1 Exact matching: What’s the problem?

Given a string P called the pattern, and a longer string T" called the text,
the exact matching problem is to find all occurrences, if any, of pattern
P in text T

For example, if P = aba and T = bbabaxababay then P occurs in T starting at
locations 3,7 and 9. Note that two occurrences of P may overlap, as illustrated by
the occurrences of P at locations 7 and 9.

1.1 Basic string definitions

We will introduce most definitions at the point where they are first used, but several
definitions are so fundamental that we introduce them now.

Definition A string S is an ordered list of characters written contiguously from
left to right. For any string S, S[i..j] is the (contiguous) substring of S that starts at
position i and ends at position j of S. In particular, S[1..7] is the prefiz of string S
that ends at position ¢, and S[i..|S|] is the suffiz of string S that begins at position i.

For example, california is a string, lifo is a substring, cal is a prefix and ornia is
a suffix.

Definition A proper prefix, suffix or substring of S is, respectively, a prefix, suffix
or substring that is not the entire string 5.

Definition For any string S, S(i) denotes the i’th character of S.

We will usually use the symbol S to refer to an arbitrary fixed string which has
no additional assumed features or roles. However, when a string is known to play the
role of a pattern or the role of a text, we will refer to the string as P or T respectively.
We will use lower case Greek characters (a, 3,7, 6) to refer to variable strings, and
use lower case roman characters to refer to single variable characters.

Definition When comparing two characters, we say that the characters match if
they are equal, otherwise we say they mismatch.

2 The preprocessing approach

Many string matching and analysis algorithms are able to efficiently skip comparisons
by first spending “modest” time learning about the internal structure of either the
pattern P or the text 7. During that time, the other string may not even be known
to the algorithm. This part of the overall algorithm is called the preprocessing stage.
Preprocessing is followed by a search stage, where the information found during the
preprocessing stage is used to reduce the work done while searching for occurrences
of P in T. In the above example, the smarter method was assumed to know that
character a did not occur again until position 5, and the even smarter method was



assumed to know that the pattern abzr was repeated again starting at position 5. This
assumed knowledge is obtained in the preprocessing stage.

For the exact matching problem, all of the algorithms mentioned in the previous
section preprocess pattern P. (The opposite approach of preprocessing text T is used
in other algorithms, such as those based on suffix trees. Those methods will be ex-
plained later in the book.) These preprocessing methods, as originally developed, are
“similar in spirit” but often quite different in detail and conceptual difficulty. In this
book we take a different approach and do not initially explain the originally devel-
oped preprocessing methods. Rather, we highlight the similarity of the preprocessing
tasks needed for several different matching algorithms, by first defining a fundamental
preprocessing of P that is independent of any particular matching algorithm. Then
we show how each specific matching algorithm uses the information computed by the
fundamental preprocessing of P. The result is a simpler more uniform exposition of
the preprocessing needed by several classical matching methods, and a simple lin-
ear time algorithm for exact matching based only on this preprocessing (discussed in
Section 5).

3 Fundamental preprocessing of the pattern

Fundamental preprocessing will be described for a general string denoted S. In specific
applications of fundamental preprocessing, S will often be the pattern P, but here we
use S instead of P because fundamental preprocessing will also be applied to strings
other than P.

The following definition gives the key values computed during the fundamental
preprocessing of a string.

Definition Given a string S and an position i > 1, let Z;(S) be the length of the
longest substring of S that starts at ¢ and matches a prefix of S.

In other words, Z;(.S) is the length of the longest prefiz of S|i..s] which matches a
prefix of S. For example, when S = aabcaabraaz then

Z5(S) =3 (aabc...aabz...),

Zs(S) =1 (aa...ab...),
Z7(S) - Zg(S) = 0,
Zy(S) =2 (aab...aaz).
When S is clear by context, we will use Z; in place of Z;(5).
To introduce the next concept, consider the boxes drawn in Figure 1. Each box

starts at some position j > 1 such that Z; is greater than zero. The length of the box
starting at j is meant to represent Z;. Therefore, each box in the figure represents a



maximal-length substring of S that matches a prefix of S, and that doesn’t start at
position one. Each such box is called a Z-box. More formally,

Definition For any position ¢ > 1 where Z; is greater than zero, the Z-box at i is
defined as the interval starting at ¢ and ending at position i + Z; — 1.

Definition For every ¢ > 1, r; is the rightmost endpoint of any Z-box that begins
at or before position 7. Another way to state this is: 7; is the largest value of j+Z; —1
over all 1 < j <i such that Z; > 0. (See Figure 1.

