textbook for more details, for example, to Hopcroft
and Ullman [1979]. Our running example will be the query tree P shown in
Figure 5(a). Figure 5(b) illustrates the first step: converting the query tree to an
NFA, denoted An. We follow a popular method for converting XPath expression
into an NFA, which was used in Tukwila [Ives et al. 2002], our own work [Green
et al. 2003], and in YFilter [Diao et al. 2003]; for a detailed overview of various
methods for converting a regular expression to an NFA we refer the reader to
Watson’s [1993] survey. In Figure 5(b), the transitions labeled ∗ correspond to ∗
or // in P ; there is one initial state; there is one terminal state for each variable
($X, $Y, . . . ); and there are ε-transitions. The latter are needed to separate the
loops from the previous state. For example if we merge states 2, 3, and 6 into
a single state then the ∗ loop (corresponding to //) would incorrectly apply to
the right branch. This justifies 2

ε→ 3; the other ε-transitions are introduced
by compositional rules, which are straightforward and omitted. Notice that, in
general, the number of states in the NFA, An, is proportional to the size of P .

Let � denote the set of all tags, attributes, and text constants occurring in
the query tree P , plus a special symbol ω representing any other symbol that
could be matched by ∗ or //. For w ∈ �∗ let An(w) denote the set of states in An
reachable on input w. In our example we have � = {a, b, d , ω}, and An(ε) = {1},
An(ab) = {3, 4, 7}, An(aω) = {3, 4}, An(b) = ∅.
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Fig. 5. (a) A query tree P ; (b) its NFA, An, and (c) its DFA, Ad .

The DFA for P , Ad , has the following set of states and the following
transitions:

states(Ad ) = {An(w) | w ∈ �∗},
(2)

δ(An(w), a) = An(wa), a ∈ �.
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Our running example Ad is illustrated1 in Figure 5(c). Each state has unique
transitions, and one optional [other] transition, denoting any symbol in � ex-
cept the explicit transitions at that state: this is different from ∗ in An which de-
notes any symbol. For example [other] at state {3, 4, 8, 9} denotes either a or ω,
while [other] at state {2, 3, 6} denotes a, d , or ω. Terminal states may be labeled
now with more than one variable, for example, {3, 4, 5, 8, 9} is labeled $Y and $Z.
A sax f flag is defined for each DFA state as follows: its value is true if at least
one of the NFA states in that DFA state has sax f = true; otherwise it is false.

3.2 The DFA at Run Time

One can process an XML stream with a DFA very efficiently. It suffices to main-
tain a pointer to the current DFA state, and a stack of DFA states. SAX events
are processed as follows. On a startElement(e) event we push the current state
on the stack, and replace the state with the state reached by following the e
transition2; on an endElement(e) we pop a state from the stack and set it as the
current state. Attributes and text values are handled similarly. At any moment,
the states stored in the stack are exactly those at which the ancestors of the
current node were processed, and at which one may need to come back later
when exploring subsequent children nodes of those ancestors. If the current
state has any variables associated to it, then for each such variable $V we send
a startVariable($V) (in the case of a startElement) or endVariable($V) (in
the case of a endElement) event to the application. If either the current state or
the new state we enter has sax f=true, then we forward the SAX event to the
application.

No memory management is needed at run time.3 Thus, each SAX event is
processed in O(1) time, since a transition lookup is implemented as a hash table
lookup, and this technique guarantees the throughput at which it can process
the stream of XML packets, independently of the number of XPath expressions.
The main issue is the size of the DFA, which we discuss next.

4. ANALYZING THE SIZE OF THE DFA

For a general regular expression the size of the DFA may be exponen-
tial [Hopcroft and Ullman 1979]. In our setting, however, the expressions are
restricted to XPath expressions defined in Section 2.1, and general lower bounds
do not apply automatically. We analyze and discuss here the size of the eager
and lazy DFAs for such XPath expressions. We call a DFA eager if it is obtained
using the standard powerset construction, shown in Equation (2). We call the
DFA lazy if its states and transitions are constructed at runtime, as we describe
in detail in Section 4.2. We shall assume first that the XPath expressions have
no predicates of the form text()=S, and, as a consequence, the alphabet � is
small, then discuss in Section 4.3 the impact of such predicates on the size of

1Technically, the state ∅ is also part of the DFA, and behaves like a “failure” state, collecting all
missing transitions. We do not illustrate it in our examples.
2The state’s transitions are stored in a hash table.
3The stack is a static array, currently set to 1024: this represents the maximum XML depth that
we can handle.
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the DFA. As explained at the end of Section 2, we will restrict our analysis to
absolute XPath expressions, that is, to query sets rather than query trees.

4.1 The Eager DFA

4.1.1 Single XPath Expression. A single linear XPath expression can be
written as:

P = p0//p1// . . . //pk ,

where each pi is N1/N2/ . . . /Nni , i = 0, . . . , k, and each N j is given by Equation
(1) in Section 2.1. We consider the following parameters:

k = number of //’s,
ni = length of pi, i = 0, . . . , k,
m = max # of ∗’s in each pi,
n = length (or depth) of P , that is,

∑
i=0,k ni,

s = alphabet size =| � |.
For example if P = //a/∗//a/∗/b/a/∗/a/b, then k = 2 (p0 = ε, p1 = a/∗, p2 =
a/∗/b/a/∗/a/b), s = 3 (� = {a, b, ω}), n = 9 (node tests: a, ∗, a, ∗, b, a, ∗, a, b),
and m = 2 (we have 2 ∗’s in p2). The following theorem gives an upper bound
on the number of states in the DFA. The proof is in the electronic appendix.

THEOREM 4.1. Given a linear XPath expression P, define prefix(P ) = n0 and
body(P ) = ( k2−1

2k2 (n − n0)2 + 2(n − n0) − nk + 1)sm when k > 0, and body(P ) = 1
when k = 0. Then the eager DFA for P has at most prefix(P ) + body(P ) states.
In particular, if m = 0 and k ≤ 1, then the DFA has at most (n + 1) states.

We first illustrate the theorem in the case where there are no wild-cards (m =
0) and k = 1. Then n = n0+n1 and there are at most n0+2(n−n0)−n1+1 = n+1
states in the DFA. For example, if p = //a/b/a/a/b, then k = 1, n = 5: the NFA
and DFA are shown in Figures 6 (a) and (b), respectively, and indeed the latter
has six states. This generalizes to //N1/N2/ · · · /Nn: the DFA has only n + 1
states, and is an isomorphic copy of the NFA plus some back transitions: this
corresponds to Knuth-Morris-Pratt’s string matching algorithm [Cormen et al.
1990].

When there are wild cards (m > 0), the theorem gives an exponential
upper bound because of the factor sm. There is a corresponding exponential
lower bound, illustrated in Figures 6(c) and 6(d), showing that the DFA for
p = //a/∗/∗/∗/∗, has 25 states. It is easy to generalize this example and see
that the DFA for //a/∗/ · · · /∗ has 2m+1 states, where m is the number of ∗’s.
While a simple hack enables us to //a/∗/ · · · /∗ on an XML document using con-
stant space without converting it into a DFA, this is no longer possible if we
modify the expression to //a/∗/ . . . /∗/b.

