
CS 222 Fall 2007, Midterm. The exam is open materials (books CLR
and Kleinberg/Tardos, along with any materials distributed through the
class website, and any of your own notes).

Try for SHORT, to the point answers. Explain you answers. You do not
need formal proofs, but you do need to identify and explain the key points
that show your answer is correct.

1. In homework 1, we saw that if M and M ′ are two different (perfect)
stable matchings, and if each man is assigned to woman F (m,M,M ′), the
result is also a stable matching. The book proved something stronger: For a
given set of men’s and women’s preferences, let S be the set of all (perfect)
stable matchings based on those preferences, and let F (m, S) be the woman
that man m most prefers over all of his partners in the matchings in S.
Using the above mentioned result from homework 1, show that if each man
m is assigned to F (m,S) then the result is a stable matching. The book
proves this from scratch, but you MUST use the result from homework 1.
A very short answer is possible.

Answer: Consider the following conceptual algorithm:
0) Let M and M ′ be any two stable matchings in S.
1) Let M ′′ be the stable matching formed from assigning each man m to

F (m,M, M ′). Remove M and M ′ from S. M ′′ is a stable matching by the
result of Homework 1.

2) If S is not empty, let M be any stable matching in S; Assign M ′′ to
M ′ and go to step 1). If S is empty, stop.

The algorithm explicitly considers each stable matching in M , always
assigning m to the woman he most prefers between M and his best choice
obtained so far. Hence at termination, m is asssigned to F (m,S), and
since M ′′ is a stable matching at each iteration, that assignment is a stable
matching.

2. Let f be an maximum s-t flow in a directed graph G = (V,E) found
by the Ford-Fulkerson algorithm, and let Gf be the augmentation (residual)
graph for G and f . Let (A,B) be the s-t cut where A consists of all nodes
reachable by a directed path from s in Gf , so B = V −A. In class we proved
that (A,B) is a minimum s-t cut. Now define Q as the set of all nodes that
can reach t by a directed path in Gf , and let P = V −Q.

2a) Give an example to show that Q is not necesarily B.
2b) Is (P,Q) necesarily a minimum s-t cut? Give a clear justification for

your answer.

Answer: Consider a graph consisting only of the s-t path s, v1, v2, v3, t
where the capacity of the first and last edges is 1, and the capacity of the

1

other two edges is 2. Then A = {s} so B = {v1, v2, v3, t}, but Q = {t}. The
s-t cut (P,Q) is a minumum cut. First, it is an s-t cut because t certainly
is in Q. Now s is in P because there is no s to t directed path in Gf when
f is the maximum flow. So (P,Q) is an s-t cut.

To show that it is a minimum s-t cut, consider any edge in e = (u, v) in
G directed from P to Q. It must be that f(e) = ce or e would be a forward
edge in Gf and u would be in Q. Similarly, consider an edge e′ = (x, y) in G
directed from Q to P . It must be that f(e′) = 0 or else the edge (y, x) would
be in Gf and y would be in Q. Hence, the flow across (P,Q) = Σf(e) : e
crosses from P to Q, so the flow across (P,Q) = Σce : e crosses from P to
Q. Hence the capacity of (P,Q) equals the value of the maximum flow f ,
making (P,Q) a minimum cut.

Another possible way to answer this question is to consider reversing
the directed of all edges in G, and assigning the maximum flow f, from the
original graph to the corresponding reversed edges. Then argue that the t
to s from must be maximum, and that the (Q,P) cut is a minimum t-s cut
for this flow. This argument is a bit more subtle. The argument above is
more direct.

3. A bipartite graph is a graph G consisting of two sets of nodes, A
and B, such that every edge in G has one end in A and one end in B. A
matching M in G is a set of edges such that no two edges in M share a
node. Note that a matching might not be perfect, i.e., there may be nodes
that are not touched by an edge in M .

The nodes of A are numbered 1 through |A|, with each node getting a
distinct number. Similarly, the node in B are numbered 1 through |B|, with
each node getting a distinct number. Two edges (i, j) and (i′, j′) cross if
i < i′ but j′ < j, or i′ < i but j < j′. Nodes i, i′ are in A and j, j′ are in B.
A non-crossing matching is a matching that does not contain any crossing
edges. We want to find a largest non-crossing matching (one with the largest
number of edges). This problem can be solved by Dynamic Programming
with the following recurrences.

