
The VLDB Journal (2008) 17:333–353
DOI 10.1007/s00778-007-0059-9

SPECIAL ISSUE PAPER

Implementing mapping composition

Philip A. Bernstein · Todd J. Green · Sergey Melnik ·
Alan Nash

Received: 17 February 2007 / Accepted: 10 April 2007 / Published online: 28 June 2007
© Springer-Verlag 2007

Abstract Mapping composition is a fundamental
operation in metadata driven applications. Given a mapping
over schemas σ1 and σ2 and a mapping over schemas σ2

and σ3, the composition problem is to compute an equivalent
mapping over σ1 and σ3. We describe a new composition
algorithm that targets practical applications. It incorporates
view unfolding. It eliminates as many σ2 symbols as possi-
ble, even if not all can be eliminated. It covers constraints
expressed using arbitrary monotone relational operators and,
to a lesser extent, non-monotone operators. And it intro-
duces the new technique of left composition. We describe
our implementation, explain how to extend it to support user-
defined operators, and present experimental results which
validate its effectiveness.

Keywords Model management · Schema mappings ·
Mapping composition

T.J. Green and A. Nash’s work was performed during an internship at
Microsoft Research.
A preliminary version of this work was published in the VLDB 2006
conference proceedings.

P. A. Bernstein (B) · S. Melnik
Microsoft Research, Redmond, WA, USA
e-mail: philbe@microsoft.com

S. Melnik
e-mail: melnik@microsoft.com

T. J. Green
University of Pennsylvania, Philadelphia, PA, USA
e-mail: tjgreen@cis.upenn.edu

A. Nash
IBM Almaden Research Center,
San Jose, CA, USA
e-mail: anash@us.ibm.com

1 Introduction

A mapping is a relationship between the instances of two
schemas. Some common types of mappings are relational
queries, relational view definitions, global-and-local-as-view
(GLAV) assertions, XQuery queries, and XSL transforma-
tions. The manipulation of mappings is at the core of many
important data management problems, such as data integra-
tion, database design, and schema evolution. Hence, general-
purpose algorithms for manipulating mappings have broad
application to data management.

Data management problems like those above often require
that mappings be composed. The composition of a mapping
m12 between schemas σ1 and σ2 and a mapping m23 between
schemas σ2 and σ3 is a mapping between σ1 and σ3 that cap-
tures the same relationship between σ1 and σ3 as m12 and
m23 taken together.

Given that mapping composition is useful for a variety
of database problems, it is desirable to develop a general-
purpose composition component that can be reused in many
application settings, as was proposed in [1,2]. This paper
reports on the development of such a component, an imple-
mentation of a new algorithm for composing mappings be-
tween relational schemas. Compared to past approaches, the
algorithm handles more expressive mappings, makes a best-
effort when it cannot obtain a perfect answer, includes several
new heuristics, and is designed to be extensible.

1.1 Applications of mapping composition

Composition arises in many practical settings. In data
integration, a query needs to be composed with a view
definition. If the view definition is expressed using global-as-
view (GAV), then this is an example of composing two func-
tional mappings: a view definition that maps a database to a

123



334 P. A. Bernstein et al.

view, and a query that maps a view to a query result. The
standard approach is view unfolding, where references to the
view in the query are replaced by the view definition [9]. View
unfolding is simply function composition, where a function
definition (i.e., the body of the view) is substituted for refer-
ences to the function (i.e., the view schema) in the query.

In peer-to-peer data management, composition is used to
support queries and updates on peer databases. When two
peer databases are connected through a sequence of map-
pings between intermediate peers, these mappings can be
composed to relate the peer databases directly. In Piazza
[10], such composed mappings are used to reformulate XML
queries. In the Orchestra collaborative data sharing sys-
tem [11], updates are propagated using composed mappings
to avoid materializing intermediate relations.

A third example is schema evolution, where a schema σ1

evolves to become a schema σ ′
1. The relationship between σ ′

1
and σ1 can be described by a mapping. After σ1 has evolved,
any existing mappings involving σ1, such as a mapping from
σ1 to schema σ2, must now be upgraded to a mapping from
σ ′

1 to σ2. This can be done by composing the σ ′
1–σ1 mapping

with the σ1–σ2 mapping. Depending on the application, one
or both of these mappings may be non-functional, in which
case composing mappings is no longer simply function com-
position.

A different schema evolution problem arises when an
initial schema σ1 is modified by two independent design-
ers, producing schemas σ2 and σ3. To merge them into a
single schema, we need a mapping between σ2 and σ3 that
describes their overlapping content [3,8]. This σ2–σ3 map-
ping can be obtained by composing the σ1–σ2 and σ1–σ3

mappings. Even if the latter two mappings are functions, one
of them needs to be inverted before they can be composed.
Since the inverse of a function may not be a function, this
too entails the composition of non-functional mappings.

Finally, consider a database design process that evolves
a schema σ1 via a sequence of incremental modifications.
This produces a sequence of mappings between successive
versions of the schema, from σ1 to σ2, then to σ3, and so
forth, until the desired schema σn is reached. At the end of
this process, a mapping from σ1 to the evolved schema σn is
needed, for example, as input to the schema evolution sce-
narios above. This mapping can be obtained by composing
the mappings between the successive versions of the schema.
The following example illustrates this last scenario.

Example 1 Consider a schema editor, in which the designer
modifies a database schema, resulting in a sequence of
schemas with mappings between them. She starts with the
schema σ1

Movies(mid, name, year, rating, genre, theater)

where mid means movie identifier. The designer decides that
only 5-star movies and no ‘theater’ or ‘genre’ should be

present in the database; she edits the table obtaining the
following schema σ2 and mapping m12:

FiveStarMovies(mid, name, year)

πmid,name,year(σrating=5(Movies)) ⊆ FiveStarMovies

To improve the organization of the data, the designer then
splits the FiveStarMovies table into two tables, resulting in
a new schema σ3 and mapping m23

Names(mid, name) Years(mid, year)

πmid,name,year(FiveStarMovies) ⊆ Names �� Years

The system composes mappings m12 and m23 into a new
mapping m13:

πmid,name(σrating=5(Movies)) ⊆ Names

πmid,year(σrating=5(Movies)) ⊆ Years

With this mapping, the designer can now migrate data from
the old schema to the new schema, reformulate queries posed
over one schema to equivalent queries over the other schema,
etc.

1.2 Related work

Mapping composition is a challenging problem. Madhavan
and Halevy [5] showed that the composition of two given
mappings expressed as GLAV formulas may not be express-
ible in a finite set of first-order constraints. Fagin et al. [4]
showed that the composition of certain kinds of first-order
mappings may not be expressible in any first-order language,
even by an infinite set of constraints. That is, that language
is not closed under composition. Nash et al. [7] showed that
for certain classes of first-order languages, it is undecidable
to determine whether there is a finite set of constaints in the
same language that represents the composition of two given
mappings. These results are sensitive to the particular class
of mappings under consideration. But in all cases the map-
ping languages are first-order and are therefore of practical
interest.

In [4], Fagin et al. introduced a second-order mapping
language that is closed under composition, namely second-
order source-to-target tuple-generating dependencies. A sec-
ond-order language is one that can quantify over function
and relation symbols. A tuple-generating dependency spec-
ifies an inclusion of two conjunctive queries, Q1 ⊆ Q2. It
is called source-to-target when Q1 refers only to symbols
from the source schema and Q2 refers only to symbols from
the target schema. The second-order language of [4] uses
existentially quantified function symbols, which essentially
can be thought of as Skolem functions. Fagin et al. present a

123



Implementing mapping composition 335

composition algorithm for this language and show it can have
practical value for some data management problems, such as
data exchange. However, using it for that purpose requires a
custom implementation, since the language of second-order
tuple-generating dependencies is not supported by standard
SQL-based database tools.

Yu and Popa [13] considered mapping composition for
second-order source-to-target constraints over nested rela-
tional schemas in support of schema evolution. They pre-
sented a composition algorithm similar to the one in [4], with
extensions to handle nesting, and with signficant attention to
minimizing the size of the result. They reported on a set of
experiments using mappings on both synthetic and real life
schemas, to demonstrate that their algorithm is fast and is
effective at minimizing the size of the result.

Nash et al. [7] studied the composition of first-order
constraints that are not necessarily source-to-target. They
consider dependencies that can express key constraints and
inclusions of conjunctive queries Q1 ⊆ Q2 where Q1 and
Q2 may reference symbols from both the source and target
schema. They do not allow existential quantifiers over func-
tion symbols. The composition of constraints in this language
is not closed and determining whether a composition result
exists is undecidable. Nevertheless, they gave an algorithm
that produces a composition, if it halts (which it may not do).

Like Nash et al. [7], we explore the mapping composi-
tion problem for constraints that are not restricted to being
source-to-target. Our algorithm strictly extends that of Nash
et al. [7], which in turn strictly extends that of Fagin et al. [4]
for source-to-target embedded dependencies. If the input is
a set of source-to-target embedded dependencies, our algo-
rithm behaves similarly to that in [4], except that as in [7] we
also attempt to express the result as embedded dependencies
through a deskolemization step. It is known from results in
[4] that such a step can not always succeed. Furthermore, we
also apply a “left-compose” step which allows the algorithm
to handle mappings on which the algorithm in [7] fails.

1.3 Contributions

Given the inherent difficulty of the problem and limitations of
past approaches, we recognized that compromises and spe-
cial features would be needed to produce a mapping compo-
sition algorithm of practical value. The first issue was which
language to choose.

Algebra-based rather than logic-based. We wanted our
composition algorithm to be directly usable by existing data-
base tools. We therefore chose a relational algebraic lan-
guage: Each mapping is expressed as a set of constraints, each
of which is either a containment or equality of two relational
algebraic expressions. This language extends the algebraic
dependencies of [12]. Each constraint is of the form E1 =
E2 or E1 ⊆ E2 where E1 and E2 are arbitrary relational

expressions containing not only select, project, and join but
possibly many other operators. Calculus-based languages
have been used in all past work on mapping composition
we know of. We chose relational algebra because it is the
language implemented in all relational database systems and
most tools. It is therefore familiar to the developers of such
systems, who are the intended users of our component. It also
makes it easy to extend our language simply by allowing the
addition of new operators. Notice that the relational operators
we handle are sufficient to express embedded dependencies.
Therefore, the class of mappings which our algorithm accepts
includes embedded dependencies and, by allowing additional
operators such as set difference, goes beyond them.