Thus, the theorem shows that the only thing that can lead to an exponen-
tial growth of the DFA is the maximum number of ∗’s between any two con-
secutive //’s. One expects this number to be small in most practical applica-
tions; arguably users write expressions like /catalog//product//color rather
than /catalog//product/*/*/*/*/*/*/*/*/*/color. Some implementations of
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Fig. 6. The NFA (a) and the DFA (b) for *dfa. The NFA (c) and the DFA (with back edges removed)
(d) for //a/*/*/*/*: here the eager DFA has 25 = 32 states.

XQuery already translate a single linear XPath expression into DFAs [Ives et al.
2002].

4.1.2 Multiple XPath Expressions. For sets of XPath expressions, the DFA
also grows exponentially with the number of expressions containing //. We
illustrate this first, then state the lower and upper bounds.

Example 4.2. Consider four XPath expressions:

$X1 IN $R//book//figure
$X2 IN $R//table//figure
$X3 IN $R//chapter//figure
$X4 IN $R//note//figure

The eager DFA needs to remember what subset of tags of {book, table,
chapter, note} it has seen, resulting in at least 24 states. We generalize this
below.

PROPOSITION 4.3. Consider p XPath expressions:

$X 1 IN $R//a1//b
. . .

$X p IN $R//ap//b

where a1, . . . , ap, b are distinct tags. Then the DFA has at least 2p states.4

For all practical purposes, this means that the size of the DFA for a set of
XPath expressions is exponential. The theorem below refines the exponential
upper bound, and its proof is in the electronic appendix.

4Although this requires p distinct tags, the result can be shown with only two distinct tags, and
XPath expressions of depths n = O(log p), using binary encoding of tags.
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THEOREM 4.4. Let Q be a set of XPath expressions. Then the number of states
in the eager DFA for Q is at most:

∑
P∈Q (prefix(P )) + ∏

P∈Q (1 + body(P )). In
particular, if A, B are constants such that ∀P ∈ Q, prefix(P ) ≤ A, and body(P ) ≤
B, then the number of states in the eager DFA is ≤ p · A + (1 + B)p′

, where p is
the number of XPath expressions in Q and p′ is the number of such expressions
that contain //.

Recall that body(P ) already contains an exponent, which we argued is small
in practice. The theorem shows that the extra exponent added by having mul-
tiple XPath expressions is precisely the number of expressions with //’s. This
result should be compared with Aho and Corasick’s dictionary matching prob-
lem [Aho and Corasick 1975; Rozenberg and Salomaa 1997]. There we are given
a dictionary consisting of p words, {w1, . . . , wp}, and have to compute the DFA
for the set Q = {//w1, . . . , //wp}. Hence, this is a special case where each XPath
expression has a single, leading //, and has no ∗. The main result in the dic-
tionary matching problem is that the number of DFA states is linear in the
total size of Q . Theorem 4.4 is weaker in this special case, since it counts each
expression with a // toward the exponent. The theorem could be strengthened
to include in the exponent only XPath expressions with at least two //’s, thus
technically generalizing Aho and Corasick’s result. However, XPath expres-
sions with two or more occurrences of // must be added to the exponent, as
Proposition 4.3 shows. We chose not to strengthen Theorem 4.4 since it would
complicate both the statement and proof, with little practical significance.

Sets of XPath expressions like the ones we saw in Example 4.2 are common
in practice, and rule out the eager DFA, except in trivial cases. The solution is
to construct the DFA lazily, which we discuss next.

4.2 The Lazy DFA

The lazy DFA is constructed at run-time, on demand. Initially it has a single
state (the initial state), and whenever we attempt to make a transition into a
missing state we compute it, and update the transition. The hope is that only
a small set of the DFA states needs to be computed.

This idea has been used before in text processing [Laurikari 2000], but it
has never been applied to large numbers of expressions as required in our
applications. A careful analysis of the size of the lazy DFA is needed to justify
its feasibility. We prove two results, giving upper bounds on the number of
states in the lazy DFA, that are specific to XML data, and that exploit either
the schema, or the data guide. We stress, however, that neither the schema nor
the data guide need to be known to the query processor in order to use the lazy
DFA, and only serve for the theoretical results.

Formally, let Al be the lazy DFA. Its states and transitions are described
by the following equations, which should be compared to Equation (2) in
Section 3.1:

states(Al ) = {An(w) | w ∈ Ldata}, (3)
δ(An(w), a) = An(wa), wa ∈ Ldata. (4)
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Here Ldata is the set of all root-to-leaf sequences of tags in the input XML
streams. Thus, the size of the lazy DFA is determined by two factors: (1) the
number of states, that is, | states(Al ) |, and (2) the size of each state, that is,
| An(w) |, for w ∈ Ldata. Recall that each state in the lazy DFA is represented by
a set of states from the NFA, which we call an NFA table. In the eager DFA the
NFA tables can be dropped after the DFA has been computed, but in the lazy
DFA they need to be kept, since we never really complete the construction of the
DFA (they are technically needed to apply Equation (4) at runtime). Therefore
the NFA tables also contribute to the size of the lazy DFA. We analyze in this
section both factors.

4.2.1 The Number of States in the Lazy DFA. The first size factor, the num-
ber of states in the lazy DFA may be, in theory, exponentially large, and hence
is our first concern. Assuming that the XML stream conforms to a schema (or
DTD), denote Lschema all root-to-leaf sequences allowed by the schema: we have
Ldata ⊆ Lschema ⊆ �∗.

We use graph schema [Abiteboul et al. 1999; Buneman et al. 1997] to formal-
ize our notion of schema, where nodes are labeled with tags and edges denote
inclusion relationships. A graph schema S is a graph with a designated root
node, and with nodes labeled with symbols from �. Each path from the root
defines a word w ∈ �∗, and the set of all such words forms a regular language
denoted Lschema. Define a simple cycle, c, in a graph schema to be a set of nodes
c = {x0, x1, . . . , xn−1} which can be ordered such that for every i = 0, . . . , n − 1,
there exists an edge from xi to x(i+1) mod n. We say that a graph schema is simple,
if for any two simple cycles c 
= c′, we have c ∩ c′ = ∅.

We illustrate with the DTD in Figure 7, which also shows its graph schema.
This DTD is simple, because the only cycles in its graph schema (shown in
Figure 7 (a)) are self-loops. All nonrecursive DTDs are simple. Recall that a
simple path in a graph is a path where each node occurs at most once. For a
simple graph schema we denote d the maximum number of simple cycles that
a simple path can intersect (hence d = 0 for nonrecursive schemes), and D the
total number of nonempty, simple paths starting at the root: D can be thought
of as the number of nodes in the unfolding.5 In our example d = 2, D = 13,
since the path book/chapter/section/table/note intersects two simple cycles,
{table} and {note}, and there are 13 different simple paths that start at the
root: they correspond to the nodes in the unfolded graph schema shown in
Figure 7 (b). For a query set Q , denote n its depth, that is, the maximum
number of symbols in any P ∈ Q (i.e., the maximum n, as in Section 4.1). We
prove the following result in the, electronic appendix:

THEOREM 4.5. Consider a simple graph schema with d , D, defined as above,
and let Q be a set of XPath expressions of maximum depth n. Then, on any XML
input satisfying the schema, the lazy DFA has at most 1 + D × (1 + n)d states.

5The constant D may, in theory, be exponential in the size of the schema because of the unfolding,
but in practice the shared tags typically occur at the bottom of the DTD structure (see Sahuguet
[2000]), and hence D is only modestly larger than the number of tags in the DTD.

