

Homework 3, Problem 3: The Node Cover Problem

Let $G = (V, E)$ be an undirected bipartite graph with node weights given by the function $w: V \rightarrow]0, \infty[$. Then there is a partition of V into two disjoint nonempty subsets V_1, V_2 . We form a new undirected graph G' by adding two nodes s, t to G and connecting every node in V_1 with s and every node in V_2 with t . We define edge weights as follows:

$$c(x, y) = \begin{cases} w(y) & \text{if } x = s \\ w(x) & \text{if } y = t \\ \infty & \text{otherwise} \end{cases}$$

(If the weight ∞ looks fishy to you, just take a number larger than the sum of all node weights instead.) If we cut *all* edges of the form (s, v_1) with $v_1 \in V_1$ and (v_2, t) with $v_2 \in V_2$, then this is a valid (s, t) -cut with capacity equal to the sum over all $w(i)$. Therefore a *minimal* cut of G' will necessarily cut only edges of the form (s, v_1) with $v_1 \in V_1$ and (v_2, t) with $v_2 \in V_2$, because including any other edge would result in a larger cut.

Given a minimum cut $S, T \subseteq V$ of G' such that $s \in S, t \in T$, let N be the set of all nodes v in V such that v is incident to an edge that is cut. We claim that N is a node cover with minimal weight. If (v_1, v_2) is an edge in G , then without loss of generality $v_1 \in V_1$ and $v_2 \in V_2$, so that there is a path (s, v_1, v_2, t) in G' . Since $c(v_1, v_2) = \infty$ it is not cut, so one of the two edges $(s, v_1), (v_2, t)$ must be cut. Therefore at least one of v_1, v_2 is in N . By definition of the weight function c , the weight of the node cover N is the capacity of the cut (S, T) . Conversely, if N is a node cover of G , then let we can form a – not necessarily minimal – (s, t) -cut of G' by cutting all edges (s, x) resp., (x, t) such that $x \in N$. This is a cut because for any path (s, x, y, t) , the edge (x, y) must be incident to some node in N , hence (s, x) or (y, t) is cut. Similarly, the capacity of the constructed cut equals the weight of the node cover N by definition of the weight function c .

We conclude that a minimal (s, t) -cut in G' corresponds to minimal node cover: If it would not, there was a smaller node cover, which would correspond to a cut with a value smaller than that of the minimal cut.