Setting up and solving a recurrence relation.
Dan Gusfield

In the towers of Hanoi problem you are given three pegs. On the first peg
there are n rings of different diameters stacked according to their diameter,
the largest on the bottom. The object is to move the rings to the third peg
by moving one ring at a time, with the complication that you can never place
a larger ring on top of a smaller ring.

The following is the tower of Hanoi procedure for moving n disks from
pole r to pole s.

Procedure P(n,r,s)
if n=0 return;

else

begin

P(n-1,r,6-r-s)

move one disk from pole r to pole s.
P(n-1,6-r-s,s)

end

return

Actual code (try it out) for this is:

#include<stdio.h>
void th(int n, int s, int dest, int * pmoves);

main()

{

int * pmoves;
int n, s, dest;



printf("how many disks to move?\n");

scanf ("%d", &n);

printf("enter the source and the final destination poles\n");

scanf ("%d%d", &s, &dest);

printf("the source pole is %d, and the destination pole is %d\n", s, dest);
if (s == dest) printf("No go\n");

else {

*pmoves = 0;

th(n, s, dest, pmoves);

printf("The total number of moves is %d\n", *pmoves);

by
by

void th(int n, int s, int dest, int * pmoves)
{
if (n == 0)

return;

else {

th(n-1, s, 6-(s+dest), pmoves);

printf("move one disk from pole %d to pole %d\n", s, dest);
*pmoves = l+*pmoves;

th(n-1, 6-(s+dest), dest, pmoves);

Now we want to establish the number of moves that this procedure spec-
ifies, as a function of n. To do that, we set up a recurrence relation that
expresses the number of moves specified by the procedure, as a function of
n. We let T'(n) denote that number.

Then T'(n)=T(n—1)+1+T(n—1)=2T(n—1)+ 1. and T'(0) = 0.

That is a recurrence relation for 7'(n) because T appears on both sides.
We would like a closed form solution to 7'(n), i.e., one that gives a function
of n on the right without using 7' itself on the right.

In class we discussed two methods to find the closed form solution for

T(n).



Method 1 You might run the program for a few small values of n, and
then look at the output to guess that 7T'(n) = 2" — 1. Having made that
guess (claim), you should try to prove that it is right. How? By induction,
of course.

basis: n = 1. the program outputs one move, and 2! —1 = 1, so the case
of n =1 is verified.

[.H. Suppose the claim is true for n up to some value (call it k). 1.S. Want
to prove that T'(k+1) = 20k + 1)—1. By the R.R. T(k+1) =2T(k)+1. By
the I.H., we substitute 2% —1 for T(k),soT(k+1)=2x (2]“— )+1= ok+1 _ 1
which completes the proof of the 1.S.

Method 2: Unwrapping and drawing a recurrsion tree

In this approach it is good to fix a small value for n (what that should
be varies with the particular problem — we will see several examples of this
approach where we pick different n). For this problem, say n is 8. We want
to know what 7'(8) is. I don’t know, but I do know it is 2 x T'(7) + 1. 1
keep a list of the contributions to the total value of T'(8). By the recurrence
relation, that list starts out with 1.

So we have one node to represent 7'(8) and by its side, the contribution
of 1, and two children nodes, each representing a single value of 7T'(7).

We would like to know what 7'(7) is, but we don’t know. However, we
know each T'(7) is 1 + 2 x T'(6), so those two T'(7)’s contribute 1 each, for a
total of 2, to the total value of T'(8).

Continuing in this unwrapping of the recurrence relation, we get binary
tree. We label the levels of the tree in order starting from the root, which is
labeled level 0. So at level 7, there are 2' nodes, each of which contributes 1
to the total value of what 7'(8) is. The levels (where something non-zero is
contributed to the sum) range from 0 to 7.

Hence, T'(8) is the sum of what each level contributes, which is Yi=7 2.
We know how to solve that sum. It is 2% — 1.

Having greased our intuition by unrwapping for a specific value of n, we
go back through the process to see what would change if we use the symbolic
n instead of the specific value 8. What any level ¢ contributes to the sum
would not change, it is still 2° no matter what n is, but the number of levels
changes to n — 1. So in general, this establishes that



=0

Summarizing the unwrapping approach, we set up a tree where the root
represents T'(n). We use the recurrence relation to see what constant amount
is contributed at this level to the total. The next level represents the un-
wrapping of the recurrence one time. The purpose of this unwrapping is to
answer two questions: How much does each level 7 contribute to the sum for
T'(n); how many levels are there in the full unwrapping that contribute to
the sum?. Given the answers to those two questions, we set up a sum, and
solve it (with our deep understanding of elementary sums). That solution is
then a closed form solution for 7T'(n).