Eliminates one symbol at a time. Our algorithm for com-
posing these types of algebraic mappings gives a partial solu-
tion when it is unable to find a complete one. The heart of
our algorithm is a procedure to eliminate relation symbols
from the intermediate signature σ2. Such elimination can be
done one symbol at a time. Our algorithm makes a best effort
to eliminate as many relation symbols from σ2 as possible,
even if it cannot eliminate all of them. By contrast, if the
algorithm in [7] is unable to produce a mapping over σ1 and
σ3 with no σ2-symbols, it simply runs forever or gives up. In
some cases it may be better to eliminate some symbols from
σ2 successfully, rather than insist on either eliminating all of
them or failing. Thus, the resulting mapping may be over σ1,
σ ′

2, and σ3, where σ ′
2 is a subset of σ2 instead of over just σ1

and σ3.
To see the value of this best-effort approach, consider a

composition that produces a mapping m that contains a σ2-
symbol S. If m is later composed with another mapping, it
is possible that the latter composition can eliminate S. (We
will see examples of this later, in our experiments.) Also, the
inability to eliminate S may be inherent in the given map-
pings. For example, S may be involved in a recursive com-
putation that cannot be expressed purely in terms of σ1 and
σ3 such those of Theorem 1 in [7]:

R ⊆ S, S = tc(S), S ⊆ T

where σ1 = {R}, σ2 = {S}, σ3 = {T } with R, S, T binary
and where the middle constraint says that S is transitively
closed. In this case, S cannot be eliminated, but is definable
as a recursive view on R and can be added to σ1. To use the
mapping, those non-eliminated σ2-symbols may need to be
populated as intermediate relations that will be discarded at
the end. In this example this involves low computational cost.
In many applications it is better to have such an approxima-
tion to a desired composition mapping than no mapping at
all. Moreover, in many cases the extra cost associated with
maintaining the extra σ2 symbols is low.

Tolerance for unknown or partially known operators.
Instead of rejecting an algebraic expression because it
contains unknown operators which we do not know how to

123



336 P. A. Bernstein et al.

handle, our algorithm simply delays handling such operators
as long as possible. Sometimes, it needs no knowledge at
all of the operators involved. This is the case, for example,
when a subexpression that contains an unknown operator can
be replaced by another expression. At other times, we need
only partial knowledge about an operator. Even if we do not
have the partial knowledge we need, our algorithm does not
fail globally, but simply fails to eliminate one or more sym-
bols that perhaps it could have eliminated if it had additional
knowledge about the behavior of the operator.

Use of monotonicity. One type of partial knowledge that
we exploit is monotonicity of operators. An operator is mono-
tone in one of its relation symbol arguments if, when tuples
are added to that relation, no tuples disappear from its output.
For example, select, project, join, union, and semijoin are all
monotone. Set difference (e.g., R – S) and left outerjoin are
monotone in their first argument (R) but not in their second
(S). Our key observation is that when an operator is monotone
in an argument, that argument can sometimes be replaced by
a expression from another constraint. For example, if we have
E1 ⊆ R and E2 ⊆ S, then in some cases it is valid to replace
R by E1 in R − S, but not to replace S by E2. Athough exist-
ing algorithms only work with select project, join and union,
this observation enables our algorithm to handle outerjoin,
set difference, and anti-semijoin. Moreover, our algorithm
can handle nulls and bag semantics in many cases.

Normalization and denormalization. We call left-
normalization the process of bringing the constraints to a
form where a relation symbol S that we are trying to elimi-
nate appears in a single constraint alone on the left. The result
is of the form S ⊆ E where E is an expression. We define
right-normalization similarly. Normalization may introduce
“pseudo-operators” such as Skolem functions which then
need to be eliminated by a denormalization step. Currently
we do not do much left-normalization. Our right-normali-
zation is more sophisticated and, in particular, can handle
projections by Skolemization. The corresponding denormal-
ization is very complex. An important observation here is that
normalization and denormalization are general steps which
may possibly be extended on an operator-by-operator basis.

Left compose. One way to eliminate a relation symbol S is
to replace S’s occurrences in some constraints by the expres-
sion on the other side of a constraint that is normalized for
S. There are two versions of this replacement, right com-
pose and left compose. In right compose, we use a constraint
E ⊆ S that is right-normalized for S and substitute E for S
on the left side of a constraint that is monotonic in S, such as
transforming R × S ⊆ T into R × E ⊆ T , thereby eliminat-
ing S from the constraint. Right composition is an extension
of the algorithms in [4,7]. We also introduce left compose,
which handles some additional cases where right compose
fails. Suppose we have the constraints E2 ⊆ M(S) and S ⊆
E1, where M(S) is an expression that is monotonic in S

but which we either do not know how to right-normalize or
which would fail to right-denormalize. Then left compose
immediately yields E2 ⊆ M(E1).

Extensibility and modularity. Our algorithm is extensi-
ble by allowing additional information to be added separately
for each operator in the form of information about monoto-
nicity and rules for normalization and denormalization. Many
of the steps are rule-based and implemented in such a way
that it is easy to add rules or new operators. Therefore, our
algorithm can be easily adapted to handle additional opera-
tors without specialized knowledge about its overall design.
Instead, all that is needed is to add new rules.

Experimental study. We implemented our algorithm and
ran experiments to study its behavior. We used composi-
tion problems drawn from the recent literature [4,6,7], and
a set of large synthetic composition tasks, in which the map-
pings were generated by composing sequences of elementary
schema modifications. We used these mappings to test the
scalability and effectiveness of our algorithm in a systematic
fashion. Across a range of composition tasks, it eliminated
50–100% of the symbols and usually ran in under a second.
We see this study as a step toward developing a benchmark
for composition algorithms.

The rest of the paper is organized as follows. Section 2
presents notation needed to describe the algorithm. Section 3
describes the algorithm itself, starting with a high-level
description and then drilling into the details of each step, one-
by-one. Section 4 presents our experimental results. Section 5
is the conclusion.

2 Preliminaries

We adopt the unnamed perspective which references the attri-
butes of a relation by index rather than by name. A relational
expression is an expression formed using base relations and
the basic operators union ∪, intersection ∩, cross product ×,
set difference -, projection π and selection σ as follows. The
name S of a relation is a relational expression. If E1 and E2

are relational expressions, then so are

E1 ∪ E2 E1 ∩ E2 E1 × E2

E1 − E2 σc(E1) πI (E1)

where c is an arbitrary boolean formula on attributes (iden-
tified by index) and constants and I is a list of indexes. The
meaning of a relational expression is given by the standard
set semantics. To simplify the presentation in this paper, we
focus on these basic six relational operators and view the join
operator �� as a derived operator formed from ×, π , and σ .
We also allow for user-defined operators to appear in expres-
sions. The basic operators should therefore be considered as

123



Implementing mapping composition 337

those which have “built-in” support, but they are not the only
operators supported.

The basic operators differ in their behavior with respect
to arity. Assume expression E1 has arity r and expression E2

has arity s. Then the arity of E1 ∪ E2, E1 ∩ E2, and E1 − E2

for r = s is r ; the arity of E1 × E2 is r +s; the arity of σc(E1)

is r ; and the arity of πI (E1) is |I |. We will sometimes denote
the arity of an expression E by arity(E).

We define an additional operator which may be used in
relational expressions called the Skolem function. A Skolem
function has a name and a set of indexes. Let f be a Skolem
function on indexes I . Then f I (E1) is an expression of arity
r + 1. Intuitively, the meaning of the operator is to add an
attribute to the output, whose values are some function f of
the attribute values identified by the indexes in I . We do not
provide a formal semantics here. Skolem functions are used
internally as a technical device in Sect. 3.5.

We consider constraints of two forms. A containment
constraint is a constraint of the form E1 ⊆ E2, where E1

and E2 are relational expressions. An equality constraint is
a constraint of the form E1 = E2, where E1 and E2 are rela-
tional expressions. We denote sets of constraints with capital
Greek letters and individual constraints with lowercase Greek
letters.

A signature is a function from a set of relation symbols to
positive integers which give their arities. In this paper, we use
the terms signature and schema synonymously. We denote
signatures with the letter σ . (We denote relation symbols
with uppercase Roman letters R, S, T , etc.) We sometimes
abuse notation and use the same symbol σ to mean simply
the domain of the signature (a set of relations).

An instance of a database schema is a database that con-
forms to that schema. We use uppercase Roman letters A, B,
C , etc to denote instances. If A is an instance of a database
schema containing the relation symbol S, we denote by S A

the contents of the relation S in A.
Given a relational expression E and a relational symbol

S, we say that E is monotone in S if whenever instances A
and B agree on all relations except S and S A ⊆ SB , then
E(A) ⊆ E(B). In other words, E is monotone in S if add-
ing more tuples to S only adds more tuples to the query
result. We say that E is anti-monotone in S if whenever A
and B agree on all relations except S and S A ⊆ SB , then
E(A) ⊇ E(B).

The active domain of an instance is the set of values that
appear in the instance. We allow the use of a special relational
symbol D which denotes the active domain of an instance. D
can be thought of as a shorthand for the relational expression
⋃n

i=1
⋃ai

j=1 π j (Si ) where σ = {S1, . . . , Sn} is the signature
of the database and ai = arity(Si ). We also allow the use of
another special relation in expressions, the empty relation ∅.

An instance A satisfies a containment constraint E1 ⊆
E2 if E1(A) ⊆ E2(A). An instance A satisfies an equality

constraint E1 = E2 if E1(A) = E2(A). We write A |� ξ

if the instance A satisfies the constraint ξ and A |� � if A
satisfies every constraint in �. Note that A |� E1 = E2 iff
A |� E1 ⊆ E2 and A |� E2 ⊆ E1.

Example 2 The constraint that the first attribute of a binary
relation S is the key for the relation, which can be expressed in
a logic-based setting as the equality-generating dependency
S(x, y), S(x, z) → y = z may be expressed in our setting as
a containment constraint by making use of the active domain
relation

π24(σ1=3(S2)) ⊆ σ1=2(D2)

where S2 is short for S × S and D2 is short for D × D.

A mapping is a binary relation on instances of database
schemas. We reserve the letter m for mappings. Given a class
of constraints L, we associate to every expression of the form
(σ1, σ2, �12) the mapping

{〈A, B〉 : (A, B) |� �12}.
That is, it defines which instances of two schemas correspond
to each other. Here �12 is a finite subset of L over the signa-
ture σ1 ∪ σ2, σ1 is the input (or source) signature, σ2 is the
output (or target) signature, A is a database with signature σ1

and B is a database with signature σ2. We assume that σ1 and
σ2 are disjoint. (A, B) is the database with signature σ1 ∪ σ2

obtained by taking all the relations in A and B together. Its
active domain is the union of the active domains of A and B.
In this case, we say that m is given by (σ1, σ2, �12).

Given two mappings m12 and m23, the composition m12 ◦
m23 is the unique mapping

{〈A, C〉 : ∃B〈A, B〉 ∈ m12 and 〈B, C〉 ∈ m23}.
Assume two mappings m12 and m23 are given by (σ1, σ2,

�12) and (σ2, σ3, �23). The mapping composition problem
is to find �13 such that m12 ◦ m23 is given by (σ1, σ3, �13).

Given a finite set of constraints � over some schema σ

and another finite set of constraints �′ over some subschema
σ ′ of σ we say that � is equivalent to �′, denoted � ≡ �′, if

1. (Soundness) Every database A over σ satisfying �

when restricted to only those relations in σ ′ yields a
database A′ over σ ′ that satisfies �′ and

2. (Completeness) Every database A′ over σ ′ satisfying
the constraints �′ can be extended to a database A over
σ satisfying the constraints � by adding new relations
in σ − σ ′ (not limited to the domain of A′).

Example 3 The set of constraints

� := {R ⊆ S, S ⊆ T }
is equivalent to the set of constraints

�′ := {R ⊆ T }.

