CS 222A Winter 2011, HW 8 Do the first three problems at least, and
if you have time, try problem 4. This is due on Monday March 14, but you
can turn it in until March 16.

1. Given a tree T with n nodes, suppose you label the nodes during a
Depth-first traversal of T. You can label the nodes by an in-order labeling,
a post-order labeling, or a pre-order labeling. (If you don’t know what these
are, look them up - maybe on Wikipedia.) The DFT can do «a little additional
work so long as it only takes O(n) time.

After the DF traversal, your algorithm will be given pairs of nodes (z, y)
it has to determine if x is an ancestor of y, or y is an ancestor of x, or neither
is an ancestor of the other. This has to be done in O(1) time. This can be
answered by an LCA query, but it is a very restricted form of an an LCA
query. Therefore, it can be solved much more simply than by a general LCA
query.

Explain completely what the preprocessing is, and how the ancestry
queries can be answered in O(1) time. The question calls for an answer
that is much simpler than using the LCA method we are learning in class.
Find the simplest answer you can, and show how it works with each of the
three types of nodes labeling methods.

2. The algorithm we learned for global min-cut was for an undirected
graph. Now suppose we have a directed graph where each edge has an edge
weight. A directed graph G is said to be strongly connected if and only if
it has the property that for every ordered pair of nodes (u,v) in G, there
is a directed path from u to v in G. Suppose that G is strongly connected.
In a strongly connected directed graph G, a global min-cut is defined as the
smallest weight set of edges such that after the removal of those edges from
G, the resulting graph is not strongly connected.

Show how to modify the global min-cut algorithm so that it finds a global
min-cut in a strongly connected directed graph. Prove that it does. This
really involves going through the proof in the undirected case to see if it goes
through, and making whatever changes in the proof are required.

UPDATE March 7: Actually, this seems pretty hard (although maybe I
am missing something). So now I will change the problem as follows: To
compute a global min cut in a directed, weighted graph, we could pick an
arbitrary node v and then compute the max flow from v to each other node
w, and also compute the associated min v, w cut. This would involve n — 1



max flow computations. Then we would compute the max flow from each
node w to v, and also compute the associated w, v cut. Because the graph
is directed, the min v, w cut and the min w, v cut can be very different with
very different capacities. But the min over these 2(n —1) cuts is a global min
cut in a directed graph. Prove that this is correct.

OPTIONAL QUESTION: Next, we want to reduce the number of max
flows from 2(n — 1) to just n — 1, along with an algorithm whose time is
at most the time for computing a global min cut in an undirected graph. I
claim we can do this using a modification of the undirected global min cut
method, plus n — 1 max flow computations. Show how to do this.

3. Do problem 28 on p 519 of the book. This may at first seem trivial,
but I don’t think it is.

4. Try problem 2 on p. 594 of the book. I have not yet tried this, so I
don’t know how hard it is.