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.



Processing XML Streams • 765

Fig. 7. A simple graph schema for a DTD (a) and its unfolding (b). Here D = 13 (since the unfolding
has 13 nodes) and d = 2 (since two recursive elements may be nested: a table may contain a note).

The result is surprising, because the number of states does not depend on the
number of XPath expressions, only on their depths. In Example 4.2 the depth
is n = 2: for the DTD above, the theorem guarantees at most 1 + 13 × 32 = 118
states in the lazy DFA. In practice, the depth is larger: for n = 10, the theorem
guarantees ≤ 1574 states, even if the number of XPath expressions increases
to, say, 100,000. By contrast, the eager DFA may have ≥ 2100000 states (see
Proposition 4.3). Figure 6(d) shows another example: of the 25 states in the
eager DFA only nine are expanded in the lazy DFA.

Theorem 4.5 has many applications. First for nonrecursive DTDs (d = 0), the
lazy DFA has at most 1 + D states.6 Second, in data-oriented XML instances,
recursion is often restricted to hierarchies, for example, departments within
departments, parts within parts. Hence, their DTD is simple, and d is usually
small. Finally, the theorem also covers applications that handle documents from
multiple DTDs (e.g., in XML routing): here D is the sum over all DTDs, while
d is the maximum over all DTDs.

The theorem does not apply, however, to document-oriented XML data. These
have nonsimple DTDs : for example, a table may contain a table or a footnote,
and a footnote may also contain a table or a footnote. Hence, both {table}
and {table, footnote} are cycles, and they share a node. This is illustrated in
Figure 8(a). For such cases we give an upper bound on the size of the lazy DFA in
terms of data guides [Goldman and Widom 1997]. Given an XML data instance,
the data guide G is that schema (a) which is deterministic.7 (b) which captures
exactly the sequence of labels in the data, Lschema = Ldata, and (c) where G is

6This also follows directly from (3) since in this case Lschema is finite and has 1 + D elements: one
for w = ε, and one for each nonempty, simple path.
7For each label a ∈ �, a node can have at most one child labeled with a.
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Fig. 8. A nonsimple graph schema (a), an XML instance (b), and its data guide (c).

unfolded, that is, it is a tree. The latter property is possible to enforce since
Ldata is finite, and hence the data guide has no cycles. Figure 8 illustrates the
connection between graph schemas, XML data, and data guides. The graph
schema in Figure 8(a) is nonsimple, and shows all possible nestings that are
allowed in the data. An actual XML instance in Figure 8(b) uses only some of
these nestings. The data guide in Figure 8(c) captures precisely these nestings.

Since data guides are graph schemas with d = 0, Theorem 4.5 applies and
gives us the following:

COROLLARY 4.6. Let G be the number of nodes in the data guide of an XML
stream. Then, for any set Q of XPath expressions the lazy DFA for Q on that
XML stream has at most 1 + G states.

An empirical observation is that real XML data tends to have small data
guides, regardless of its DTD. To understand why, consider the case of XML
documents representing structured text, with elements such as footnote,
table, figure, abstract, section, where the DTD allows these elements to
be nested arbitrarily. Typical documents will have paths like section/table,
section/figure, section/figure/footnote, and hence the dataguide for large
enough collection of such documents is quite likely to contain all these paths.
However, many other paths are quite unlikely to occur in practice, for example,
table/figure/footnote, figure/section/abstract, and therefore they are un-
likely to occur in the dataguide, even though they are technically permitted by
the DTD. Thus, the number of nodes in the dataguide is typically much smaller
than the theoretical upper bound. This is a general observation, which tends to
hold on most practical XML data found in most domains. In order to find a coun-
terexample, one has to go to the domain of Natural Language Processing: Tree-
bank [Marcus et al. 1993] is a large collection of parsed English sentences and
its dataguide has G = 340, 000 nodes, as reported in Liefke and Suciu [2000].

4.2.2 Size of NFA Tables. The following proposition ensures that the NFA
tables do not increase exponentially:
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PROPOSITION 4.7. Let Q be a set of p XPath expressions, of maximum depth
n. Then the size of each NFA table in the DFA for Q is at most 2np.

The proof follows immediately from the observation that the NFA for one
XPath expression has n + k ≤ 2n states; hence each NFA table may contain
at most 2np. Despite the apparent positive result, the sets of NFA states are
responsible for most of the space in the lazy DFA, and we discuss them in
Section 6.

4.3 Predicates

We now lift the restriction on predicates, and discuss their impact on the num-
ber of states in the DFA. Each linear XPath expression can now end in a predi-
cate text()=S, see Equation (1) in Section 2.1. The only difference is that now
we can no longer assume that the alphabet � is small, since the number of
distinct strings S in the query workload can be very large. As a matter of no-
tation, we follow the W3C standards and use a rather confusing syntax for the
symbol text(). An XPath expression may end in a predicate denoted text()=S;
this matches a SAX event of the form text(S); hence, the predicate becomes a
transition labeled text(S) in the NFA and the DFA.

For a given set of XPath expressions, Q , let � denote the set of all symbols in
the NFA for Q , including those of the form text(S). Let � = �t ∪ �s, where �t
contains all element and attribute labels and ω, while �s contains all symbols
of the form text(S). The NFA for Q has a special, two-tier structure: first an
NFA over �t , followed by some �s-transitions into sink states, that is, with
no outgoing transitions. The corresponding DFA also has a two-tier structure:
first the DFA for the �t part, denote it At , followed by �s transitions into sink
states. All our previous upper bounds on the size of the lazy DFA apply to At .
We now have to count the additional sink states reached by text(S) transitions.
For that, let �s = {text(S1), . . . , text(Sq)}, and let Qi, i = 1, . . . , q, be the set
of XPath expressions in Q that end in text() = Si; we assume without loss of
generality that every XPath expression in Q ends in some predicate in �s, and
hence Q = Q1 ∪ · · · ∪ Qq . Denote Ai the DFA for Qi, and At

i its �t-part. Let
si be the number of states in At

i , i = 1, . . . , q. All the previous upper bounds,
in Theorem 4.1, Theorem 4.5, and Corollary 4.6, apply to each si. We prove the
following in the electronic appendix.

THEOREM 4.8. Given a set of XPath expressions Q, containing q distinct
predicates of the form text()=S, the additional number of sink states in the
lazy DFA due to the constant values is at most

∑
i=1,q si.

5. THE STREAM INDEX (SIX)

Parsing and tokenizing the XML document is generally accepted to be a ma-
jor bottleneck in XML processing. An obvious solution is to represent an XML
document in binary, as a string of binary tokens. In an XML message sys-
tem, the messages are now binary representations of XML, rather than real
XML, or they are converted into binary when they enter the system. Some com-
mercial implementations adopt this approach in order to increase performance
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[Florescu et al. 2003]. The disadvantage is that all servers in the network must
understand that binary format. This defeats the purpose of the XML standard,
which is supposed to address precisely the lack of interoperability that is asso-
ciated with a binary format.

We favor an alternative approach: keep the XML packets in their native text
format, and add a small amount of binary data that allows fast access to the
document. We describe here one such technique: a different technique based on
the same philosophy is described in Gupta et al. [2003].

