
Notes on finding Strong Components in a Directed
Graph.

Dan Gusfield, Jan. 31, 2013.

I don’t like the way the book describes the algorithm to find strong com-
ponents in a directed graph. So here I am going to rewrite the algorithm
(given on page 104, 8 lines from the bottom of the page) to find the strong
components of a graph. HOWEVER, in order to understand my version,
you still need to read and understand the discussion in the book, up to that
point, on how to find strong components. Generally, I like the way the book
explains the ideas that lead up to the algorithm on page 104, although I also
want to expand on the explanation of Property 1:

First let’s define what it means to “visit” a node v”: A node v is “visited”
precisely when the variable visited(v) is set to true in Explore.

Then we can restate
Property 1: If the Explore subroutine is started at node u in graph G,

then it will terminate precisely when all nodes reachable in G from u have
been visited. However, some of those nodes reachable from u in G might
have been visited in a prior call of Explore. So the call Explore(G,u) will
only visit those unvisited nodes that are reachable from u in G.

Note that if no nodes in a graph H have yet been visited, then the call
Explore(H,u) will actually visit all the nodes that are reachable from u in H .

Now we return to the strong component algorithm itself. You can replace
what is in the book on page 104 (8 lines up from the bottom) until the end
of the chapter (on page 105) with the following:

1. Run depth-First search onGR and assign pre and post numbers
to all the nodes. These numbers will be kept and used throughout
the algorithm. Lets use the notation P (v) to describe the post
number assigned here to a node v.

As explained earlier, the node w with the highest post-number
P (w) will be in a source strong component in GR, and hence will
be in a sink strong component in the original G.

Make a copy of graph G, and the post-numbers P , and call that
graph H .

Now repeat Step 2 until H is empty:

1



2. Starting at node w with the highest post-number P (w) in the
currentH , run a directed Explore inH . That is, call Explore(H,w)
in the current directed graph H . Note that no nodes in the cur-
rent H have yet been visited. So, by property 1, that call of
Explore from w will visit all and only the nodes in the strong
component C in H (and hence in G) that node w is in. So out-
put the nodes in C as the a strong component. Then remove the
nodes in C from H , i.e., change the current H .

Now lets look at the example of graph G in Figure 3.9. Graph GR is
shown in Figure 3.10. There are many possible DFSs that could be done
in GR, but lets use that the DFS that assigns the following pre and post
numbers:

A: 1,2
B: 3,6
C: 7,10
D: 11,12
E: 4,5
F: 8,9
G: 13,14
H: 15,16
I: 17,24
J: 18,23
K: 20,21
L: 19,22

The P number is the second number in each pair. You should verify that
there is a DFS of GR that assigns those P numbers.

Using those P numbers, the first Explore in H starts at node I and finds
the strong component C containing nodes {I, J,K, L,H,G}. That strong
component is output and those nodes are deleted from H . The next Explore
begins at node D and finds the strong component containing only D. From
that point the algorithm finds strong components {C, F}, {B,E}, {A}.

Note that my version of the algorithm, and the one in the book, find the
strong components in the same order.

You should be clear on three points: 1) No matter what DFS is used in
Step 1, exactly the same set of strong components are discovered in Step 2.

2



2) However, the order in which they are discovered can differ, depending on
the DFS that is done in Step 1. 3) Once the the Post numbers P are set
in Step 1, the order that the strong components will be found in Step 2 is
completely determined.

3