In the next lecture we will use this approach to solve T'(n) = 2T'(n/2)+n,
T(0) =0, and also T'(r) = 4T (n/3) + 5n. You might try the first one before
class.

Another example of unwrapping:

T(n)=4T(n/3) +n/2,
(1) = 450.

In general it helps to recall the geometric sum, that

Zri = (rk‘H - 1)/(r—1).

=0

One way to solve the recurrence is to unroll the recurrence like this:

T(n)=4T(n/3) 4+ n/2 =16T(n/9) + 4(n/6) + n/2...

In general, the additive part of level ¢ (we start counting levels from zero)
is: 4% x 555+ 1'(n) is gotten by adding in those terms - there are logzn of
them (why?) and then adding in the 450n that comes from the base case.

So unwrapping in this way gives that

logs n

T(n) = 450n +n/2 x Y. (4/3)".

1=0

Now apply the geometric sum to get:



T(n) = 450n +n/2 x 3((4/3)ess W+ _ 1),

So
T(n) = 450n + n/2 x (4(4/3)es™) — 3).

Now the question is what to do with the (4/3)1°8™), But that is the
same as n'°&(4/3) = plloga)=1 G T'(n) = 450n + n/2 x (4nllee2=1) —3). So
T(n) = 450n + (2n'°¢s*) — 3n/2. By the way, that result is f(n!°84).

More on unwraping to solve recurrence relations.

Consider the recurrence T'(n) = 27T (n/2) + n, with the base condition
T(1) = 0. We unwrap the recurrence, and display the unrwrapping in the
form of a tree. The root of the tree represents T'(n). We don’t know what
T'(n) is but we do know that for any n (a power of two), T'(n) is given by
the sum of certain numbers. To start, it is the sum of n and twice T'(n/2).
So we put n off to the side in a column that will be added up, and draw
two children of the root, each labeled with 7'(n/2). So if we only knew what
T(n/2) is, we would be done. But we don’t. All we know is that each T'(n/2)
contributes n/2 to the sum, and has two children, each labeled with T'(n/4).
In general, each level ¢ in the tree (counting from the root, which is labeled
0) has exactly 2° nodes, each of which contributes n/(2), and so each level
contributes n to the sum. Since n falls by a half at each level, there are logyn
levels that contribute to the sum, hence the total sum is nlogan. That is
T(n) = nlogan.

Note that if the base case was T'(1) = 5, then the close form solution
would be T'(n) = nlogan + 5n = 0(nlogn). (Why didn’t I write the base of
the logarithm inside the parentheses? Answer: because of the § notation and
the fact that log,n = c(a,b)logsn where c(a,b) is a constant that depends
only on a and b.

Now we consider the more complex recurrence: T'(n) = 5T (n/4) + 3n?,
T(1)=0.

If you unwrap with a specific number for n, you should use one that is a
power of 4. But here, we will unwrap for a general n. The tree branches five

ways at each node, and it has logyn levels that contribute to the sum. Hence
each level 7 contributes 5' x 3(n/4')% = 3n?(5/16)". Hence

1=(log, n)—1

T(n)=3n"> > (5/16)".

1=0



Let us ignore the 3n? part for now and concentrate on the sum. Applying
the geometric sum, the sum is

[(5/16)81™ —1]/(5/16 — 1).

Here we can use the fact that z'°9%" = n!°%* We use that fact twice, once
for = 5 and once for x = 16, so that the sum is

[(n%7 /n®) = 1]/(~11/16).

Now we can multiply by the 3n? which is on the outside of the sum. The
result is

(3n'°81% — 3n2)/(~11/16) = (3n2 — log, 5)/(11/16) = O(n?).

The Master Method

In order to read this, review the discussion of the notation O, 2, and 4
in the book.

For recurrences of the form T'(n) = aT(n/b) + f(n) the following three
rules encapsulate the unwrapping ideas that we have illustrated above, and
apply to most (but not all) of the recurrence relations one will encounter in
computer science:

1. If f(n) = O(nU°84)=¢) for some ¢ > 0, then T'(n) = O(n{°&*)), Notice
that we don’t even mention the base case of the recurrence.

2. If f(n) = (nl°& ) then T'(n) = §(nl°&*) x logn).

3. If f(n) = Qnl°&2*¢) for some ¢ > 0, and af(n/b) < cf(n) for
some ¢ < 1 and every n greater than some ng (which you get to pick), then
T(n) = 0(f(n).

By symbolically unwrapping the recurrence, and applying the geometric
sum etc. you should be able to prove rules 1 and 2 for n a power of b. That
will be part of the next homework assignment.