5.1 Definition

Given an XML document, a Stream IndeX (SIX) for that document is an ordered
set of byte offsets pairs:

(beginOffset, endOffset),

where beginOffset is the byte offset of some begin tag, and endOffset of the
corresponding end tag (relative to the begin tag). Both numbers are represented
in binary, to keep the SIX small. The SIX is computed only once, by the producer
of the XML stream, attached to the XML packet somehow (e.g., using the DIME
standard [Corp. n.d.]), then sent along with the XML stream and used by every
consumer of that stream (e.g., by every router, in XML routing). A server that
does not understand the SIX can simply ignore it.

The SIX is sorted by beginOffset. The query processor starts parsing the
XML document and matches SIX entries with XML tags. Depending on the
queries that need to be evaluated, the query processor may decide to skip over
elements in the XML document, using endOffset. Thus, a simple addition of
two integers replaces parsing an entire subelement, generating all SAX events,
and looking for the matching end tag. This is a significant savings.

The SIX module (see Figure 1 in Section 2.1) offers a single interface: skip(k),
where k ≥ 0 denotes the number of open XML elements that need to be skipped.
Thus skip(0) means “skip to the end of the most recently opened XML ele-
ment.” The example below illustrates the effect of a skip(0) call, issued after
reading <c>:

XML stream:
<a> <b> <c> <d> </d> </c> <e> </e> </b> <f> . . .

|
skip(0)

parser:
<a> <b> <c> <e> </e> </b> <f> . . .

while the following shows the effect of a skip(1) call:

XML stream:
<a> <b> <c> <d> </d> </c> <e> </e> </b> <f> . . .

|
skip(1)

parser:
<a> <b> <c> <f> . . .
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5.2 Using the SIX

A SIX can be used by any application that processes XML documents using a
SAX parser.

Example 5.1. Consider a very simple application counting how many prod-
ucts in a stream of messages have more than 10 complaints:

count(/message/product[count(complaint) >= 10]).

While looking for product, if some other tag is encountered then the applica-
tion issues a skip(0). Inside a product, the application listens for complaint:
if some other tag is read, then issue a skip(0). If a complaint is read then in-
crement the count. If the count is >=10 then issue skip(1), otherwise skip(0).

A DFA can use a SIX effectively. From the transition table of a DFA state it
can see what transitions it expects. If a begin tag does not correspond to any
transition and its sax f flag is set to false, then it issues a skip(0). As we show
in Section 6, this results in dramatic speedups.

5.3 Implementation

The SIX is very robust: arbitrary entries may be removed without compromising
consistency. Entries for very short elements are candidates for removal because
they provide little benefit. Very large elements may need to be removed (as we
explain next), and skipping over them can be achieved by skipping over their
children, yielding largely the same benefit.

The SIX works on arbitrarily large XML documents. After exceeding 232

bytes in the input stream, beginOffset wraps around; the only constraint is
that each window of 232-bytes in the data has at least one entry in the SIX.8

The endOffset cannot wrap around: elements longer than 232 bytes cannot be
represented in the SIX and must be removed.

The SIX is just a piece of binary data that needs to travel with the XML
document. Some application decides to compute it and attaches it to the XML
document. Later consumers of that document can then benefit from it. In our
implementation the SIX is a binary file, with the same name as the XML file
and with extension .six. In an application like XML packet routing, the SIX
needs to be attached somehow to the XML document, for example, by using
the DIME format [Corp. n.d.], and identified with a special tag. In both cases,
applications that understand the SIX format may use it, while those that don’t
understand it will simply ignore it.

The SIX for an XML document is constructed while the XML text output
is generated, as follows. The application maintains a circular buffer contain-
ing a tail of the SIX, and a stack of pointers into the buffer. The application
also maintains a counter representing the total number of bytes written so far
into the XML output. Whenever the application writes a startElement to the
XML output, it adds a (beginOffset, endOffset) entry to the SIX buffer, with

8The only XML document for which the SIX cannot be computed is one that has a text value longer
than 232 bytes. In that case, the SIX is not computed, and replaced with an error code.
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beginOffset set to the current byte count, and endOffset set to NULL. Then
it pushes a pointer to this entry on the stack. Whenever the application writes
a endElement to the XML output, it pops the top pointer from the stack, and
updates the endOffset value of the corresponding SIX entry to the current byte
offset. In most cases, the size of the entire SIX is sufficiently small for the appli-
cation to keep it in the buffer. However, if the buffer overflows, then application
fetches the bottom pointer on the stack and deletes the corresponding SIX entry
from the buffer, then flushes from the buffer all subsequent SIX entries that
have their endOffset value completed. This, in effect, deletes a SIX entry for a
large XML element.

5.4 Speedup of a SIX

The effectiveness of the SIX depends on the selectivity. Given a query tree P
and an XML stream, let n be the total number of XML nodes, and let n0 be
the number of selected nodes, that is, which match at least one variable in P .
Define the selectivity as θ = n0/n. Examples: the selectivity of the XPath expres-
sion //* is 1; the selectivity of /a/b/no-such-tag is 0 (assuming no-such-tag
does not occur in the data); referring to Figure 3, we have n = 8 (one has to
count only the startElement() and text() SAX events), n0 = 4, and hence
θ = 0.5. The maximum speedup from a SIX is 1/θ . At one extreme, the expres-
sion /no-such-tag has θ = 0, and may result in arbitrary large speedups, since
every XML packet is skipped entirely. At the other extreme the SIX is ineffective
when θ ≈ 1.

The presence of ∗’s and, especially, //’s may reduce the effectiveness of the
SIX considerably, even when θ is small. For example the XPath expression
//no-such-tag has θ = 0, but the SIX is ineffective since the system needs to
inspect every single tag while searching for no-such-tag. In order to increase
the SIX’s effectiveness, the ∗’s and //’s should be eliminated, or at least reduced
in number, by specializing the XPath expressions with respect to the DTD, us-
ing query pruning. This is a method, described in Fernandez and Suciu [1998],
by which an XPath expression is specialized to a certain DTD. For example the
XPath expression //a may be specialized to (/b/c/d/a) | (/b/e/a) by inspect-
ing how a DTD allows elements to be nested. Query pruning eliminates all ∗’s
from the DFA, and therefore increases the effectiveness of the SIX.

6. EXPERIMENTS

We evaluated our techniques in a series of experiments addressing the following
questions. How much memory does the lazy DFA require in practice? How
efficient is the lazy DFA in processing large workloads of XPath expressions?
And how effective is the SIX?

We used a variety of DTDs summarized in Figure 9. All DTDs were down-
loaded from the Web, except simple, which is a synthetic DTD created by us.
We generated synthetic XML data for each DTD using the generator from
http://www.alphaworks.ibm.com/tech/xmlgenerator. For three of the DTDs
we also found large, real XML data instances on the Web, which are shown as
three separate rows in the table: protein(real), nasa(real), treebank(real).
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Fig. 9. Sources of data used in experiments. Only three real data sets were available.

For example, the row for protein represents the synthetic XML data while
protein(real) the real XML data, and both have the same DTD.

We generated several synthetic workloads of XPath expressions for each
DTD, using the generator described in Diao et al. [2003]. It allowed us to tune
the probability of ∗ and //, denoted Prob(∗) and Prob(//), respectively, and the
maximum depth of the XPath expressions, denoted n. In all our experiments
below, the depth was n = 10.

Our system was a Dell Dual P-III 700-Mhz, 2-GB RAM running RedHat
7.1. We compiled the Lazy DFA with the gcc compiler version 2.96 without any
optimization options. We also ran a different system, YFilter, which was written
in Java: here we used Java version 1.4.2 04.