We use the term [; for the value of j specified in the above definition. That is, [; is
the position of left end of Z-box that ends at r;. In case there is more than one Z-box
ending at r;, then [; can be chosen to be the left end of any of those Z-boxes. As an
example, suppose S = aabaabcazraabaabcy. Then Z1g =7, r15 = 16 and ;5 = 10.

—— e —

| a I a

&~
~

i

Figure 1: Each solid box represents a substring of S that matches a prefix of S and
that starts between positions 2 and 7. Each box is called a Z-box. We use r; to denote
the rightmost end of any Z-box that begins at or to the left of position 7, and « to
denote the substring in the Z-box ending at r;. Then [; denotes the left end of a.
The copy of a that occurs as a prefix of S is also shown in the figure.

The linear time computation of 7 values from S is the fundamental preprocess-
ing task that we will use in all the classical linear-time matching algorithms that
preprocess P. But before detailing those uses, we show how to do the fundamental
preprocessing in linear time.

4 Fundamental preprocessing in linear time

The task of this section is to show how to compute all the Z; values for S in linear time,
i.e., in O(]S]) time. A direct approach based on the definition would take O(|S|?)
time. The method we will present was developed in [1] for a different purpose.

The preprocessing algorithm computes Z;, r; and [; for each successive position 7,
starting from ¢ = 2. All the Z values computed will be kept by the algorithm, but
in any iteration 4, the algorithm only needs the r; and [; values for j =i — 1. No
earlier r or [ values are needed. Hence the algorithm only uses a single variable, r, to
refer to the most recently computed r; value; similarly it only uses a single variable [.
Therefore, in each iteration i, if the algorithm discovers a new Z-box (starting at ),
variable r will be incremented to end of that Z-box, which is the rightmost position
of any Z-box discovered so far.



To begin, the algorithm finds 7, by explicitly comparing, left to right, the char-
acters of S[2..|S|] and S[I..|S|] until a mismatch is found. Z, is the length of the
matching string. If Z5 > 0, then r = 75 is set to Zy + 1 and [ = [, is set to 2.
Otherwise r and [ are set to zero. Now assume inductively that the algorithm has
correctly computed Z; for ¢ up to k — 1 > 1, and assume that the algorithm knows
the current » = r;_; and [ = [;_;. The algorithm next computes Zp, r = ri, and
[ =l.

The main idea is to use the already computed 7 values to accelerate the compu-
tation of Z,. In fact, in some cases, 7, can be deduced from the previous Z values
without doing any additional character comparisons. As a concrete example, suppose
k =121, all the values Zs through Z;59 have already been computed, and ri59 = 130
and l159 = 100. That means that there is a substring of length 31 that starts at posi-
tion 100 and that matches a prefix of S (of length 31). It follows that the substring
of length 10 starting at position 121 must match the substring of length 10 starting
at position 22 of S, and so Zs; may be very helpful in computing Z15;. As one case,
if Zy9 is three, say, then a little reasoning shows that 7151 must also be three. So in
this illustration, Z19; can be deduced without any additional character comparisons.
This case, along with the others, will be formalized and proven correct below.

The Z Algorithm

Given Z; for all 1 < i < k — 1 and the current values of r and [, 7, and the updated
r and [ are computed as follows:

Begin

1. If E > r, then find Z; by explicitly comparing the characters starting at position
k to the characters starting at position 1 of S, until a mismatch is found. The length
of the match is Z;,. If Z;, > 0, then set r to k+ Z;, — 1 and set [ to k.

2. If £ < r, then position k is contained in a Z-box, hence S(k) is contained
substring S[l..r] (call it ) such that [ > 1 and a matches a prefix of S. Therefore
character S(k) also appears in position &' = k — [+ 1 of S. By the same reason-
ing, substring S[k..r] (call it §) must match substring S[k’..Z;]. It follows that the
substring beginning at position k& must match a prefix of S of length at least the
minimum of Z and || (which is r — k + 1). See Figure 2.

We consider two subcases based on what that minimum is.

2a. If Zy < |B] then Z, = Z;y and r, [ remain unchanged (see Figure 3).

2b. If Zyy > |B| then the entire substring S|[k..r| must be a prefix of S and
Zy > |Bl =r — k + 1. However, Z; might be strictly larger than |3|, so compare the
characters starting at position 7+ 1 of S to the characters starting a position 5]+ 1
of S until a mismatch occurs. Say the mismatch occurs at character ¢ > r + 1. Then
7y, is set to ¢ — k, r is set to ¢ — 1 and [ is set to k (see Figure 4).

