
The Master Method and its use
The Master method is a general method for solving (getting a closed form

solution to) recurrence relations that arise frequently in divide and conquer
algorithms, which have the following form:

T (n) = aT (n/b) + f(n)

where a ≥ 1, b > 1 are constants, and f(n) is function of non-negative integer
n. There are three cases.

(a) If f(n) = O(nlog
b

a−ǫ), for some ǫ > 0, then T (n) = Θ(nlogba).

(b) If f(n) = Θ(nlog
b

a), then T (n) = Θ(nlog
b

a log n).

(c) If f(n) = Ω(nlog
b

a+ǫ) for some ǫ > 0, and af(n/b) ≤ cf(n), for some
c < 1 and for all n greater than some value n′, Then T (n) = Θ(f(n)).

For some illustrative examples, consider
(a) T (n) = 4T (n/2) + n

(b) T (n) = 4T (n/2) + n2

(c) T (n) = 4T (n/2) + n3

In these problems, a = 4, b = 2, and f(n) = n, n2, n3 respectively. We com-
pare f(n) with nlog

b
a = nlog

2
4. The three recurrences satisfy the three different

cases of Master theorem.
(a) f(n) = n = O(n2−ǫ for, say, ǫ = 0.5. Thus, T (n) = Θ(nlogba) = Θ(n2).
(b) f(n) = n2 = Θ(n2), thus T (n) = Θ(nlog

b
a log n) = Θ(n2 log n).

(c) f(n) = n3 = Ω(n2+ǫ for, say, ǫ = 0.5 and af(n/b) ≤ cf(n), i.e., 4(n
2
)3 =

n3

2
≤ cn3 for c = 1/2 . Thus, T (n) = Θ(f(n)) = Θ(n3).

(d) The recurrence for binary search is T (n) = T (n/2) + Θ(1). Using Mas-
ter Theorem, a = 1, b = 2, f(n) = Θ(1). Now f(n) = Θ(1) = Θ(nlog

b
a) =

Θ(n0) = Θ(1). Using the second form of Master Theorem, T (n) = Θ(n0 log n) =
Θ(log n).

(e) T (n) = 4T (n/2) + n2 log n. This does not form any of the three cases of
Master Theorem straight away. But we can come up with an upper and lower
bound based on Master Theorem.

Clearly T (n) ≥ 4T (n) + n2 and T (n) ≤ 4T (n) + n2+ǫ for some ǫ > 0. The
first recurrence, using the second form of Master theorem gives us a lower bound
of Θ(n2 log n). The scond recurrence gives us an upper bound of Θ(n2+ǫ). The
actual bound is not clear from Master theorem. We use a recurrence tree to
bound the recurrence.

1



T (n) = 4T (n/2) + n2 log n

= 16T (n/4) + 4(
n

2
)2 log n/2 + n2 log n

= 16T (n/4) + n2 log n/2 + n2 log n

= . . .

T (n) = n2 log n + n2 log n/2 + n2 log n/4 + . . . + n2 log n/(2log n)

= n2(log n + log n/2 + log n + 4 + . . .)

= n2(log n · n/2 · n/4 + . . . + n/(2logn)) (Transforming logs)

= n2(log 2log n) (Using geometric series)

= n2 log n (Using 2logn = n)

Thus, T (n) = n2 log n.

2