6.1 Validation of the Size of the Lazy DFA

The goal of the first set of experiments was to evaluate empirically the amount
of memory required by the lazy DFA. This is as a complement to the theoretical
evaluation in Section 4. For each of the datasets we generated workloads of
1k, 10k, and 100k XPath expressions, with Prob(∗) = Prob(//) = 5% and depth
n = 10.

We first counted the number of states generated in the lazy DFA. Recall
that, for simple DTDs, Theroem 4.5 gives the upper bound 1 + D × (1 + n)d

on the number of states in the lazy DFA, where D is the number of elements
in the unfolded DTD, d is the maximum nesting depths of recursive elements,
and n is the maximum depth of any XPath expression. For real XML data,
Corollary 4.6 offers the additional upper bound 1 + G, where G is the size of
the dataguide of the real data instance, which, we claimed, is in general small
for a real data instance. By contrast, a synthetic data instance may have a very
large dataguide, perhaps as large as the data itself, and therefore the upper
bound in Corollary 4.6 is of no practical use.

Figure 10(a) shows the number of states in the lazy DFA on synthetic XML
data. The first four DTDs are simple, and the number of states was indeed
smaller than the bound in Theorem 4.5, sometimes significantly smaller. For
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Fig. 10. Size of the lazy DFA for synthetic data (a), and real data (b); average size of an NFA table
(c), and of a transition table (d); total memory used by a lazy DFA (e). 1k XPEs means 1000 XPath
expressions.
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example ebBPSS has 1479 states for 100k XPath expressions, while the theo-
retical upper bound, taking9 D = 29, d = 2, n = 10, is 3510. The last three
DTDs were not simple, and Theorem 4.5 does not apply. In two cases (nitf and
treebank, for 100,000 expressions) we ran out of memory.

Figure 10(b) shows the number of states in the lazy DFA for real data. Here
the number of states is significantly smaller than in the previous graph. This
is explained by the fact that real XML instances had a small dataguide, which
limited the number of states in the lazy DFA. For example, for the real nasa data
instance the number of states was 103, 107, and 108, respectively: contrast that
to 1470, 2619, 2874 for the synthetic nasa data instance. The only data instance
with a large data guide was treebank, where G was about 340,000 and the lazy
DFA had 43,438 states on the largest workload (100,000 XPath expressions).

The huge difference between the synthetic and the real data set is striking,
and makes one reflect on the limitations of current XML data generators. The
lesson for our purposes is that the size of the lazy DFA is small or medium on
real data sets, but can be prohibitively large on synthetic data sets.

Next, we measured experimentally the average size of the NFA tables in
each DFA state, that is, the average number of NFA states per DFA state.
Figure 10(c) shows the experimental results. The average size of the NFA tables
grew linearly with p. This is consistent with the theoretical analysis: Proposi-
tion 4.7 gives an upper bound of 2np, and hence 20p in our case, where p is the
number of XPath expressions. The experiments showed that bound to be overly
pessimistic and the real value to be closer to p/10, however. Even so, the total
size of the NFA tables was large, since this number needed to be multiplied
with the number of states in the lazy DFA.

We also measured the average number of transitions per DFA state. These
transitions were stored in a hash table at each state in the lazy DFA, and hence
they also contributed to the total size. Notice that the number of transitions at
a state is bounded by the number of elements in the DTD. Our experimental
results in Figure 10(d) confirm that. The transition tables are much smaller
than the NFA tables.

Next we measured the total amount of memory used by the lazy DFA, ex-
pressed in MB’s: this is shown in Figure 10(e). The most important observation
is that the total amount of memory used by the lazy DFA grew largely linearly
with the number of XPath expressions. This is explained by the fact that the
number of states was largely invariant, while the average size of an NFA table
at each state grew linearly with the workload. We also measured the amount
of memory used by a naive NFA, without any of the state sharing optimization
implemented in YFilter. The graph shows that this was comparable to the size
of the lazy DFA. On the one hand, the total size of the NFA tables in the lazy
DFA was larger than the number of states in the NFA; on the other hand, the
DFA made up for this by having fewer transition tables.

None of the experiments above included any predicates on data values. To
conclude our evaluation of the memory usage of the lazy DFA, we measured the

9We took here D to be the number of elements in the DTD. The real value of D may be larger, due
to the unfolding.
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Fig. 11. The throughput of various XML parsers.

impact of predicates. Recall that the theoretical analysis for this case was done
in Section 4.3, and we refer to the notations in that section. We generated a
workload of 200,000 XPath expressions with constant values. We used a subset
of size 9.12 MB of the protein data set, and selected randomly constants that
actually occurred in this data. In order to select values randomly from this data
instance, we had to store the entire data in main memory. For that reason, we
used only a subset of the protein data set. The number of distinct constants
used was q = 29740. The first tier of the automaton had 80 states (slightly
less than in Figure 10(b) because we used only a fragment of the protein data),
while the number of additional states was 63,412. That is, each distinct constant
occurring in the predicates contributed to approximatively two new states in the
second tier of the automaton. The average size of the NFA tables at these states
was at most as large as the average number of XPath expressions containing
each distinct constant, that is, 200,000/29,740 ≈ 6.7. Since these states had no
transition tables, each distinct value occurring in any of the predicates used
about 13.4∗4 ≈ 54 bytes of main memory. While nonnegligible, this amount
was of the same order of magnitude as the predicate itself.

6.2 Throughput

In our second sets of experiments, we measured the speed at which the lazy DFA
processed the real XML data instances nasa and protein. Our first goal here was
to evaluate the speed of the lazy DFA during the stable phase, when most or all
of its states have been computed, and the lazy DFA reaches its maximum speed.
Our second goal was to measure the length of the warmup phase, when most
time is spent constructing new DFA states. To separate the warmup phase from
the stable phase, we measured the instantaneous throughput, as a function of
the amount of XML data processed: we measured at 5-MB intervals for nasa
and 100-MB intervals for protein, or more often when necessary.

We compared the lazy DFA to YFilter [Diao et al. 2003], a system that uses a
highly optimized NFA to evaluate large workloads of XPath expressions. There
are many factors that make a direct comparison of the two systems difficult:
the implementation language (C++ for the lazy DFA vs. Java for YFilter), the
XML parser (a custom parser vs. the Xerces Java parser), and different coding
styles. While a perfect calibration is not possible, in order to get a meaningful
comparison we measured the throughput of the Xerces C++ SAX and SAX2
parsers, the Xerces Java SAX and SAX2 parsers, and the parser of the lazy
DFA. The results are shown in Figure 11. Contrary to our expectations, the
Xerces C++ SAX parser was slightly slower than the Java SAX Parser, while
the C++ SAX2 parser was even slower. Assuming that the Java and C++
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versions used identical algorithms, this suggests that a Java program should
run slightly faster than a C++ program on our platform. On the other hand, the
lazy DFA parser was faster on average than the Xerces Java SAX2 parser (used
by YFilter); hence, all things being equal, the lazy DFA should run slightly faster
than YFilter (at least on nasa). While these numbers underly the difficulty of
a direct comparison, they also suggest that any difference in the throughput of
the two systems that are attributable to the implementation language and the
parser are relatively small. Therefore we report below absolute values of the
throughput and do not attempt to normalize them.