123



338 P. A. Bernstein et al.

Soundness. Given an instance A which satisfies �, we must
have R A ⊆ S A ⊆ T A and therefore R A ⊆ T A so if A′
consists of the relations R A and T A, then A′ satisfies �′.
Completeness. Given an instance A′ which satisfies �′, we
must have R A′ ⊆ T A′

. If we make A consist of the relations
R A′

and T A′
and we set S A := R A′

or S A := T A′
, then

R A ⊆ S A ⊆ T A and therefore A satisfies �.

Given this definition, we can restate the composition prob-
lem as follows. Given a set of constraints �12 over σ1∪σ2 and
a set of constraints �23 over σ2 ∪σ3, find a set of constraints
�13 over σ1 ∪ σ3 such that �12 ∪ �23 ≡ �13.

3 Algorithm

3.1 Overview

At the heart of the composition algorithm (which appears at
the end of this subsection), we have the procedure Eliminate
which takes as input a finite set of constraints � over some
schema σ that includes the relation symbol S and which pro-
duces as output another finite set of constraints �′ over σ −
{S} such that �′ ≡ �, or reports failure to do so. On success,
we say that we have eliminated S from �.

Given such a procedure Eliminate we have several
choices on how to implement Compose, which takes as input
three schemas σ1, σ2, and σ3 and two sets of constraints �12

and �23 over σ1 ∪ σ2 and σ2 ∪ σ3 respectively. The goal of
Compose is to return a set of constraints �13 over σ1 ∪ σ3.
That is, its goal is to eliminate the relation symbols from σ2.
Since this may not be possible, we aim at eliminating from
� := �12 ∪ �23 a set S of relation symbols in σ2 which is
as large as possible or which is maximal under some other
criterion than the number of relation symbols in it. There are
many choices about how to do this, but we do not explore
them in this paper. Instead we simply follow the user-speci-
fied ordering on the relation symbols in σ2 and try to eliminate
as many as possible in that order.1

We therefore concentrate in the remainder of Sect. 3 on
Eliminate. It consists of the following three steps, which
we describe in more detail in following sections:

1. View unfolding
2. Left compose
3. Right compose

1 Note that which symbols will be eliminated will in general depend
on this user-defined order. Consider, for example, the constraints in the
proof of Theorem 1 in [7] plus the additional view constraint S1 = S2:
exactly one of S1 or S2 can be eliminated and this will depend on the
order.

Each of the steps 1, 2, and 3 attempts to remove S from �.
If any of them succeeds, Eliminate terminates successfully.
Otherwise, Eliminate fails.

All three steps work in essentially the same way: given a
constraint that contains S alone on one side of a constraint
and an expression E on the other side, they substitute E for
S in all other constraints.

Example 4 Here are three one-line examples of how each of
these three steps transforms a set of two constraints into an
equivalent set with just one constraint in which S has been
eliminated:

1. S = R × T , U − S ⊆ U ⇒ U − (R × T ) ⊆ U
2. R ⊆ S ∩ V , S ⊆ T × U ⇒ R ⊆ (T × U ) ∩ V
3. π21(T ) ⊆ S, S − U ⊆ R ⇒ π21(T ) − U ⊆ R

In case 1, we use view unfolding to replace S with R × T .
In case 2, we use left compose to replace S with T ×U . Notice
that this is correct because S ∩ V is monotone in S (we dis-
cuss monotonicity below). Finally, in case 3, we use right
compose to replace S with π21(T ). This is correct because
S − U is monotone in S.

To perform such a substitution we need an expression that
contains S alone on one side of a constraint. This holds in the
example, but is typically not the case. Another key feature of
our algorithm is that it performs normalization as necessary
to put the constraints into such a form. In the case of left
and right compose, we also need all other expressions that
contain S to be monotone in S.

Example 5 We can normalize the constraints

S − σ1=2(U ) ⊆ R, π14(T × U ) ⊆ S ∩ V

by splitting the second one in two to obtain

S − σ1=2(U ) ⊆ R, π14(T × U ) ⊆ S, π14(T × U ) ⊆ V .

With the constraints in this form, we can eliminate S using
right composition, obtaining

π14(T × U ) − σ1=2(U ) ⊆ R, π14(T × U ) ⊆ V .

We now give a more detailed technical overview of the
three steps we have just introduced. To simplify the discus-
sion below, we take �0 := � to be the input to Eliminate
and �s to be the result after step s is complete. We use E, E1,
E2 to stand for arbitrary relational expressions and M(S) to
stand for a relational expression monotonic in S.

1. View unfolding. We look for a constraint ξ of the form
S = E1 in �0 where E1 is an arbitrary expression that
does not contain S. If there is no such constraint, we set
�1 := �0 and go to step 2. Otherwise, to obtain �1 we
remove ξ and replace every occurrence of S in every

123



Implementing mapping composition 339

other constraint in �0 with E1. Then �1 ≡ �0. Sound-
ness is obvious and to show completeness it is enough
to set S = E1.

2. Left compose. If S appears on both sides of some
constraint in �1, we exit. Otherwise, we convert every
equality constraint E1 = E2 that contains S into two
containment constraints E1 ⊆ E2 and E2 ⊆ E1 to ob-
tain �′

1.
Next we check �′

1 for right-monotonicity in S. That
is, we check whether every expression E in which S
appears to the right of a containment constraint is mono-
tonic in S. If this check fails, we set �2 := �1 and go
to step 3.
Next we left-normalize every constraint in �′

1 for S to
obtain �′′

1 . That is, we replace all constraints in which
S appears on the left with a single equivalent constraint
ξ of the form S ⊆ E1. That is, S appears alone on the
left in ξ . This is not always possible; if we fail, we set
�2 := �1 and go to step 3.
If S does not appear on the left of any constraint, then
we add to �′′

1 the constraint ξ : S ⊆ E1 and we set
E1 := Dr where r is the arity of S. Here D is a special
symbol which stands for the active domain. Clearly, any
S satisfies this constraint.
Now to obtain �′′′

1 from �′′
1 we remove ξ and for every

constraint in �′′
1 of the form E2 ⊆ M(S) where M is

monotonic in S, we put a constraint of the form E2 ⊆
M(E1) in �′′′

1 . We call this step basic left-composition.
Finally, to the extent that our knowledge of the opera-
tors allows us, we attempt to eliminate Dr (if introduced)
from any constraints, to obtain �2. For example E1∩Dr

becomes E1.
Then �2 ≡ �1. Soundness follows from monotonicity
since E2 ⊆ M(S) ⊆ M(E1) and to show completeness
it is enough to set S := E1.

3. Right compose. Right compose is dual to left-compose.
We check for left-monotonicity and we right-normalize
as in the previous step to obtain �′′

2 with a constraint ξ of
the form E1 ⊆ S. If S does not appear on the right of any
constraint, then we add to �′′

2 the constraint ξ : E1 ⊆ S
and set E1 := ∅. Clearly, any S satisfies this constraint.
In order to handle projection during the normalization
step we may introduce Skolem functions. For example
R ⊆ π1(S) where R is unary and S is binary becomes
f (R) ⊆ S. The expression f (R) is binary and denotes
the result of applying some unknown Skolem function f
to the expression R. The right-normalization step always
succeeds for select, project, and join, but may fail for
other operators. If we fail to normalize, we set �3 := �2

and we exit.
Now to obtain �′′′

2 from �′′
2 we remove ξ and for every

constraint in �′′
2 of the form M(S) ⊆ E2 where M is

monotonic in S, we put a constraint of the form M(E1) ⊆

E2 in �′′′
2 . We call this step basic right-composition.

Finally, to the extent that our knowledge of the opera-
tors allows us, we attempt to eliminate ∅ (if introduced)
from any constraints, to obtain �3. For example E1 ∪ ∅
becomes E1.
Then �′′′

2 ≡ �2. Soundness follows from monotonicity
since M(E1) ⊆ M(S) ⊆ E2 and to show completeness
it is enough to set S := E1.
Since during normalization we may have introduced
Skolem functions, we now need a right-denormalization
step to remove such Skolem functions. Following [7],
we call this part deskolemization. Deskolemization is
very complex and may fail. If it does, we set �3 := �2

and we exit. Otherwise, we set �3 to be the result of
deskolemization.
In a more general setting, right-denormalization may
take additional steps to remove auxiliary operators
introduced during right-normalization. Similarly, it is
possible that in the future we will have a left-denormal-
ization step to remove auxiliary operators introduced
during left-normalization. However, currently, right-
denormalization consists only of deskolemization.

Procedure ELIMINATE

Input: Signature σ

Constraints �

Relation Symbol S
Output: Constraints �′ over σ or σ − {S}

1. �′ := ViewUnfold(�, S). On success, return �′.
2. �′ := LeftCompose(�, S). On success, return �′.
3. �′ := RightCompose(�, S). On success, return �′.
4. Return � and indicate failure.

Procedure COMPOSE

Input: Signatures σ1, σ2, σ3

Constraints �12, �23

Relation Symbol S
Output: Signature σ satisfying σ1 ∪ σ3 ⊆ σ ⊆ σ1 ∪ σ2 ∪ σ3

Constraints � over σ

1. Set σ := σ1 ∪ σ2 ∪ σ3.
2. Set � = �12 ∪ �23.
3. For every relation symbol S ∈ σ2 do:
4. � := Eliminate(σ,�, S)

5. On success, set σ := σ − {S}.
6. Return σ,�.

Theorem 1 Algorithm Compose is correct.

Proof To show that the algorithm Compose is correct, it is
enough to show that algorithm Eliminate is correct. That is,
we must show that on input �, Eliminate returns either �

123



340 P. A. Bernstein et al.

or �′ from which S has been eliminated and such that �′ is
equivalent to �.

To show this, we show that every step preserves equiva-
lence. View unfolding preserves equivalence since it removes
the constraint S = E1 and replaces every occurrence of S in
the remaining constraints with E1. Soundness is obvious and
completeness follows from the fact that if �′ is satisfied, we
can set S to the value of E1 to satisfy �.

The transformation steps of left-compose clearly preserve
equivalence and the basic left-compose step removes the con-
straint S ⊆ E1 and replaces every other occurrence of S in
the remaining constraints with E1. Soundness follows from
monotonicity and transitivity of ⊆, since every constraint
of the form E2 ⊆ M(S) where M is an expression mono-
tonic in S is replaced by E2 ⊆ M(E1). Since S ⊆ E1,
monotonicity implies M(S) ⊆ M(E1) and transitivity of ⊆
implies E2 ⊆ M(E1). Completeness follows from the fact
that if �′ is satisfied, we can set S to the value of E1 to
satisfy �.

The soundness and completeness of right-compose are
proved similarly, except that we also rely on the proof of
correctness of the deskolemization algorithm in [7]. ��

3.2 View unfolding

The goal of the unfold views step is to eliminate S at an early
stage by applying the technique of view unfolding. It takes
as input a set of constraints �0 and a symbol S to be elimi-
nated. It produces as output an equivalent set of constraints
�1 with S eliminated (in the success case), or returns �0 (in
the failure case). The step proceeds as follows. We look for
a constraint ξ of the form S = E1 in �0 where E1 is an arbi-
trary expression that does not contain S. If there is no such
constraint, we set �1 := �0 and report failure. Otherwise,
to obtain �1 we remove ξ and replace every occurrence of
S in every other constraint in �0 with E1. Note that S may
occur in expressions that are not necessarily monotone in S,
or that contain user-defined operators about which little is
known. In either case, because S is defined by an equality
constraint, the result is still an equivalent set of constraints.
This is in contrast to left compose and right compose, which
rely for correctness on the monotonicity of expressions in S
when performing substitution.

