
The Basic Game Plan of Algorithm Complexity Analysis

Primitive operations
When we analyze an algorithm A for a specific problem, we want to char-

acterize the running time of A as a function of its input (and later only of the
input size). To do this, it is convenient to identify a few operations, or steps, in
the algorithm, which are executed more often, or roughly as often, as any other
steps are executed. For example, in your typical sorting algorithm, the number
of comparison operations done by the algorithm is larger or equal to the number
of other (bookeeping or data movement type) operations done (this is actually
not true of insertion sort). So we try to find the dominant operations in the
algorithm; we call them the primitive operations, and we generally ignore all
the other operations in the algorithm. So when we speak of the time needed by
the algorithm, we geneally just mean the number of primitive operations that
the algorithm executes. Of course, that number depends on the specific input
to the algorithm, and generally will rise as the size of the input increases. We
get to that now.

A formal statement of worst case complexity
We have some problem, say sorting numbers, or computing some function

of a set of numbers, or inverting a matrix etc. We use P to denote an abstract
problem. Then we have an algorithm that solves instances of problem P . We
let AP denote the (deterministic) algorithm that solves problem P . One might
expect that the running time of algorithm AP increases as the size of the problem
instances increase. For example, it is reasonable that an algorithm takes more
time to sort 100,000,000 numbers than to sort 100 numbers, although the actual
time might depend on the specific list of 100,000,000 and 100 numbers. We want
notation to talk about these kinds of issues.

Let DP (n) be the set of all possible inputs to problem P , of length n. So
for example, when P is the problem of sorting numbers and n is a fixed value,
DP (n) is the set of all lists of n numbers. This is an infinite set, but one can
conceive of it and define it, as we have.

Given algorithm AP for problem P , and given a specific input I ∈ DP (n),
the running time of AP on input I is denoted TAP (I) or TA(I) for short. That is,
when algorithm AP is given input I, it takes exactly TA(I) primitive operations
for algorithm AP to solve the problem.

Now for any particular value of n, there are some inputs on which AP may
run quickly, and some on which it may run slowly, although some algorithms
take the same time on all inputs of the same length. We want to express the
running time of AP as a function of n alone, not on the specific inputs. But
which input of size n should we pick? That leads to the notion of worst-case.
For each n, we pick that input which makes algorithm AP run the longest. We
define the work that AP does as

1



WAP (n) = max
I∈DP (n)

[TA(I)].

That is, we form the work function WAP (n), where for every value of n, the
function is determined by the problem instance that makes AP run the longest.
That function is also called the worst case running time of AP . The worst-case
approach may seem a bit perverse or at least pessemistic, but if you have an
application where you allow WAP (n) time to solve instances of problem P , then
you can be sure that no matter what the input is, algorithm AP will succeed in
solving the problem within the allotted time.

Complexity of problem P
Function WAP is for a specific algorithm AP solving problem P . How can

we express the inherent complexity of solving problem P , i.e., without making
reference to a specific algorithm? We define the function

WP (n) = min
AP

[WAP (n)].

That is, we form the function WP (n), called the worst case complexity of
problem P by assuming, for every value of n, that we have the best worst-case
algorithm working at that value of n. That means that

WP (n) ≤WAP (n)

for any specific algorithm AP solving problem P .
Now, although we can define the functions WAP (n) and WP (n), it is very

hard to actually determine these functions for all but very simple algorithms
and problems. Therefore we have to approximate these functions. We wish to
approximate the functions from above and below, that is by functions that grow
faster and that grow slower than the functions of interest. For example, we seek
functions B(n) and U(n) such that B(n) ≤WAP (n) ≤ U(n), for every value of
n. And we want U(n)−B(n) to be small. We can’t always do that either, but
we try. It is in attempting to get these bounding functions that we use the O,
Ω, Θ and o notations, that are explained in the book.

2