In Figures 12(a) and 12(b), we show the results for workloads of varying sizes
(500 to 500,000 XPath expressions for nasa, 1000 to 1,000,000 for protein). In
all workloads the maximum depth was n = 10, and Prob(∗) = Prob(//) = 0.1.
The most important observation is that in both graphs the lazy DFA reached
indeed a stable phase, after processing about 5–10 MB of nasa data or 50 MB
of protein data, where the throughput was constant, that is, independent of
the size of the workload. The throughput in the stable state was about 3.3–
3.4 MB/s for nasa and about 2.4 MB/s for protein.

By contrast, the throughput of YFilter decreased with the number of XPath
expressions: as the workload increased by factors of 10, the throughput of YFil-
ter decreased by an average factor of 2. In general, however, the throughput of
the lazy DFA was consistently higher than that of YFilter, by factors ranging
from 4.6 to 48. The throughput was especially higher for large workloads.

The high throughput of the lazy DFA should be balanced by two effects: the
amount of memory used and the speed of the warmup phase. To get a sense of
the first effect, notice that the lazy DFA used almost the entire 2 GB of main
memory on our platform in some of the tests. In one case, when we tried to
run it on the nasa dataset with 1,000,000 XPath expressions, we ran out of
memory.10 By contrast, YFilter never used more than 60 MB of main memory
on any workload.

To see the second effect, we report the total running time of the entire data
instance in Figure 13(a). The gains of the lazy DFA over YFilter are now smaller,
between factors of 1.6 and 8.3. In one case, YFilter was faster than the lazy DFA
by a factor of 2. Notice that protein was much larger, allowing the lazy DFA
more time to recover from the high warmup cost: here the lazy DFA was always
faster. The difference from the graphs in Figure 12 is explained by the fact that
the warmup phase is expensive.

Next, we ran similar experiments testing the sensitivity of the lazy DFA
to increasing numbers of ∗’s and // ’s in the workload of XPath expressions.
Figures 12(c) and 12(d) show the variation of the throughput when Prob(∗) or
Prob(//) varied. We only show here the results for the nasa dataset; those for
protein were similar. These graphs show the same general trend as those in
Figures 12(a) and 12(b). One interesting observation here is that the warmup

10The same test, however, runs fine on a Solaris platform, since the Solaris operating system has
a better memory management module. The overall throughput of the lazy DFA was also higher
on the Solaris platform. In a preliminary version of this work [Green et al. 2003], we reported
experiments on a Solaris platform.
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Fig. 12. The throughput of the lazy DFA and YFilter, as a function of the amount of XML data
consumed. Varying workload sizes (a), (b); varying probabilities for ∗ and // (c), (d); workloads
without ∗ and // (e), (f). Here 1k XPE means 1000 XPath expressions.

phase of the lazy DFA is not affected by the presence of ∗’s, only by that
of // ’s.

A type of workload of particular interest in practice is one without any occur-
rences of ∗ and //. We ran a similar set of experiments on such workloads, and
we report the results in Figures 12(e) and 12(f). We also report the absolute
running times in Figure 13(b). On such a workload both the NFA optimized

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.



Processing XML Streams • 777

Fig. 13. Absolute running times in seconds for workloads with (a) and without (b) occurrences of
∗ and //.

by YFilter and the DFA become two isomorphic Trie structures. As before, the
lazy DFA is slow during the warmup phase, which determined one total running
time to be less than, that for YFilter shown in Figure 13(b).

6.3 Evaluation of the SIX

In this set of experiments, we evaluated the SIX on synthetic nitf data,11 with
10,000 XPath expressions using 0.2% probabilities for both the // and the ∗’s.
The justification for these low values is based on the discussion at the end of
Section 5.4: the SIX is ineffective for workloads with large numbers of // and
∗, and there exists techniques (e.g., query pruning) for eliminating both // and
∗ by using a schema or a DTD. In order to vary the selectivity parameter θ

(Section 5.4), we made multiple, disjoint copies of the nitf DTD, and randomly
assigned each XPath expression to one such DTD: θ decreased when the number
of copies increased. We generated about 50 MB of XML data, then copied it to
obtain a 100-MB data set. The reason for the second copy is that we wanted to
measure the SIX in the stable phase, while the lazy DFA warms up too slowly
when using a SIX, because it sees only a small fragment of the data. The size of
complete SIX for the entire dataset was 6.7 MB, or about 7% of the XML data.

Figure 14(a) shows the throughput with a SIX, and without a SIX, for all
three selectivities. Without a SIX, the throughput was constant at around
5 MB/s. This was slightly higher than for the previous experiments because
of our optimization of the “failure state” transitions: when the lazy DFA en-
tered the failure state, where all transitions lead back to itself, the lazy DFA
processor did not look up the next state in the transition table (which was a hash
table, in this case with only one entry), but simply kept the same current state.

When run with a SIX, the throughput increased significantly for low selectiv-
ities. For θ = 0.03 the throughput oscillated around 16–19 MB/s, resulting in an
average speedup of 3.3. Notice that the throughput of the lazy DFA with a SIX

11http://www.nitf.org/site/nitf-documentation/.
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Fig. 14. Throughput improvement from the SIX (a), and the effect of decreasing the SIX size by
deleting “small” XML elements (b).

was higher in all cases, even significantly higher than the parser’s throughput,
which was around 6.8 MB/s. This was because the SIX allowed large portions of
the XML document to be skipped entirely, and thus could be faster than parsing
the entire document.

Next, we measured how much we could decrease the SIX by removing en-
tries corresponding to small XML elements. Reducing the size is important for
a stream index, since it competes for network bandwidth with the data stream.
Figure 14(b) shows the throughput as a function of the cutoff size for the XML el-
ements. The more elements were deleted from the SIX, the smaller the through-
put. However, the SIX size also decreased, and did so much more dramatically.
For example, at the 1k data point, when we deleted from the SIX all elements
whose size was ≤ 1k bytes, the throughput decreased to 14 MB/s from a high of
19 MB/s, but the size of the SIX decreased to a minuscule 898 bytes, from a high
of 6.7 KB. Thus we could reduce the SIX more than seven times, yet retain 73%
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of the benefit in the throughput. The explanation is that although the number
of elements that can be skipped decreases, their average size increases. In other
words, we only miss the short elements, which are not very useful to the SIX
anyway.

6.4 Discussion

Our experiments demonstrate clearly that the DFA technique is effective at
processing XML data at a high, sustained throughput. The most important
property is that the throughput remains constant as the number of XPath ex-
pressions in the workload increases. This makes the technique attractive for
applications that need to guarantee a certain throughput, independently of the
size of the workload.

The experiments also show that by computing the DFA lazily one avoids,
in most cases of practical interest, an exponential state explosion. We have
proven two theoretical upper bounds on the number of states of the lazy DFA.
Our experiments confirmed a small number of states in both cases. However,
the existence of “bad” cases, that is, data instance that might cause a state
explosion in the lazy DFA, is not completely ruled out. One can generate such
XML instances syntheticaly, but it is unclear whether such instances exist in
practice: the only instance we found that caused the number of states to grow
into the tens of thousands was treebank, whose complex structure is specific to
Natural Language, and is not typical in XML data. Still, it is wise to implement
a safety valve in a lazy DFA processor, for example, by deleting all states and
restarting from the initial state when it runs out of memory.