Example 6 Suppose the input constraints are given by

S = R1 × R2, π14(R3 − S) ⊆ T1, T2 ⊆ T3 − σ2=3(S).

Then unfold views deletes the first constraint and substitutes
R1 × R2 for S in the second two constraints, producing

π14(R3 − (R1 × R2)) ⊆ T1, T2 ⊆ T3 − σ2=3(R1 × R2).

Note that in this example, neither left compose nor right com-
pose would succeed in eliminating S. Left compose would

fail because the expression T3−σ2=3(S) is not monotone in S.
Right compose would fail because the expressionπ14(R3−S)

is not monotone in S. Therefore view unfolding does indeed
give us some extra power compared to left compose and right
compose alone.

As noted above, there may not be any constraints of the
form S = E1. We will see below that for left and right com-
pose, we apply some normalization rules to attempt to get to
a constraint of the form S ⊆ E1 or E1 ⊆ S. Similarly, we
could apply some transformation rules here. For example,

× : E1 × E2 = E3 ↔ E1 = πI (E3), E2 = πJ (E3),

E3 = πI (E3) × πJ (E3)

⊆: S ⊆ E1, E1 ⊆ S ↔ S = E1

where in the first rule I = 1, . . . , arity(E1) and J =
arity(E1) + 1, . . . , arity(E1) + arity(E2).

However, we do not know of any rules for the other rela-
tional operators: ∪,∩,−, σ, π . Therefore we do not discuss
a normalization step for view unfolding (cf. Sects. 3.4.1 and
3.5.1).

3.3 Checking monotonicity

The correctness of performing substitution to eliminate a
symbol S in the left compose and right compose steps de-
pends upon the left-hand side (lhs) or right-hand side (rhs)
of all constraints being monotone in S. We describe here a
sound but incomplete procedure Monotone for checking
this property. Monotone takes as input an expression E and
a symbol S. It returns m if the expression is monotone in S,
a if the expression is anti-monotone in S, i if the expression
is independent of S (for example, because it does not con-
tain S), and u (unknown) if it cannot say how the expression
depends on S. For example, given the expression S × T and
symbol S as input, Monotone returns m, while given the
expression σc1(S) − σc2(S) and the symbol S, Monotone
returns u.

The procedure is defined recursively in terms of the six
basic relational operators. In the base case, the expression is
a single relational symbol, in which case Monotone returns
m if that symbol is S, and i otherwise. Otherwise, in the
recursive case, Monotone first calls itself recursively on
the operands of the top-level operator, then performs a sim-
ple table lookup based on the return values and the oper-
ator. For the unary expressions σ(E1) and π(E1), we have
that Monotone(σ (E1), S) = Monotone(π(E1), S) =
Monotone(E1, S) (in other words, σ and π do not affect
the monotonicity of the expression). Otherwise, for the binary
expressions E1 ∪ E2, E1 ∩ E2, E1 × E2, and E1 − E2, there
are sixteen cases to consider, corresponding to the possible
values of Monotone(E1, S) and Monotone(E2, S).

123



Implementing mapping composition 341

Table 1 Recursive definition of Monotone for the basic binary rela-
tional operators. In the top row, E1 abbreviates Monotone(E1, S), E2
abbreviates Monotone(E2, S), etc.

E1 E2 E1 ∪ E2, E1 − E2
E1 ∩ E2,
E1 × E2

m m m u

m i m m

m a u m

i m m a

i i i i

i a a m

a m u a

a i a a

a a a u

u any u u

any u u u

We give a couple of quick examples. We refer the reader
to Table 1 for a detailed listing of the cases.

Example 7

Monotone(E1, S) = m, Monotone(E2, S) = a

⇒ Monotone(E1 × E2, S) = u.

Monotone(E1, S) = i, Monotone(E2, S) = a

⇒ Monotone(E1 − E2, S) = m.

Note that ×, ∩, and ∪ all behave in the same way from
the point of view of Monotone, that is, Monotone(E1 ∪
E2, S) = Monotone(E1 ∩ E2, S) = Monotone(E1 ×
E2, S), for all E1, E2. Set difference –, on the other hand,
behaves differently than the others.

In order to support user-defined operators in Monotone,
we just need to know the rules regarding the monotonicity
of the operator in S, given the monotonicity of its oper-
ands in S. Once these rules have been added to the appro-
priate tables, Monotone supports the user-defined operator
automatically.

3.4 Left compose

Recall from Sect. 3.1 that left compose consists of four main
steps, once equality constraints have been converted to con-
tainment constraints. The first is to check the constraints
for right-monotonicity in S, that is, to check whether every
expression E in which S appears to the right of a containment
constraint is monotonic in S. Section 3.3 already described
the procedure for checking this. The other three steps are left
normalize, basic left compose, and eliminate domain relation.

In this section we describe those steps in more detail, and we
give some examples to illustrate their operation.

3.4.1 Left normalize

The goal of left normalize is to put the set of input constraints
in a form such that the symbol S to be eliminated appears on
the left of exactly one constraint, which is of the form S ⊆ E2.
We say that the constraints are then in left normal form. In
contrast to right normalize, left normalize does not always
succeed even on the basic relational operators. Nevertheless,
left composition is useful because it may succeed in cases
where right composition fails for other reasons. We give an
example of this in Sect. 3.4.2.

We make use of the following identities for containment
constraints in left normalize:

∪ : E1 ∪ E2 ⊆ E3 ↔ E1 ⊆ E3, E2 ⊆ E3

∩ : E1 ∩ E2 ⊆ E3 ↔ E1 ⊆ E3 ∪ (Dr − E2)

− : E1 − E2 ⊆ E3 ↔ E1 ⊆ E2 ∪ E3

π : πI (E1) ⊆ E2 ↔ E1 ⊆ πJ (E2 × Ds)

σ : σc(E1) ⊆ E2 ↔ E1 ⊆ E2 ∪ (Dr − σc(Dr ))

In the identities for ∩ and σ , r stands for arity(E2). In the
identity for π , s stands for arity(E1) − arity(E2) and J is
defined as follows: suppose I = i1, . . . , im and let im+1, . . . ,

in be the indexes of E1 not in I , n = arity(E1); then define
J := j1, . . . , jn where jik := k for 1 ≤ k ≤ n.

To each identity in the list, we associate a rewriting rule
that takes a constraint of the form given by the lhs of the iden-
tity and produces an equivalent constraint or set of constraints
of the form given by the rhs of the identity. For example, from
the identity for σ we obtain a rule that matches a constraint
of the form σc(E1) ⊆ E2 and rewrites it into equivalent
constraints of the form E1 ⊆ E2 ∪ (Dr − σc(Dr )). Note
that there is at most one rule for each operator. So to find
the rule that matches a particular expression, we need only
look up the rule corresponding to the topmost operator in the
expression.

We can assume that S is in E1 except in the case of set
difference. In the case of set difference if S is in E2 we can
still apply the rule which just removes S from the lhs.

Of the basic relational operators, the only one which may
cause left normalize to fail is cross product, for which we
do not know of an identity. One might be tempted to think
that the constraint E1 × E2 ⊆ E3 could be rewritten as
E1 ⊆ πI (E3), E2 ⊆ πJ (E3), where I = 1, . . . , arity(E1)

and J = arity(E1) + 1, . . . , arity(E1) + arity(E2). How-
ever, the following counterexample shows that this rewriting
is invalid:

Example 8 Let R, S be unary relations and let T be a
binary relation. Define the instance A to be R A := {1, 2},

123



342 P. A. Bernstein et al.

S A := {1, 2}, T A := {11, 22}. Then A |� {R ⊆ π1(T ), S ⊆
π2(T )}, but A �|� {R × S ⊆ T }.

In addition to the basic relational operators, left normalize
may be extended to handle user-defined operators by speci-
fying a user-defined rewriting rule for each such operator.

Left normalize proceeds as follows. Let �1 be the set of
input constraints, and let S be the symbol to be eliminated
from �1. Left normalize computes a set �′

1 of constraints
as follows. Set �1 := �1. We loop as follows, beginning at
i = 1. In the i th iteration, there are two cases:

1. If there is no constraint in �i that contains S on the lhs
in a complex expression, set �′

1 to be �i with all the
constraints containing S on the lhs collapsed into a sin-
gle constraint, which has an intersection of expressions
on the right. For example, S ⊆ E1, S ⊆ E2 becomes
S ⊆ E1 ∩ E2. If S does not appear on the lhs of any
expression, we add to �′

1 the constraint S ⊆ Dr where
r is the arity of S. Finally, return success.

2. Otherwise, choose some constraint ξ := E1 ⊆ E2,
where E1 contains S. If there is no rewriting rule for
the top-level operator in E1, set �′

1 := �1 and return
failure. Otherwise, set �i+1 to be the set of constraints
obtained from �i by replacing ξ with its rewriting, and
iterate.

Example 9 Suppose the input constraints are given by

R − S ⊆ T, π2(S) ⊆ U.

where S is the symbol to be eliminated. Then left normali-
zation succeeds and returns the constraints

R ⊆ S ∪ T, S ⊆ π21(U × D).

Example 10 Suppose the input constraints are given by

R × S ⊆ T, π2(S) ⊆ U.

Then left normalization fails for the first constraint, because
there is no rule for cross product.

Example 11 Suppose the input constraints are given by

R × T ⊆ S, U ⊆ π2(S).

Since there is no constraint containing S on the left, left
normalize adds the trivial constraint S ⊆ D2, producing

R × T ⊆ S, U ⊆ π2(S), S ⊆ D2.

3.4.2 Basic left compose

Among the constraints produced by left normalize, there is a
single constraint ξ := S ⊆ E1 that has S on its lhs. In basic
left compose, we remove ξ from the set of constraints, and
we replace every other constraint of the form E2 ⊆ M(S),

where M(S) is monotonic in S, with a constraint of the form
E2 ⊆ M(E1). This is easier to understand with the help of a
few examples.

Example 12 Consider the constraints from Example 9 after
left normalization:

R ⊆ S ∪ T, S ⊆ π21(U × D).

The expression S ∪ T is monotone in S. Therefore, we are
able to left compose to obtain

R ⊆ π21(U × D) ∪ T .

Note although the input constraints from Example 9 could
just as well be put in right normal form (by adding the triv-
ial constraint ∅ ⊆ S), right compose would fail, because the
expression R − S is not monotone in S. Thus left compose
does indeed give us some additional power compared to right
compose.

Example 13 We continue with the constraints from Example
11:

R × T ⊆ S, U ⊆ π2(S), S ⊆ D2.

We left compose and obtain

R × T ⊆ D2, U ⊆ π2(D2).

Note that the active domain relation D occurs in these con-
straints. In the next section, we explain how to eliminate it.