End



s @ [ e
k’ k
VA 1 l r
Figure 2: String S|k..r| is labeled § and also occurs starting at position k’ of S.
Sl VB V1B
Zp> R } 1 k r

k’+Zk,- 1
k+Zk-1

Figure 3: Case 2a. The longest string starting at &’ that matches a prefix of S is
shorter than |3|. In this case, Zy = Z.

Figure 4: Case 2b. The longest string starting at &’ that matches a prefix of S is at
least, |3].



Theorem 4.1 Using Algorithm 7, value 7, is correctly computed and variables r
and | are correctly updated.

Proof In case 1, 7}, is set correctly since it is computed by explicit comparisons.
Also (since k > r in case 1), before Z; is computed, no Z- box has been found that
starts between positions 2 and k& — 1 and that ends at or after position k. Therefore
when Z; > 0 in case 1, the algorithm does find a new Z-box ending at or after k£, and
it is correct to change r to k+ Z; — 1. Hence the algorithm works correctly in case 1.

In case 2a, the substring beginning at position £ can match a prefix of .S only for
length 7y, < |B|. If not, then the next character to the right, character k + 7/, must
match character 1 + Zp. But character k + 7, matches character k' + 7 (since
Zyy < |B|) so character k' + Zp must match character 1 + Z. But that would be a
contradiction to the definition of Z/, for it would establish a substring longer than
Z that starts at k' and matches a prefix of S. Hence Z, = Z;, in this case. Further,
k+ Zi, —1 <r,sor and [ remain correctly unchanged.

In case 2b, B must be a prefix of S (as argued in the body of the algorithm) and
since any extension of this match is explicitly verified by comparing characters beyond
r to characters beyond the prefix 3, the full extent of the match is correctly computed.
Hence 7, is correctly obtained in this case. Furthermore, since k + Z, — 1 > r, the
algorithm correctly changes r and [. O

Corollary 4.1 Repeating algorithm 7 for each position i > 2 correctly yields all the
Z; values.

Theorem 4.2 All the Z;(S) values are computed by the algorithm in O(|S|) time.

Proof The time is proportional to the number of iterations, |S|, plus the number
of character comparisons. Each comparison results in either a match or a mismatch,
so we next bound the number of matches and mismatches that can occur.

Each iteration that does any character comparisons at all ends the first time it
finds a mismatch, hence there are at most |\S| mismatches during the entire algorithm.
To bound the number of matches, note first that r, > r,_; for every iteration k. Now,
let k£ be an iteration where g > 0 matches occur. Then 7y is set to r_1 + g at least.
Finally, r, < |S], so the total number of matches that occur during any execution of
the algorithm is at most |S|. O

5 The simplest linear-time exact matching algo-
rithm

Before discussing the more complex (classical) exact matching methods, we show
that fundamental preprocessing alone provides a simple linear time exact matching
algorithm. This is the simplest linear-time matching algorithm we know of.

6



Let S = PS$T be the string consisting of P followed by the symbol “$” followed by
T, where “$” is a character appearing in neither P nor 7. Recall that P has length
n and T has length m, and n < m. So, S = P3$T has length n +m + 1 = O(m).
Compute Z;(S) for ¢ from 1 to n+m+ 1. Since “$” does not appear in P or T, Z; < n
for every i. Any value of i > n + 1 such that Z;(S) = n identifies an occurrence of
P in T starting at position i — (n + 1) of 7. Conversely, if P occurs in 1" starting at
position j of 7', then Z(,11)+; must be equal to n. Since all the Z;(S) values can be
computed in O(n + m) = O(m) time, this approach identifies all the occurrences of
P in T in O(m) time.

The method can be implemented to use only O(n) space (in addition to the space
needed for pattern and text) independent of the size of the alphabet. Since Z; < n
for all 4, position &’ (determined in step 2) will always fall inside P. Therefore there
is no need to record the Z values for characters in T'. Instead, we only need to record
the Z values for the n characters in P, and also maintain the current [ and . Those
values are sufficient to compute (but not store) the Z value of each character in T’
and hence to identify and output any position i where Z; = n.

There is another characteristic of this method that is worth introducing here. The
method is considered an alphabet independent linear time method. That is, we never
had to assume that the alphabet size was finite, or that we knew the alphabet ahead of
time — a character comparison only determines whether the two characters match or
mismatch, it needs no further information about the alphabet. We will see that this
characteristic is also true of the Knuth-Morris-Pratt and Boyer-Moore algorithins,
but not of the Aho-Corasick algorithm or methods based on suffix trees.

References

[1] M. Main and R. Lorentz. An o(nlogn) algorithm for finding all repeats in a string.
J. of Algorithms, 5:422-432, 1984.