On the downside, our experiments have pointed out two limitations in our
current implementation of the lazy DFA: a rather high warmup cost, and large
memory consumption by the NFA states. We discuss here both limitations and
their possible solutions.

6.4.1 Warmup. First, let us address the high cost of the warmup phase.
During this phase the lazy DFA acts precisely like an NFA, only it has to mem-
orize all states it sees. Currently, our implementation of the NFA is very simple,
without any optimizations, and this leads to a high warmup cost. In contrast,
YFilter consists of an optimized version of the NFA, and it runs much faster than
the lazy DFA during warmup. YFilter first constructs an NFA for each XPath
expressions in the workload, then identifies common prefixes and eliminates
them. For example, if given the two expressions /a//b/*/a//c and /a//b/*/a/c,
YFilter would optimize the NFA to share states and transitions for their com-
mon prefix /a//b/*/a, and only branch at the /c and //c transitions. When
extended to large workloads, this optimization results in significant space and
time savings over a naive NFA approach. The solution here is to apply the same
optimization to the NFA used by the lazy DFA. It suffices to replace the currently
naive NFA with YFilter’s optimized NFA, and leave the rest of the lazy DFA
unchanged. This would speed up the warmup phase considerably, making it
comparable to YFilter, and would not affect the throughput in the stable phase.

With or without optimizations, the manipulation of the NFA tables is ex-
pensive, and we have put a lot of thought into their implementation. There

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.



780 • T. J. Green et al.

are three operations done on NFA tables: create, insert, and compare. To il-
lustrate their complexity, consider an example where the lazy DFA ends up
having 10,000 states, each with an NFA table with 30,000 entries, and that the
alphabet � has 50 symbols. Then, during the warmup phase we need to create
50 × 10, 000 = 500, 000 new sets; insert 30, 000 NFA states in each set; and
compare, on average, 500, 000 × 10, 000/2 pairs of sets, of which only 490,000
comparisons return true, and the others return false. We found that imple-
menting sets as sorted arrays of pointers offered the best overall performance.
An insertion takes O(1) time, because we insert at the end, and sort the array
when we finish all insertions. We compute a hash value (signature) for each
array, and thus comparisons with negative answers take O(1) in virtually all
cases.

6.4.2 Memory. Second, we discuss the high memory consumption of the
lazy DFA. As our experiments showed, this is due to the NFA tables, not the
number of states in the lazy DFA. There are several possible approaches to
address this, but studying their effectiveness remains part of future work. The
simplest one is to adopt the YFilter optimizations as explained above: in addi-
tion to speeding up the warmup phase, this can also decrease the average size of
the NFA tables. A second approach is to delete the NFA tables from “completed”
DFA states. A completed DFA state is one in which all its transitions have al-
ready been expanded. The NFA table in a DFA state is only needed when a
new transition is followed, in order to construct the new destination DFA state.
Once all such transitions have been expanded, there is no more need for the
NFA table.

We notice however that, when run on smaller workloads, the lazy DFA uses
far less memory than many other systems. Peng and Chawathe [2003] evaluated
the throughput and the memory usage of seven systems, including the XML
Toolkit (which is based on the lazy DFA and is described here in Section 7). In
their evaluation, the XML Toolkit used by far the least amount of memory, in
some cases by several orders of magnitude.

Finally, we discuss here the effectiveness of the SIX. Like any index, it only
benefits queries or workloads that retrieve only a very small portion of the data.
Our experiments showed the SIX to be effective for workload of 10,000, but on a
dataset where we decreased the selectivity artificially. In order to use the SIX in
an application like XML packet routine, one needs to cluster XPath expressions
into workloads in order to reduce the θ factor for each workload. When this is
possible, then the SIX can be very effective.

7. AN APPLICATION: THE XML TOOLKIT (XMLTK)

We describe here an application of our XPath processing techniques to a set of
tools for highly performant processing of large XML files. The XML Toolkit is
modeled after the Unix tools for processing text files, and is available online at
http://xmltk.sourceforge.net.

The tools currently in the XML Toolkit are summarized in Figure 15. Every
tool inputs/outputs XML data via standard i/o, except file2xml which takes a
directory as an input and outputs XML to the standard output.
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Fig. 15. Current tools in the XML Toolkit.

The xsort tool is by far the most complex one and we describe it in more
detail. The others are briefly illustrated in the electronic appendix, but we note
that most can be used in quite versatile ways [Avila-Campillo et al. 2002]. When
illustrating the tools we will refer to the DBLP database [Ley n.d.]. We used a
dataset with 256,599 bibliographic entries.

7.1 Sorting

The command below sorts the entries in the file dbpl.xml in ascending order of
their year of publication12:

xsort -c /dblp -e * -k year/text() dblp.xml > sorted-dblp.xml.

The first argument, -c, is an XPath expression that defines the context: this
is the collection under which we are sorting: in our example this matches the
root element, dblp. The second argument, -e, specifies the items to be sorted
under the context: on the DBLP data this matches elements like the book,
inproceedings, article, etc. Finally, the last argument, -k, defines the key
on which we sort the items; in our example this is the text value of the year
element. The result of this command is the file sorted-dblp.xml which lists the
four publications in increasing order of the year. In case of publications with
the same years, the document order is preserved.

The command arguments for xsort are shown in Figure 15, with some de-
tails omitted. There can be several context arguments (-c), each followed by
several item arguments (-e), and each followed by several key arguments (-k).
The semantics is illustrated in Figure 16. First, all context nodes in the tree are
identified (denoted c in the figure): all nodes that are not below some context
node are simply copied to the output in unchanged order. Next, for each con-
text node, all nodes that match that context’s item expressions are identified

12Unix shells interpret the wild cards, so the command should be given like: xsort -c /dblp -e

"*" . . . . We omit the quotation marks throughout the article to avoid clutter.
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Fig. 16. Semantics of xsort. Under each context node the item nodes are sorted based on their key.
Any nodes that are “between” context nodes and item nodes are omitted from the output.

(denoted e1, e2, . . . in the figure), and a key value is computed for each of
them, by evaluating the corresponding key expressions. These item nodes are
then sorted according to the key values, and output in increasing order of the
keys. Notice that the nodes that are below a context but not below an item are
omitted from the output.

We illustrate below several examples of xsort.

7.1.1 Simple Sorting. We start with a simple example:

xsort -c /dblp -e */author -k text().

The answer has the following form, listing all author elements in alphabet-
ical order:

<dblp>
<author>...</author>
<author>...</author>
. . .

</dblp>

7.1.2 Sorting with Multiple Key Expressions. The following example illus-
trates the use of two keys. Assuming that author elements have a firstname
and a lastname subelement, it returns a list of all authors, sorted by lastname
first, then by firstname:

xsort -c /dblp -e */author
-k lastname/text() -k firstname/text().

7.1.3 Sorting with Multiple Item Expressions. When multiple -e argu-
ments are present, items are included in the result in the order of the command
line. For example the following command:

xsort -c /dblp -e article -e inproceedings -e book -e *

lists all articles first, then all inproceedings, then all books, then everything
else. Within each type of publication the input document order is preserved.

7.1.4 Sorting at Deeper Contexts. By choosing contexts other than the root
element, we can sort at different depths in the XML document. A common use
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Fig. 17. The query tree generated for the xsort command in Figure 15.

is to normalize the elements by listing their subelements in a standard order.
For example, consider:

xsort -c /dblp/* -e title -e author -e url -e *.