3.4.3 Eliminate domain relation

We have seen that left compose may produce a set of con-
straints containing the symbol D which represents the active
domain relation. The goal of this step is to eliminate D from
the constraints, to the extent that our knowledge of the opera-
tors allows, which may result in entire constraints disappear-
ing in the process as well. We use rewriting rules derived from
the following identities for the basic relational operators:

E1 ∪ Dr = Dr E1 ∩ Dr = E1

E1 − Dr = ∅ πI (Dr ) = D|I |

(We do not know of any identities applicable to cross prod-
uct or selection.) In addition, the user may supply rewriting
rules for user-defined operators, which we will make use of if
present. The constraints are rewritten using these rules until
no rule applies. At this point, D may appear alone on the
rhs of some constraints. We simply delete these, since a con-
straint of this form is satisfied by any instance. Note that we
do not always succeed in eliminating D from the constraints.
However, this is acceptable, since a constraint containing D
can still be checked.

123



Implementing mapping composition 343

Example 14 We continue with the constraints from
Examples 11 and 13:

R × T ⊆ D2, U ⊆ π2(D2).

First, the domain relation rewriting rules are applied, yielding

R × T ⊆ D2, U ⊆ D,

Then, since both of these constraints have the domain relation
alone on the rhs, we are able to simply delete them.

3.5 Right compose

Recall from Sect. 3.1 that right compose proceeds through
five main steps. The first step is to check that every expression
E that appears to the left of a containment constraint is mono-
tonic in S. The procedure for checking this was described in
Sect. 3.3. The other four steps are right normalize, basic right
compose, right-denormalize, and eliminate empty relations.
In this section, we describe these steps in more detail and
provide some examples.

3.5.1 Right normalize

Right normalize is dual to left normalize. The goal of right
normalize is to put the constraints in a form where S appears
on the rhs of exactly one constraint, which has the form E1 ⊆
S. We say that the constraints are then in right normal form.
We make use of the following identities for containment con-
straints in right normalization:

∪ : E1 ⊆ E2 ∪ E3 ↔ E1 − E3 ⊆ E2

↔ E1 − E2 ⊆ E3

∩ : E1 ⊆ E2 ∩ E3 ↔ E1 ⊆ E2, E1 ⊆ E3

× : E1 ⊆ E2 × E3 ↔ πI (E1) ⊆ E2, πJ (E1) ⊆ E2

–: E1 ⊆ E2 − E3 ↔ E1 ⊆ E2, E1 ∩ E3 ⊆ ∅

π : E1 ⊆ πI (E2) ↔ f J (E1) ⊆ πI ′(E2)

↔ πJ (E1) ⊆ E2

σ : E1 ⊆ σc(E2) ↔ E1 ⊆ E2, E1 ⊆ σc(Dr )

In the identity for ×, I := 1, . . . , arity(E2) and J :=
1, . . . , arity(E3). The first identity for π holds if |I | <

arity(E2); J is defined J := 1, . . . , arity(E1) and I ′ is ob-
tained from I by appending the first index in E2 which does
not appear in I . The second identity for π holds if |I | =
arity(E2); if I = i1, . . . , in then J is defined J := j1, . . . , jn
where jik := k. Finally, in the identity for σ , r stands for
arity(E2).

As in left normalize, to each identity in the list, we asso-
ciate a rewriting rule that takes a constraint of the form given
by the lhs of the identity and produces an equivalent con-
straint or set of constraints of the form given by the rhs of
the identity. For example, from the identity for σ we obtain
a rule that matches constraints of the form E1 ⊆ σc(E2)

and produces the equivalent pair of constraints E1 ⊆ E2 and
E1 ⊆ σc(Dr ). As with left normalize, there is at most one rule
for each operator. So to find the rule that matches a particular
expression, we need only look up the rule corresponding to
the topmost operator in the expression. In contrast to the rules
used by left normalize, there is a rule in this list for each of
the six basic relational operators. Therefore right normalize
always succeeds when applied to constraints that use only
basic relational expressions.

Just as with left normalize, user-defined operators can be
supported via user-specified rewriting rules. If there is a user-
defined operator that does not have a rewriting rule, then right
normalize may fail in some cases.

Note that the rewriting rule for the projection operator π

may introduce Skolem functions. The deskolemize step will
later attempt to eliminate any Skolem functions introduced
by this rule. If we have additional knowledge about key con-
straints for the base relations, we use this to minimize the
list of attributes on which the Skolem function depends. This
increases our chances of success in deskolemize.

Example 15 Given the constraint

π24(σ1=3(S × S)) ⊆ σ1=2(D × D)

which says that the first attribute of S is a key (cf. Example 2)
and

f12(S) ⊆ π142(σ2=3(R × R))

which says that for every edge in S, there is a path of length 2
in R, we can reduce the attributes on which f depends in the
second constraint to just the first one. That is, we can replace
f12 with f1.

Right normalize proceeds as follows. Let �2 be the set of
input constraints, and let S be the symbol to be eliminated
from �2. Right normalize computes a set �′

2 of constraints
as follows. Set �1 := �2. We loop as follows, beginning at
i = 1. In the i th iteration, there are two cases:

1. If there is no constraint in �i that contains S on the
rhs in a complex expression, set �′

2 to be the same as
�i but with all the constraints containing S on the rhs
collapsed into a single constraint containing a union of
expressions on the left. For example, E1 ⊆ S, E2 ⊆ S
becomes E1 ∪ E2 ⊆ S. If S does not appear on the rhs
of any expression, we add to �′

2 the constraint ∅ ⊆ S.
Finally, return success.

123



344 P. A. Bernstein et al.

2. Otherwise, choose some constraint ξ := E1 ⊆ E2,
where E2 contains S. If there is no rewriting rule corre-
sponding to the top-level operator in E2, set �′

2 := �2

and return failure. Otherwise, set �i+1 to be the set of
constraints obtained from �i by replacing ξ with its
rewriting, and iterate.

Example 16 Consider the constraints given by

S × T ⊆ U, T ⊆ σ1=2(S) × π21(R).

Right normalize leaves the first constraint alone and rewrites
the second constraint, producing

S × T ⊆ U, π12(T ) ⊆ S,

π12(T ) ⊆ σ1=2(D2), π34(T ) ⊆ π21(R).

Notice that rewriting stopped for the constraint π34(T ) ⊆
π21(R) immediately after it was produced, because S does
not appear on its rhs.

Example 17 Consider the constraints given by

R ⊆ π1(S) × π2(T ∩ U ), S ⊆ σ1=2(T ).

Right normalize rewrites the first constraint and leaves the
second constraint alone, producing

f1(π1(R)) ⊆ S, π2(R) ⊆ T ∩ U, S ⊆ σ1=2(T ).

Note that a Skolem function f was introduced in order to han-
dle the projection operator. After right compose, the
deskolemize procedure will attempt to get rid of the Skolem
function f .

3.5.2 Basic right compose

After right normalize, there is a single constraint ξ := E1 ⊆
S which has S on its rhs. In basic right compose, we remove
ξ from the set of constraints, and we replace every other con-
straint of the form M(S) ⊆ E2, where M(S) is monotonic in
S, with a constraint of the form M(E1) ⊆ E2. This is easier
to understand with the help of a few examples.

Example 18 Recall the constraints produced by right nor-
malize in Example 16:

S × T ⊆ U, π12(T ) ⊆ S,

π12(T ) ⊆ σ1=2(D2), π34(T ) ⊆ π21(R).

Given those constraints as input, basic right compose
produces

π12(T )×T ⊆U, π12(T )⊆σ1=2(D2), π34(T )⊆π21(R).

Since the constraints contain no Skolem functions, in this
case we are done.

Example 19 Recall the constraints produced by right nor-
malize in Example 17:

f1(π1(R)) ⊆ S, π2(R) ⊆ T ∩ U, S ⊆ σ1=2(T ).

Given those constraints as input, basic right compose pro-
duces

π2(R) ⊆ T ∩ U, f1(π1(R)) ⊆ σ1=2(T ).

Note that composition is not yet complete in this case. We
will need to try to complete the process by deskolemizing
the constraints to get rid of f . This process is described in
the next section.

3.5.3 Right-denormalize

During right-normalization, we may introduce Skolem func-
tions in order to handle projection. For example, we transform
R ⊆ π1(S) where R is unary and S is binary to f1(R) ⊆ S.
The subscript 1 indicates that f depends on position 1 of R.
That is, f1(R) is a binary expression where to every value in
R another value is associated by f . Thus, after basic right-
composition, we may have constraints with Skolem functions
in them. The semantics of such constraints is that they hold
iff there exist some values for the Skolem functions which
satisfy the constraints. The objective of the deskolemization
step is to remove such Skolem functions. It is a complex 12-
step procedure based on a similar procedure presented in [7].

Procedure DeSkolemize(�)

1. Unnest
2. Check for cycles
3. Check for repeated function symbols
4. Align variables
5. Eliminate restricting atoms
6. Eliminate restricted constraints
7. Check for remaining restricted constraints
8. Check for dependencies
9. Combine dependencies

10. Remove redundant constraints
11. Replace functions with ∃-variables
12. Eliminate unnecessary ∃-variables

Here we only highlight some aspects specific to this imple-
mentation. First of all, as we already said, we use an algebra-
based representation instead of a logic-based representation.
A Skolem function for us is a relational operator which takes
an r -ary expression and produces an expression of arity r +1.
Our goal at the end of step 3 is to produce expressions of the
form

πσ f g . . . σ (R1 × R2 × · · · × Rk).

123



Implementing mapping composition 345

Here

– π selects which positions will be in the final expression,
– the outer σ selects some rows based on values in the

Skolem functions,
– f, g, . . . is a sequence of Skolem functions,
– the inner σ selects some rows independently of the values

in the Skolem functions, and
– (R1 × R2 × · · · × Rk) is a cross product of possibly

repeated base relations.

The goal of step 4 is to make sure that across all constraints,
all these expressions have the same arity for the part after the
Skolem functions. This is achieved by possibly padding with
the D symbol. Furthermore, step 4 aligns the Skolem func-
tions in such a way that across all constraints the same Skolem
functions appear, in the same sequence. For example, if we
have the two expressions f1(R) and g1(S) with R, S unary,
step 4 rewrites them as

π13g2 f1(R × S) and π24g2 f1(R × S).

Here R × S is a binary expression with R in position 1 and S
in position 2 and g2 f1(R × S) is an expression of arity 4 with
R in position 1, S in position 2, f in position 3 depending
only on position 1, and g in position 4 depending only on
position 2.

The goal of step 5 is to eliminate the outer selection σ and
of step 6 to eliminate constraints having such an outer selec-
tion. The remaining steps correspond closely to the logic-
based approach.

Deskolemization is complex and may fail at several of
the steps above. The following two examples illustrate some
cases where deskolemization fails.

Example 20 Consider the following constraints from [4]
where E, F, C, D are binary and σ2 = {F, C}:
E ⊆ F, π1(E) ⊆ π1(C), π2(E) ⊆ π1(C)

π46 σ1=3,2=5(F × C × C) ⊆ D

Right-composition succeeds at eliminating F to get

π1(E) ⊆ π1(C), π2(E) ⊆ π1(C)

π46 σ1=3,2=5(E × C × C) ⊆ D

Right-normalization for C yields

π13 f12(E) ⊆ C, π23g12(E) ⊆ C

π46σ1=3,2=5(E × C × C) ⊆ D

and basic right-composition yields 4 constraints including

π46σ1=3,2=5(E × (π13 f12(E)) × (π13 f12(E))) ⊆ D

which causes deskolemize to fail at step 3. Therefore, right-
compose fails to eliminate C . As shown in [4] eliminating C
is impossible by any means.