Let M(i, j) be the size of the largest non-crossing matching that can be
found using only edges whose endpoints in A are from 1 to i, and whose
endponts in B are from 1 to j. Then, for i > 0 and j > 0, M(i, j) = Max
[M(i−1, j−1)+1 if edge (i, j) exists; M(i−1, j−1); M(i, j−1);M(i−1, j)].
The base cases are M(0, j) = M(i, 0) = 0.

3a) Explain why these recurrences are correct, and how (in what order)
they should be evaluated, the time bound for evaluating them, and how an
actual matching is constructed.

2

3b) Explain why the general recurrence can be replaced with M(i, j) =
Max [M(i− 1, j − 1) + 1 if edge (i, j) exists; M(i, j − 1);M(i− 1, j)].

3c) Now suppose that each edge (i, j) has a given weight w(i, j) which
may be positive or negative or zero. We want to find a non-crossing matching
M such that the sum of edge weights in M is maximum over all non-crossing
matchings. Modify the recurrences to solve that problem, and state its time
analysis.

3d) As in 3c) each edge has a weight w(i, j) which can be positive or
negative or zero. Now we want to find a non-crossing matching M such
that the product of the edge weights in M is maximum over all non-crossing
matchings. Explain how to solve that problem and its time analysis.

Answer: 3a) Note that nodes i and j can both be touched by some edge
in a matching (that uses edges whose A node is from 1 to i and whose B
node is from 1 to j) only if edge (i, j) is used. This follows from the non-
crossing requirement. So the recurrences given in the problem statement
explicitly enumerate all possibilities for how node i and j are involved in the
solution of value M(i, j), and explicitly enumerate the best results in those
cases: when both i and j are touched in such a matching; when neither
are touched; when only i is touched; when only j is touched. In each of
these cases, the recurrence states what is the best possible outcome under
that case. If the graph has n A nodes and m B nodes, then there are
(n + 1)(m + 1) values of M that must be calculated. Each takes a constant
number of operations, hence the total time is O(nm). TRACEBACK.

3b) The case of M(i− 1, j − 1) may be removed because the matchings
that are considered for M(i, j−1) contain the matchings that are considered
for M(i− 1, j − 1).

3c) Change the general recurrence to M(i, j) = Max [M(i− 1, j − 1) +
w(i, j) if edge (i, j) exists; M(i, j − 1);M(i− 1, j)].

3d) This is the hardest part. Let M(i, j) be defined as the largest non-
negative product possible in a non-crossing matching using edges whose A
ends are from 1 to i and whose B ends are from 1 to j. Let M ′(i, j) defined
as the smallest non-positive product possible in a non-crossing matching
using edges whose A ends are from 1 to i and whose B ends are from 1 to
j. Note that M(i, j) ≥ 0 and M ′(i, j) ≤ 0, because one can always choose
the empty matching consisting of no edges.

Then M(i, j) = Max [M(i − 1, j − 1) × w(i, j) if edge (i, j) exists and
w(i, j) > 0;M ′(i− 1, j − 1)×w(i, j) if (i, j) exists and w(i, j) < 0; M(i, j −
1);M(i− 1, j)].

Then M ′(i, j) = Min [M ′(i − 1, j − 1) × w(i, j) if edge (i, j) exists and

3

w(i, j) > 0;M(i− 1, j − 1)×w(i, j) if (i, j) exists and w(i, j) < 0; M ′(i, j −
1);M ′(i− 1, j)].

The key point in this solution is that because an edge weight can be
negative, and the product of two negative numbers is positive, we have to
determine and maintain the quantity M ′(i, j) as well as M(i, j) and use it
in the recurrences.

If you think about the recurrences a bit more, you should see that they
can be simplified to:

M(i, j) = Max [M(i−1, j−1)×w(i, j), if (i, j) exists; M ′(i−1, j−1)×
w(i, j) if (i, j) exists; M(i, j − 1);M(i− 1, j)].

M ′(i, j) = Min [M ′(i−1, j−1)×w(i, j) if edge (i, j) exists; M(i−1, j−
1)× w(i, j) if (i, j) exists; M ′(i, j − 1);M ′(i− 1, j)].

4