This keeps the order of the publication, but reorders the subelements, as follows:
first all title elements, then all author elements, then all year elements, and
then everything else.

Notice the use of the “catch all” element -e * at the end. We can omit it, and
include only selected fields in the result. For example:

xsort -c /dblp/* -e title -e author

retains only the title and author in each publication.
The following example sorts authors alphabetically within each publication:

xsort -c /dblp/* -e author -k text() -e *.

7.1.5 Sorting with Multiple Context Expressions. Finally, multiple context
arguments can be specified to sort according to different criteria. For example:

xsort -c /dblp/book -e publisher -e title -e *
-c /dblp/* -e title -e *

lists publisher then title first under books, and lists title first under all
other publications.

7.1.6 Using the XPath Processor. The XPath expressions in the command
line for each tool in the XML Toolkit are converted into a query tree. For il-
lustration, Figure 17 shows the query tree for the xsort command. The tree
has a root variable, one variable for each context, one variable for each item
under each context, and one variable for each key under each item under each
context. The sax f flag for all context events is false, because we do not need
the SAX events that are between contexts and items (these are omitted from
the output).
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Table I. Experiments with xsort: (a) a Global Sort, and (b) Multiple Local Sorts (Numbers are
running times in seconds. A “-” indicates ran out of memory.)

data size (KB) Xalan (sec) xsort (sec)

0.41 0.08 0.00
4.91 0.09 0.00

76.22 0.27 0.02
991.79 2.52 0.26

9,671.42 27.45 2.85
100,964.43 — 43.97

1,009,643.71 — 461.36

data size (KB) Xalan (sec) xsort (sec)

0.41 0.08 0.00
4.91 0.10 0.00

76.22 0.29 0.03
991.79 2.78 0.35

9,671.42 29.42 3.54
100,964.43 — 35.52

1,009,643.71 — 358.47

xsort -c /dblp -e * -k title/text() xsort -c /dblp/* -e title -e author -e year -e *

(a) (b)

7.1.7 Implementation. We briefly describe here the implementation of
xsort, which we designed to scale to very large XML files. It sorts one con-
text at a time, copying all other elements (not within a context) to the output
file in unchanged order. When sorting one context, it creates a global key for
each item to be sorted, consisting of the item identification number on the com-
mand line, the concatenation of all its keys, and its order number under the
current context (to make xsort stable). Next it uses multiway merge-join, with
as much main memory as available, and runs for at most two steps. The first
step produces the initial runs, using STL’s priority queue [ANDIS/ISO 1998],
and applying replacement selection [Graefe 1993]. This results in initial runs
that may be larger than the main memory: in particular, only one run is pro-
duced if the input is already sorted. If more than one run is generated then the
second step is executed, which merges all runs to produce the final output. With
today’s main memories, practically any XML file can be sorted in only two steps.
For example, with 128 MB of main memory and disk pages of 4 KB, we can sort
XML files of up to 4 TB [Garcia-Molina et al. 2000], and the file size increases
quadratically with the memory size. More practical considerations, such as a
hard limit of 2 GB on file sizes on most systems, or limits on the number of file
descriptors, are more likely to limit the size of the largest file we can sort.

7.1.8 Experiments. We evaluated xsort in two experiments,13 shown in
Table I. We compared xsort, with xalan, a publicly available XSLT processor.
For xsort, we limited the main memory window to 32 MB. The first represented
a global sort which reordered all bibliographic entries: xsort’s running time
increased linearly, with the exception of an extra factor of 2, when the data size
exceeded the memory size. The second table represents local sorts, with small
contexts. Here a single pass over the data was always sufficient, and the sorting
time increased linearly. The sorting time for xalan also increased linearly, but
was an order of magnitude longer than for xsort. Its processing model was
DOM-based.

13The platform is a Pentium III, 800-MHz, 256-kB cache, 128-MB RAM, 512-MB swap, running
RedHat Linux 2.2.18; the compiler is gcc version 2.95.2 with the “-O” command-line option, and
Xalan-c 1.3.
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8. RELATED WORK

The problem of evaluating large collections of XPath expressions on a stream
of XML documents was first introduced in Altinel and Franklin [2000], for a
publish-subscribe system called XFilter. Improved techniques have been dis-
cussed in XTrie [Chan et al. 2002] (based on a trie), our preliminary version
of this work [Green et al. 2003] (based on lazy DFAs), and YFilter [Diao et al.
2003] (based on optimized NFAs). In all methods, except ours, there is a space
guarantee that is proportional to the total size of all XPath expressions in the
workload, but no guarantee on the throughput. Our method makes the opposite
tradeoff.

Two optimizations of the lazy DFA were described in Onizuka [2003]. In one,
the XPath expressions are clustered according to their axis types (/ or //) at each
depth level. This was shown to reduce the number of DFA states: for example,
it was shown that by clustering into eight DFAs, memory usage decreased by
a factor of 40 and throughput only by a factor of 8. In the other optimization,
NFA tables are allowed to share common subsets, thus saving memory.

More recently, some systems have been described that process more complex
XPath expressions [Peng and Chawathe 2003; Gupta and Suciu 2003], or frag-
ments of XQuery [Ludaescher et al. 2002; Diao and Franklin 2003]. A complete
XQuery engine for streaming data was described in Florescu et al. [2003].

A related problem is the event detection problem described in Nguyen et al.
[2001]. Each event is a set of atomic events, and they trigger queries defined
by other sets of events. The technique used here is also a variation on the Trie
data structure.

Ives et al. [2002] described a general-purpose XML query processor that, at
the lowest level, uses an event based processing model, and showed how such a
model can be integrated with a highly optimized XML query processor. We were
influenced by Ives et al. [2002] in designing our stream processing model. Query
processors like that in Ives et al. [2002] can benefit from an efficient low-level
stream processor. Specializing regular expressions with respect to schemas is
described in Fernandez and Suciu [1998] and McHugh and Widom [1999].

The conversion problem from regular expression to an NFA was intensively
studied in the 1960s and 1970s: see Watson [1993] for a review. The most popu-
lar method is due to Thompson [1968] and has been adopted by most textbooks.

Empirical studies of the (eager) DFA construction time have been done in
the automaton community [Watson 1996], for NFAs with up to 30 to 50 states.

9. CONCLUSION

We have described two techniques for processing linear XPath expressions on
streams of XML packets: using a Deterministic Finite Automaton, and a Stream
IndeX (SIX). The main problem with the DFA is that the worst-case memory re-
quirement is exponential in the size of the XPath workload. We have presented
a combination of theoretical results and experimental validations that together
prove that the size of the lazy DFA remains small, for all practical purposes.
Some of the theoretical results offer insights into the structure of XPath expres-
sions that is of independent interest. We also validated lazy DFAs on streaming

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.



786 • T. J. Green et al.

XML data and showed that they indeed have a very high throughput, which
is independent of the number of XPath expressions in the workload. The SIX
is a simple technique that adds some small amount of binary data to an XML
document, which helps speed up a query processor by several factors. Finally,
we described a simple application of these XPath processing techniques: the
XML Toolkit, a collection of command-line tools for highly scalable XML data
processing.

Electronic Appendix. The Electronic Appendix for this article can be ac-
cessed in the ACM Digital Library. The appendix contains the proofs of many
theorems from the main body of the article, and a description of several tools
in the XML toolkit.
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