Example 21 Consider the following constraints where A, B
are unary and σ2 = {F, G}:
A ⊆ π1(F), B ⊆ π1(G), F × G ⊆ T .

Right-normalization for F yields

f1(A) ⊆ F, B ⊆ π1(G), F × G ⊆ T .

and basic right-composition yields:

f1(A) × G ⊆ T

which after step 4 becomes

π1423 f1(A × G) ⊆ T .

which causes deskolemize to fail at step 8. Therefore, right-
compose fails to eliminate F . Similarly, right-compose fails
to eliminate G.

3.5.4 Eliminate empty relation

Right compose may introduce the empty relation symbol ∅
into the constraints during composition in the case where S
does not appear on the rhs of any constraint. In this step,
we attempt to eliminate the symbol, to the extent that our
knowledge of the operators allows. This is usually possible
and often results in constraints disappearing entirely, as we
shall see. For the basic relational operators, we make use of
rewriting rules derived from the following identities for the
basic relational operators:

E1 ∪ ∅ = E1 E1 ∩ ∅ = ∅ E1 − ∅ = E1

∅ − E1 = ∅ σc(∅) = ∅ πI (∅) = ∅
In addition we allow the user to supply rewriting rules for
user-defined operators. The constraints are rewritten using
these rules until no rule applies. At this point, some con-
straints may have the form ∅ ⊆ E2. These constraints are
then simply deleted, since they are satisfied by any instance.
We do not always succeed in eliminating the empty relation
symbol from the constraints. However, this is acceptable,
since a constraint containing ∅ can still be checked.

3.6 Additional rules

Additional transformation rules can be used at certain steps
of the algorithm for several purposes, including:

1. to eliminate obstructions to left and right compose
2. and to improve the appearance of the output constraints.

We illustrate these purposes with some examples.

Example 22 Consider the constraint

S ⊆ S ∩ T

123



346 P. A. Bernstein et al.

which causes both left and right compose to fail (because S
appears on both sides of the constraint). It is equivalent to

S ⊆ T .

Similarly, consider the constraint S ⊆ S ∪ T . It is equivalent
to S ⊆ S which can simply be deleted.

Example 23 Consider the constraint

R − S ⊆ T

in the context of right compose. R − S is not monotone in S,
so right compose cannot be applied to eliminate S. However,
the constraint can be rewritten as

R − T ⊆ S

to allow right compose to proceed.

Example 24 Consider the constraints

π12(T ) ⊆ σ1=2(D2), π12(T ) ⊆ π21(R).

They can be replaced by the single constraint

π12(T ) ⊆ σ1=2(π21(R)).

3.7 Representing constraints

The output of our algorithm may be exponential in the size
of the input, as the following example illustrates.2

Example 25 Consider the constraints

R ⊆ S1 ◦ S1

S1 ⊆ S2 ◦ S2, S2 ⊆ S3 ◦ S3, . . . , Sn−1 ⊆ Sn ◦ Sn,

Sn ⊆ T

where S ◦ S denotes the relational composition query, which
can be written π14(σ2=3(S × S)). Composing the mappings
to eliminate S1, . . . , Sn we obtain a single constraint

R ⊆ T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
2n times

whose length is exponential in n.

The running time of the algorithm is highly sensitive to the
data structures used internally to represent constraints. In a
naive implementation, we represent constraints as parse trees
for the corresponding strings, with no attempt to keep the
representation compact by, for example, exploiting common
subexpressions. With this naive tree representation, there are
many cases where the running time of the algorithm is expo-
nential in the size of the input, even when the output is not.

2 Note that Example 5 of [7] shows a case in another setting where the
number of constraints increases exponentially after composition. How-
ever, the blow-up does not occur for the same example in our setting
because of our use of the union operator (which corresponds to allowing
disjunctions in constraints in the logical setting of [7]).

Example 26 Modify Example 25 above by removing the
constraint Sn ⊆ T . After eliminating S1, . . . , Sn−1 we have
the single constraint

R ⊆ Sn ◦ Sn ◦ · · · ◦ Sn︸ ︷︷ ︸
2n times

The length of this constraint is 2n so we must have taken
at least order 2n steps to record its naive tree representation
in memory. Next we eliminate Sn (by replacing it with the
domain relation). After simplifications, the output is empty.

Examples such as this one motivate a search for a more
compact internal representation for constraints. In our imple-
mentation, we explored using a data structure based on
directed acyclic graphs (DAGs) rather than parse trees. In
the DAG-based representation common subexpressions are
represented only once and the substitutions in left and right
compose are implemented by simply moving pointers, rather
than actually replacing subtrees. We illustrate with an exam-
ple.

Example 27 Consider the mappings R ⊆ S◦S, S ⊆ T ◦T .
Their composition is R ⊆ T ◦T ◦T ◦T . In the DAG-based rep-
resentation, these three constraints correspond to the graphs

⊆
����
�

���
��

R ◦
����

S

,

⊆
����
�

���
��

S ◦
����

T

⇒

⊆
����
�

���
��

R ◦
���� ◦
		



T

For comparison, the corresponding trees in the naive repre-
sentation are

⊆
����
�

���
��

R ◦
���

��
����
�

S S

,

⊆
����
�

���
��

S ◦
���

��
����
�

T T

⇒

⊆
��		

		









R ◦
��		

		
��

��

◦
����
�

���
��

◦
��


���
��

T T T T

A DAG-based representation allows us to postpone expand-
ing the constraints to a tree representation as long as possible
in order to handle cases like Example 26 efficiently.

However, the DAG-based representation also carries the
practical disadvantage of increased code complexity in the
normalization and de-normalization subroutines. The diffi-
culty is that these routines must take care when rewriting
expressions to avoid introducing inadvertant side-effects due
to sharing of subexpressions in the DAG.

Additionally, even with the DAG-based representation,
there is still a step in the algorithm, right de-normalization,
which may introduce an explosion in the size of the con-
straints. This is due to the fact that the right-hand side of
constraints must be put in a certain form not containing any
union operators (see Sect. 3.5.3). Here is an example.

123



Implementing mapping composition 347

Example 28 Given as input the constraint

R ⊆ (S1 ∪ S2) × (S3 ∪ S4) × · · · × (S2n−1 ∪ S2n)

right-denormalize produces 2n constraints:

R ⊆ S1 × S3 × · · · × S2n−1, R ⊆ S2 × S3 × · · · × S2n−1,

R ⊆ S1 × S4 × · · · × S2n−1, R ⊆ S2 × S4 × · · · × S2n−1,

. . . , R ⊆ S2 × S4 × · · · × S2n .

Based on the above factors, we decided to simplify the
design of our implementation by adopting a hybrid approach
to constraint representation: the subtitution steps in view
unfolding, left compose, and right compose use a DAG-based
representation, which is expanded as needed to a naive tree
representation for use in the normalization and denormaliza-
tion steps. The next section gives evidence that this hybrid
approach performs adequately on practical workloads.

4 Experiments

We conducted an experimental study to determine the success
rate of our algorithm in eliminating symbols for various com-
position tasks, to measure its execution time, and to inves-
tigate the contributions of the main steps of the algorithm
on its overall performance. Our study is based on the schema
evolution scenarios outlined in the introduction. Specifically,
we focus on schema editing and schema reconciliation tasks
since mapping adaptation can be viewed as a special case of
schema reconciliation where one of the input mappings is
fixed.

Prior work [4,7] showed that characterizing the class of
mappings that can be composed is very difficult, even when
no outer joins, unions, or difference operators are present
in the mapping constraints. In this section we make a first
attempt to systematically explore the boundaries of mappings
that can be composed. Ultimately, our goal is to develop a
mapping composition benchmark that can be used to com-
pare competing implementations of mapping composition.
The experiments that we report on could form a part of such
a benchmark.

4.1 Experimental setup

All composition problems used in our experiments are avail-
able for online download in a machine-readable format.3 We
designed a plain-text syntax for specifying mapping com-
position tasks. Mapping constraints are encoded according
to the index-based algebraic notation introduced in Sect. 2.
We built a parser that takes as input a textual specification
of a composition problem and converts it into an internal
algebraic representation, which is fed to our algorithm.

3 http://www.research.microsoft.com/db/ModelMgt/composition/.

Below we show a sample run of the algorithm on map-
pings that contain relational operators select, project, join,
cross-product, union, difference, and left outerjoin. The com-
position problem is stated as that of eliminating a given set
of relation symbols. The output lists the symbols that the
algorithm managed to eliminate and the resulting mapping
constraints. This example exploits most of the techniques
presented in earlier sections.

SCHEMA
R1(2),R2(2),R3(2),R4(2),R5(2),
S1(2),S2(2),S3(2),S4(2),S5(2),S6(2),
S7(2),S8(2),

T1(2),T2(2),T3(2),T4(2),T5(2),T6(2)
CONSTRAINTS
S1 = P_{0,2} LEFTOUTERJOIN_{0,1:1,2} (R2 R3),
JOIN_{0,1:1,0} (R2 R2) <= S5,
JOIN_{0,1:0,0} (R2 R2) <= S5,
R5 <= S7,
P_{0} R5 <= P_{0} S8,
P_{1} R5 <= P_{1} S8,
R1 <= S6,
P_{0,2} JOIN_{0,1:1,2} (S6 S6) <= S6,
DIFFERENCE (S2 S1) <= T1,
CROSS (P_{0} S1 P_{1} T2) <= T1,
UNION (T1 S3) <= T2,
T1 <= UNION (T2 S4),
P_{0,4} JOIN_{0,1:1,2:2,3:3,4}

(S5 S5 S5 S5) <= T6,
P_{3,5} S_{0=2,1=3} CROSS(S7 S8 S8) <= T5,
S6 <= T4

ELIMINATE
S1,S2,S3,S4,S5,S6,S7,S8

;
ELIMINATED S1, S2, S3, S4, S5, S7
YIELDING
P_{3,5} S_{0=2,1=3} X (R5 S8 S8) <= T5,
P_{0,4} P_{0,1,3,5,7} S_{1=2,3=4,5=6} X (
UNION(P_{0,1} S_{0=2,2=3} X (R2 R2)
P_{0,1} S_{0=3,1=2} X (R2 R2))

UNION(P_{0,1} S_{0=2,2=3} X (R2 R2)
P_{0,1} S_{0=3,1=2} X (R2 R2))

UNION(P_{0,1} S_{0=2,2=3} X (R2 R2)
P_{0,1} S_{0=3,1=2} X (R2 R2))

UNION(P_{0,1} S_{0=2,2=3} X (R2 R2)
P_{0,1} S_{0=3,1=2} X (R2 R2))) <= T6,

T1 <= T2,
X (P_{0} P_{0,2}
LEFTOUTERJOIN_{0,1:1,2}(R2 R3)
P_{1} T2) <= T1,

P_{0} R5 <= P_{0} S8,
P_{1} R5 <= P_{1} S8,
R1 <= S6,
P_{0,2} J_{0,1:1,2}(S6 S6) <= S6,
S6 <= T4

The output is structured into two parts: the statement of
the composition problem (before the semicolon) followed
by the result of composition. The problem statement com-
prises three sections: SCHEMA, CONSTRAINTS, and ELIMI-

NATE. The SCHEMA section lists the relation symbols used
in the schemas σ1, σ2, and σ3, and their arities. For exam-
ple, “R1(2)” states that “R1” is a binary relation symbol.

