

CS 122A Winter 2013. HW 2 Due by 5pm Friday January 25, 2013

1. Problem 2.4 in the book
2. Problem 2.5 a) through e)
3. Problem 2.12
4. Problem 2.17

Answer: Here is a solution that is similar to binary search. Look at the middle element of the array A , say at position k . Check if $A[k] = k$, or $A[k] > k$ or $A[k] < k$. In the first case, you are done. In the second case, the desired position i , if it exists, can only be less than k because $A[i] > i$ for every $i > k$, since i increases by exactly one for each new position, and $A[i]$ increases by at least one for each new position. To be more explicit, lets look at position $k + d$ for some positive d . Then $A[k + d] \geq A[k] + d > k + d$, since $A[k] > k$.

Similarly, by the same logic in reverse, in the third case, the desired position i , if it exists, can only be greater than k .

So the algorithm is able to reject half of the remaining positions with each query and hence runs in $O(\log n)$ time.

5. Problem 2.23 a)

Answer: We can solve the problem with a recursive divide and conquer method call $M(L)$ which takes in a set L and either returns the majority element in L or returns that there is no majority element in L .

The key idea is this: If there is a majority element in a list L , say element X , then X must be the majority element in one or both of the two halves of L , call them A and B . This follows from arithmetic. Remember that majority means strictly more than half of L . So, procedure $M(L)$ divides L into two equal size lists A and B and calls $M(A)$ and $M(B)$. Again, if X is the majority element in L , then one or both of these calls must return X .

So, if the recursive calls to $M(A)$ and $M(B)$ find that neither A or B has a majority element, then L has no majority and the algorithm terminates. Otherwise, when the recursive calls $M(A)$ and $M(B)$ return, we finish the call $M(L)$ by doing the following: the candidate majority element returned from $M(A)$, if one was found, is compared to all the elements in L to see if it is actually majority in L . Similarly, if there is a majority element returned from $M(B)$, then it is compared to all the elements in L to see if it is actually the majority in L . These comparisons are essential (do you see why?), and the time needed for it is $O(|L|)$. Only one of the two returned candidates

(assuming there are two candidates) can be the majority element of L , so $M(L)$ can determine it and return it, or return that there is no majority element in L .

The total time for the algorithm is then given by $T(n) = 2T(n/2) + O(n)$, which we have seen solves to $O(n \log n)$.

6. Recall Problem 1 in HW 1.

Let $R(1), \dots, R(n)$ and $C(1), \dots, C(m)$ be any non-negative integers labeling rows and columns respectively, such that $\sum_{i=1}^n R(i) = \sum_{j=1}^m C(j)$. In HW 1 we learned that one can find non-negative values for the table entries to make each row i sum to $R(i)$ and each column j sum to $C(j)$. Such a set of values is called a *legal solution* for the table. There may be many different legal solutions.

Obviously, in every legal solution, the value in cell (i, j) is less than or equal to the Minimum of $R(i)$ and $C(j)$. Show that for any (i, j) there is a legal solution where the value of cell (i, j) is exactly the Minimum of $R(i)$ and $C(j)$. Note, that there might not be (and usually will not be) a legal solution where *each* cell (i, j) is set to that value. Rather, the nm legal solutions (one for each cell in the table) could all be different.

Answer: There are many possible solutions. Here is one.

In the solutions to HW 1 problem 1, the method presented to find a legal solution stated with cell $(1,1)$ and gave it value $\min[C(1), R(1)]$, which proves what we want for cell $(1,1)$. But the problem calls for proving this for any cell (i, j) . To prove this, suppose we take the given empty table T and move column j to the first position, i.e. make it the new column 1. Next, suppose we move row i to the first position, i.e., make it the new row 1. Call this new table T' , and note that cell (i, j) of T is now cell $(1, 1)$ of T' . Note that the *set* of row sums in T and T' are the same, and that the *set* of column sums in T and T' are the same. Next, find a legal solution in T' where cell $(1, 1)$ is given value equal to the minimum of column 1 sum and row 1 sum in T' . As mentioned above, we know from HW 1 that this is possible. Next take that legal solution to T' and move the first row back to position i and then move first column back to position j . The result is a filled-in table T , which is a legal solution for T (since the set of row and column sums are the same in T and T'), where cell (i, j) of T has value equal to $\min[C(i), R(j)]$.