123



348 P. A. Bernstein et al.

The CONSTRAINTS section holds the union of mapping con-
straints from m12 and m23. The symbols from σ2 are listed
in the ELIMINATE section. The result of composition appears
in sections ELIMINATED and YIELDING. The ELIMINATED

section lists the symbols that were eliminated successfully,
while the YIELDING section contains the output constraints
for the composition mapping m13.

The EBNF syntax of mapping constraints is shown below,
for the relational operators used in the sample run. The opera-
tor names “PROJECT”, “SELECT”, and “CROSS” can be abbre-
viated as “P”, “S”, and “X” (the respective EBNF productions
are omitted for brevity):

constraint := expr "<=" expr
| expr "=" expr

expr := relation
| "PROJECT_{" slots "}" expr
| "SELECT_{" cond ("," cond)* "}" expr
| "CROSS" exprList
| "JOIN_{" slots (":" slots)* "}" exprList
| "LEFTOUTERJOIN_{" slots ":" slots "}" exprPair
| "DIFFERENCE" exprPair
| "UNION" exprList

exprPair := "(" expr expr ")"
exprList := "(" expr+ ")"
slots := slot ( "," slot )*
cond := slot "=" (slot | const)

To illustrate the slotted notation, suppose that the binary
relations R2 and R3 have the signatures R2(A, B) and R3(C,
D). Then, the first input constraint of the sample run states:

S1 = πA,D(R2 ��B=C R3)

We used two data sets in our experiments. The first one
contains 22 composition problems drawn from the recent lit-
erature [4,6,7], which illustrate subtle composition issues.
The attractiveness of this data set is that the expected out-
put mappings were verified manually and documented in the
literature, sometimes using formal proofs. So, this data set
serves as a test suite that can be used for verifying implemen-
tations of composition.

We found that the output constraints produced by our algo-
rithm are often more verbose than the ones derived manually,
i.e., simplification of output mappings is essential. An exam-
ple of such simplification is detecting and removing implied
constraints. Mapping simplification appears to be a problem
of independent interest and is out of scope of this paper.
Furthermore, we found that our technique of representing
key constraints using the active domain symbol works well
in many cases, but fails in others due to de-Skolemization.
Leveraging key constraints in a more direct way, e.g., using
specialized rules in the composition algorithm, may increase
its coverage.

The second data set used in the experiments is synthetic.
Using synthetic mappings appears to be the primary way to

study the scalability and effectiveness of mapping compo-
sition; this approach was also followed in [13]. Our study
is based on the schema evolution scenarios outlined in the
introduction. Specifically, we focus on schema editing and
schema reconciliation tasks since mapping adaptation can be
viewed as a special case of schema reconciliation where one
of the input mappings is fixed.

In the study based on synthetic mappings, we determine
the success rate of our algorithm in eliminating symbols for
various composition tasks, measure its execution time, and
investigate the contributions of the main steps of the algo-
rithm on its overall performance. To generate synthetic data
for our experiments, we developed a tool which we call a
schema evolution simulator. The simulator is driven by a
weighted set of schema evolution primitives, such as adding
or dropping attributes and relations, schema normalization,
or vertical partitioning, and produces a mapping between the
original schema and the evolved schema.

In the schema editing scenario, we run the simulator to
mimic the schema transformation operations performed by a
database designer. The mapping between the original schema
and the current state of the schema is composed with the map-
ping produced by each subsequent schema evolution prim-
itive. We record the success or failure of each composition
operation for the applied primitives.

To study schema reconciliation, we use the simulator to
produce a large number of evolved schemas and mappings
for a given original schema. We then compose the generated
mappings pairwise using our composition tool.

Our key observations from this study are summarized
below:

– Our algorithm is able to eliminate 50–100% of the sym-
bols in the examined composition tasks (Figs. 1, 4–7).

– The algorithm’s median running time is in the subsecond
range for mappings containing hundreds of constraints
(Figs. 2–4, 6, 7).

– Composition becomes increasingly harder as more
schema evolution primitives are applied to schemas
(Fig. 6).

– Certain kinds of schema evolution primitives are more
likely to produce complications for composition than
others (Figs. 1, 2, 4).

– Key constraints do not substantially affect the symbol-
eliminating power of the algorithm, yet significantly
increase the running time (Figs. 1, 2, 7).

– It is beneficial to keep the symbols that could not be
eliminated in the mappings as second-order constraints
as long as possible. Subsequent composition operations
may eliminate up to a third of those symbols (Fig. 7).

– Our algorithm appears to be order-invariant on the
studied data sets, i.e., it eliminates the same fraction
of symbols no matter in what order the symbols are

123



Implementing mapping composition 349

Table 2 Schema evolution primitives

Primitive Description Input relation Output relation(s) Mapping constraint(s)

AR Add relation ∅ R(A, B) ∅
DR Drop relation R(A) ∅ ∅
AA Add attribute R(A) S(A, C) R = πA(S)

DA Drop attribute R(A), C ∈ A S(A − {C}) πA−{C}(R) = S

D Add default R(A) S(A, C) R × {c} = S; R = πA(σC=c(S))

H Horizontal partitioning R(A), C ∈ A S(A), T (A) σC=cS (R) = S; σC=cT (R) = T ; R = S ∪ T

V Vertical partitioning R(A, B, C) S(A, B), T (A, C) πA,B(R) = S; πA,C(R) = T ; R = S ��A T

N Normalization R(A, B, C) S(A, B), T (A, C) Same as vertical; πA(T ) ⊆ πA(S)

Sub Subset R(A) S(A) R ⊆ S

Sup Superset R(A) S(A) R ⊇ S

tried (in the loop in Line 3 of procedure Compose in
Sect. 3.1).

In the remaining space we present some details of our
study. The experiments were conducted on a 1.5 GHz Pen-
tium M machine.

4.2 Schema evolution simulator

Table 2 lists the schema evolution primitives implemented
in our simulator. Each primitive takes zero or one relation
as input, and produces zero or more new relations and con-
straints. The produced constraints link the output relations to
the input relations, or represent key or inclusion constraints
on the output relations. In the figure, we use the named per-
spective on the relational algebra to simplify the exposition.
Attribute lists are shown in bold (e.g., A), keys are underlined,
and lower case symbols denote constants. The shown list of
primitives covers a large fraction of those used in schema
evolution and data integration literature but we do not claim
completeness.

The first four primitives AR, DR, AA, and DA add or
delete relations and attributes. Primitive AR creates a new
relation. The arity of the new relation is chosen at random
between some minimal and maximal relation arity (2 and 10,
in our study). If keys are enabled, the created relation may
have a key whose size is chosen between some minimal and
maximal value (1 and 3, in our study). Primitive AA adds a
new attribute C to the relation R, i.e., produces a new rela-
tion S that contains C and all existing attributes A of R. The
mapping constraint R = πA(S) states that R can be recon-
structed as a projection on S. Primitive DA is complementary
to AA.

Primitives D, H, V, and N have forward and backward
variants (an explicit list of all supported primitives appears
in Table 3). The forward variant, labeled with subscript ‘f’,
contains only the constraints that define the output relations

Table 3 Event vectors

Primitive Default Fwd Bwd Preserving

AR 1 1 1 1

DR 0.2 0.2 0.2 0

AA 2 2 2 2

DA 1 1 1 0

Df , Hf , Vf , Nf , Sub 1 1 0 0

Db, Hb, Vb, Nb, Sup 1 0 1 0

D, H, V, N 1 0 0 1

in terms of the input relations. The backward variant (‘b’)
contains only the constraints that define the inputs in terms
of the outputs. The forward and backward variants reflect
distinct evolution scenarios, as we explain below in more
detail.

Primitive D adds an attribute C with a default value c. The
forward variant Df outputs the mapping constraint R ×{c} =
S, while Db outputs R = πA(σC=c(S)). Thus, Df states that
S is determined by R and that the newly added attribute C
contains c-values only. Db produces a weaker constraint that
allows attribute S.C to contain other values beyond c.

Primitive H performs a lossless horizontal partitioning of
the input relation R. The forward variant Hf outputs the map-
ping constraints σB=cS (R) = S, σB=cT (R) = T , which tell
us how to obtain partitions S and T by selecting tuples from
R. Some data from R is allowed to be lost. The backward
variant Hb produces constaint R = S∪T , which states that R
can be reconstructed from S and T but does not include the
partitioning criterion. The constraints produced by Hf and
Hb do not imply each other.

The vertical partitioning primitives V, Vf , Vb require the
input relation R to have a key. The attribute set of R is par-
titioned across output relations S and T .

Primitive N captures the schema normalization rule from
database textbooks. The input relation R, which may contain

123



350 P. A. Bernstein et al.

redundant data, is split into S and T . A becomes a key in S,
and a foreign key in T . This primitive assumes the existence
of an implicit functional dependency A → B on R. Although
such functional dependencies are not enforced by commer-
cial database systems and hence are missing in real-world
schemas, database administrators use this implicit knowl-
edge in schema design. Should this implicit dependency be
violated for a particular instance of R, then applying the Nf

primitive incurs data loss, while N produces an inconsistency.
The constants c, cT , and cS used in the primitives D and

H and their variants are drawn from a fixed-size pool of con-
stants (in our study, of size 10).

All evolution primitives discussed above produce equal-
ity constraints. Some schema integration and data exchange
scenarios in the literature assume the so-called open-world
semantics for mapping constraints: informally speaking, sub-
set is used in place of equality. To accommodate these sce-
narios in our experiments, we added two further primitives,
Sub and Sup. Composition of mapping constraints produced
by Sub and Sup with those of other primitives yields inclu-
sion constraints that generalize global-local-as-view (GLAV)
settings. For example, applying the DA primitive produces
the constraint πA−{C}(R) = S. Applying the Sub primitive
thereafter may produce the constraint S ⊆ T . Composing
the two yields the constraint πA−{C}(R) ⊆ T .

Event vectors In each run, the schema evolution simulator
applies a sequence of edits. Each edit consists of executing a
particular schema evolution primitive followed by mapping
composition.

An event vector specifies the proportions of primitives of
a certain kind appearing in an edit sequence. In our study we
use four event vectors that are depicted in Table 3. For exam-
ple, in the Default vector the proportion of AR is 1, the pro-
portion of AA is 2 meaning that an attribute is added twice as
often as a relation. That is, in an edit sequence of size 100 the
AR primitive is applied on average 1·100÷(0.2+2+1·16) ≈
5.5 times.

We are not aware of studies that investigated the frequency
of schema evolution primitives used in real-world evolution
scenarios. Thus, we assume that all primitives are applied
with the same frequency, with the exception of adding attri-
butes (AA is twice as frequent) and dropping relations (DR
is five times less frequent).

The Default event vector excercises all schema evolu-
tion primitives. In contrast, the Forward vector focuses on
those primitives where the input relations determine the out-
put relations. Intuitively, the mapping produced by using the
Forward vector defines the evolved schema as a view on the
original schema. In the Backward vector, the original schema
is defined as a view on the evolved schema. The Preserving
vector contains only the ‘lossless’ schema evolution primi-
tives; all information of the original schema is preserved in
the evolved schema and vice-versa.

4.3 Study on synthetic mappings

The output mapping produced by the composition algorithm
may be exponentially larger than the input mappings. To con-
trol the exponential blowup, the algorithm aborts whenever
the output-to-input size ratio exceeds a certain factor (100, in
our study). The size of mappings is measured as the total num-
ber of operators across all constraints. In our experiments, the
algorithm fails to eliminate only about 1% of symbols due to
such blowup.

Schema editing scenarios Figure 1 shows the success rate
of our algorithm in composing the mappings of an edit se-
quence. Four configurations are examined (‘no keys’, ‘keys’,
‘no unfolding’, ‘no right compose’). The data for each con-
figuration was obtained as follows: in each run, 100 edits
are applied to a randomly generated schema of a default size
30. The mappings produced in each edit are composed. The
proportions of primitives in the edit sequence correspond
to the Default event vector. The numbers shown for each
configuration are averaged across 100 runs. That is, 10,000

Fig. 1 Eliminated symbols per
primitive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DR AA DA Df Db D Hf Hb Vf Vb V Nf Nb SUB SUP

F
ra

ct
io

n
 o

f 
sy

m
b

o
ls

 e
lim

in
at

ed

no keys keys no unfolding no right  compose

H N

123



Implementing mapping composition 351

Table 4 Parameters of experimenal setup

Parameter Value

Minimal initial relation arity 2

Maximal initial relation arity 10

Minimal initial key size 1

Maximal initial key size 3

Size of constant pool used in primitives 10

Exponential blowup threshold factor 100

Default schema size 30

Default size of edit sequence 100

Number of edit runs to average over 100

Number of composition runs to average over 500

composition tasks are executed for each configuration.
Table 4 summarizes the key parameters used in our study.

In the ‘no keys’ and ‘keys’ configurations all features of
the algorithm are exploited; in the latter the relations may
contain keys. In the ‘no unfolding’ configuration, the View
Unfolding module of the algorithm is disabled. Similarly,
for ‘no right compose’. Vertical partitioning is not applica-
ble if no keys are present, therefore the respective bars remain
empty in all configurations but ‘keys’.

The figure shows that the symbols introduced by some
primitives are easier to eliminate than others. Hf , Vf , and Nf

are the ‘hardest’ primitives. Adding keys to schemas does not
significantly affect the symbol-eliminating power of the algo-
rithm. Turning off view unfolding or right compose weakens
the algorithm substantially.

The execution times for this experiment are in Fig. 2.
Disabling view unfolding or adding keys increases the run-
ning time significantly. When a keyed relation is eliminated,
its key constraints need to be propagated to all expressions
that reference it. So, mappings produced in the ‘keys’ setting
contain on average 218 constraints with 4,300 relational
operators, as opposed to 95 constraints with 800 operators

for ‘no keys’. The median execution time per run (for all 100
edits) are around 0.2 s for ‘no keys’ and ‘no right compose’,
2.8 s for ‘keys’, 2.1 sec for ‘no unfolding’ — a tenfold in-
crease (not shown in the figure). The reason for reporting
the median time instead of the average time is exemplified in
Fig. 3: most runs have close running times except for a few
outliers that skew the average. This graph is characteristic
across all experiments.

Figure 4 illustrates the impact of inclusion constraints
(vs. equality constraints) on a few selected schema evolu-
tion primitives and the overall running time. Each edit se-
quence corresponding to value x on the x-axis is constructed
by using the event vector obtained as a copy of the Default
vector in which the proportion of Sub and Sup primitives
is set to x . On average, the composition tasks become more
difficult (the total fraction of symbols eliminated in all edits
decreases) since the effectiveness of view unfolding drops.
However, the algorithm fails faster as it detects the symbols
that cannot be isolated on either the left or right side of con-
straints, and so the overall running time decreases.

Schema reconciliation scenarios Figure 5 depicts a schema
reconciliation scenario. Each task consists of composing two
mappings produced by the simulator for two sequences of
100 edits each. To obtain first-order input mappings, only
those edit sequences produced by the simulator were consid-
ered in which all symbols were eliminated successfully.

The data points shown in the figure were obtained by
averaging over 500 composition tasks. Increasing the size
of the intermediate schema (which contains the symbols to
be eliminated) simplifies the composition problem. This is
an expected result since the simulator applies the edits to
randomly chosen relations, so a larger intermediate schema
makes it less likely that the constraints in the two input map-
pings interact, i.e., mention the same symbols. For this same
reason, increasing the number of edits makes the composition
problem harder; the fraction of eliminated symbols drops
while the running time increases (see Fig. 6).

Fig. 2 Execution time for each
primitive

0

1

2

3

4

5

6

7

8

9

10

DR AA DA Df Db D Vf Vb

T
im

e 
p

er
 e

d
it

 (
m

s)

no keys keys no unfolding no right compose 

Hf Hb H V Nf Nb N SUB SUP

123



352 P. A. Bernstein et al.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Run number

E
xe

cu
ti

o
n

 t
im

e 
(s

ec
)

Fig. 3 Sorted execution time across 100 runs for ‘no keys’

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of inclusion edits

S
ym

b
o

ls
 e

lim
in

at
ed

 / 
ti

m
e 

(s
ec

)

total

Df

DA

Nf

Hf

time

0 2 4 6 8 10 12 14 16 18 20

Fig. 4 Increasing proportion of inclusion primitives

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80 90 100

Schema size

F
ra

ct
io

n
 o

f 
sy

m
b

o
ls

 e
lim

in
at

ed

complete

no view
unfolding

no right
compose

Fig. 5 Varying schema size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 30 50 70 90 110 130 150 170 190 210

Number of edits

fraction of
symbols
eliminated

execution
time (sec)

Fig. 6 Varying number of edits

Disabling view unfolding or right compose has a simi-
lar effect on the composition performance as in the schema
editing scenarios: as shown in Fig. 5, 10–20% fewer symbols
get eliminated. In addition, the execution time for disabling

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Bas
e

Base
+S

O
Key

s

Key
s+

SO

BB
->

<-

BF
->

->

FB
<-

<-

FF
<-

-> P

Fr
ac

tio
n 

of
sy

m
bo

ls
 e

lim
in

at
ed Symbols

from
common
schema

Bystander
symbols

Fig. 7 Impact of second-order, keys, and event vectors

view unfolding increases by about an order of magnitude (not
shown in the figure). Disabling left compose (not shown)
does not have a noticeable impact of the symbol-eliminating
power of the algorithm for the settings used in the study,
mostly because the simulator does not introduce any rela-
tional operators beyond σ, π,∪, ��,×.

Mapping composition may necessarily fail to eliminate
symbols from the intermediate schema [4,7]. As illustrat-
ed in Fig. 7, it is be beneficial to keep those symbols around
as ‘bystanders’ in second-order constraints even if ultimately
we are interested in obtaining first-order mappings. We found
that subsequent mapping compositions (or other operations
on mappings) may facilitate symbol elimination at a later
stage. To quantify this effect, we configured the simulator to
retain second-order mappings, which may contain symbols
that could not be eliminated upon edits.

Figure 7 illustrates a schema reconciliation problem for
schema size 30 and input mappings generated for edit se-
quences of length 100. No keys are used in the Base config-
uration and the input mappings are first-order. In Base+SO,
second-order mappings are allowed. The figure shows that
close to 20% of second-order symbols in the input mappings
can be eliminated in the final composition. Moreover, go-
ing second-order increases the number of symbols from the
intermediate schema that can be eliminated successfully. A
similar effect is observed when keys are allowed.

Finally we discuss the impact of varying the event vec-
tors. The labels B, F, and P in Fig. 7 correspond to the event
vectors Bwd, Fwd, and preserving of Table 3. For exam-
ple, in task BB the Bwd vector is used for generating both
input mappings. Consequently, BB corresponds to compos-
ing mappings each of which is a view pointing inward, i.e.,
expressing the intermediate schema in terms of an evolved
schema. Close to 100% of symbols from the intermediate
schema get eliminated in this setting, and about a third of by-
stander symbols for second-order mappings. In BF and FB
tasks, the mappings are views pointing in the same direction.
If the views point to the opposite directions (FF), composition
turns out to be harder. In contrast, close to 90% of symbols
get eliminated for the information-preserving vector P;

123



Implementing mapping composition 353

the bystander bar is not shown since the input mappings
produced by the simulator do not contain any second-order
constraints.

5 Conclusions

This paper presented a new algorithm for composition of
relational algebraic mappings that extends significantly the
algorithms in [4,7]. It has many new features: it makes a best
effort to eliminate as many symbols as possible; it can handle
unknown or partially known operators, including ones that
are not monotonic in all of their arguments; it introduces the
left-compose transformation; and it is highly extensible. We
demonstrated its value by an experimental study of its effec-
tiveness on a large set of synthetically-generated mappings.

References

1. Bernstein, P.A.: Applying model management to classical meta-
data problems. In: CIDR (2003)

2. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision of manage-
ment of complex models. SIGMOD Record 29(4), 55–63 (2006)

3. Buneman, P., Davidson, S.B., Kosky, A.: Theoretical aspects of
schema merging. In: Proc. EDBT, pp. 152–167 (1992)

4. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing
schema mappings: second-order dependencies to the rescue. ACM
TODS 30(4), 994–1055 (2005)

5. Madhavan, J., Halevy, A.Y.: Composing mappings among data
sources In: Proc. VLDB, pp. 572–583 (2003)

6. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: Supporting
Executable Mappings in model management. In: Proc. ACM
SIGMOD (2005)

7. Nash, A., Bernstein, P.A., Melnik, S.: Composition of mappings
given by embedded dependencies. ACM TODS 32(1) (2007)

8. Pottinger, R., Bernstein, P.A.: Merging models based on given
correspondences. In: Proc. VLDB, pp. 826–873 (2003)

9. Stonebraker, M.: Implementation of integrity constraints and
views by query Modification. In: Proc. ACM SIGMOD, pp. 65–78
(1975)

10. Tatarinov, I., Halevy, A.Y.: Efficient query reformulation in peer-
data management systems. In: Proc. ACM SIGMOD (2004)

11. Taylor, N., Ives, Z.: Reconciling changes while tolerating dis-
agreement in collaborative data sharing. In: Proc. ACM SIGMOD
(2006)

12. Yannakakis, M.,: Papadimitriou, C.H.: Algebraic dependencies.
J. Comput. System. Sci. 25(1), 2–41 (1982)

13. Yu, C., Popa, L.: Semantic adaptation of schema mappings when
schemas evolve. In: Proc. VLDB, pp. 1006–1017 (2005)

123


	Implementing mapping composition
	Abstract 
	Introduction
	Applications of mapping composition
	Related work
	Contributions
	Preliminaries
	Algorithm
	Overview
	View unfolding
	Checking monotonicity
	Left compose
	Left normalize
	Basic left compose
	Eliminate domain relation
	Right compose
	Right normalize
	Basic right compose
	Right-denormalize
	Eliminate empty relation
	Additional rules
	Representing constraints
	Experiments
	Experimental setup
	Schema evolution simulator
	Study on synthetic mappings
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


