
Efficiency Matters:

Introduction to Sequence Alignment and Dynamic
Programming (DP)

May 21 2010

Sequence Alignment



Sequence Comparison

Sequence comparison is at the heart of many tasks in
computational biology.

Sequence Alignment



Sequence Comparison

Sequence comparison is at the heart of many tasks in
computational biology.

We want to know how similar two sequences are.

Sequence Alignment



Sequence Comparison

Sequence comparison is at the heart of many tasks in
computational biology.

We want to know how similar two sequences are.

The definition of similarity should reflect biological (usually
evolutionary) events, such as mutations and rearrangements,
that cause related sequences to differ.

Sequence Alignment



Sequence Comparison

Sequence comparison is at the heart of many tasks in
computational biology.

We want to know how similar two sequences are.

The definition of similarity should reflect biological (usually
evolutionary) events, such as mutations and rearrangements,
that cause related sequences to differ.

Here we introduce the simplest definition of similarity, to
illustrate how to compute a measure of similarity. This
definition only crudely reflects real biology.

Sequence Alignment



Sequence Comparison

Sequence comparison is at the heart of many tasks in
computational biology.

We want to know how similar two sequences are.

The definition of similarity should reflect biological (usually
evolutionary) events, such as mutations and rearrangements,
that cause related sequences to differ.

Here we introduce the simplest definition of similarity, to
illustrate how to compute a measure of similarity. This
definition only crudely reflects real biology.

The computational technique extends to more complex and
realistic biological definitions of similarity.

Sequence Alignment



Sequence Alignment

Definition: Given two sequences S1 and S2, an alignment of S1 and
S2 is obtained by inserting spaces into, or before or after the ends
of, S1 and S2, so that the resulting two strings S ′

1 and S ′

2 have the
same number of characters (a space is considered a character).

Sequence Alignment



Sequence Alignment

Definition: Given two sequences S1 and S2, an alignment of S1 and
S2 is obtained by inserting spaces into, or before or after the ends
of, S1 and S2, so that the resulting two strings S ′

1 and S ′

2 have the
same number of characters (a space is considered a character).
Example:

S1 =TACTAGGCATGAC
S2 =ACAGGTCAGTC

S ′

1 =TACTAGG–CATGAC
S ′

2 =–AC–AGGTCA–GTC

An alignment of S1,S2 imposes well-defined positions, and some
aligned pairs of characters from S1,S2.

Sequence Alignment



Sequence Alignment

Definition: Given two sequences S1 and S2, an alignment of S1 and
S2 is obtained by inserting spaces into, or before or after the ends
of, S1 and S2, so that the resulting two strings S ′

1 and S ′

2 have the
same number of characters (a space is considered a character).
Example:

S1 =TACTAGGCATGAC
S2 =ACAGGTCAGTC

S ′

1 =TACTAGG–CATGAC
S ′

2 =–AC–AGGTCA–GTC

An alignment of S1,S2 imposes well-defined positions, and some
aligned pairs of characters from S1,S2.
In this example, there are ten aligned pairs of characters from
S1,S2. Nine of those pairs consist of identical characters.

Sequence Alignment



Maximum Common Subsequence

As one possible measure of the similarity of two sequences, we
want an alignment that Maximizes the number of aligned
(non-space) characters that are identical. That number is
taken as a measure of the similarity of the two sequences.
The alignment with that number of identical aligned
characters is called optimal.

Sequence Alignment



Maximum Common Subsequence

As one possible measure of the similarity of two sequences, we
want an alignment that Maximizes the number of aligned
(non-space) characters that are identical. That number is
taken as a measure of the similarity of the two sequences.
The alignment with that number of identical aligned
characters is called optimal.

This is a simple, very crude, model of the biological similarity
of two sequences. A richer model would better reflect the
evolutionary history causing the divergence of the sequences.

Sequence Alignment



Maximum Common Subsequence

As one possible measure of the similarity of two sequences, we
want an alignment that Maximizes the number of aligned
(non-space) characters that are identical. That number is
taken as a measure of the similarity of the two sequences.
The alignment with that number of identical aligned
characters is called optimal.

This is a simple, very crude, model of the biological similarity
of two sequences. A richer model would better reflect the
evolutionary history causing the divergence of the sequences.

How can an optimal alignment be computed efficiently?

Sequence Alignment



Maximum Common Subsequence

As one possible measure of the similarity of two sequences, we
want an alignment that Maximizes the number of aligned
(non-space) characters that are identical. That number is
taken as a measure of the similarity of the two sequences.
The alignment with that number of identical aligned
characters is called optimal.

This is a simple, very crude, model of the biological similarity
of two sequences. A richer model would better reflect the
evolutionary history causing the divergence of the sequences.

How can an optimal alignment be computed efficiently?

Is an exhaustive examination of all possible alignments
practical? How many alignments are there?

Sequence Alignment



Time needed to examine each alignment

Assume that we can enumerate and examine one Billion
alignments per second. Then the time required would be:

seq. length no. alignments secs years ages of universe

30 1022 1013 106 ?
50 1.5 × 1037 1028 1019 109

100 2 × 1075 1066 1059 1050

200 5 × 10150 10141 10137 10127

300 1.5 × 10228 10219 10213 10203

Clearly, exhaustive examination of all possible alignments is not
practical, even for sequences of length 30. And, sometimes we
want to align sequences that are vastly larger.

Sequence Alignment



What to do: First, Think Recursively!

Recursive thinking requires that we describe the problem we want
to solve in terms of smaller instances of the same problem. To do
that, we first need the right notation.

For a string S , we define S(k) as the character at position k of S ,
and S [1..k] as the prefix of S consisting of the first k characters of
S .

Sequence Alignment



Think Recursively

We define V (i , j) to be the maximum number of identical aligned
characters in any alignment of substrings S1[1..i ] and S2[1..j].
Schematically:

S1[1..i ] - - - - - - - - - - - - - i
S2[1..j] - - - - - - - - - - - - - - - - j

Ultimately, want to compute V (n,m), where n and m are the
lengths of S1 and S2.

Sequence Alignment



Think Recursively!

To think about V (i , j) recursively, we focus on the characters i of
S1 and j of S2 and ask where these characters appear in the
optimal alignment A of S1[1..i ] and S2[1..j]. There are three cases:

Case 1: Characters S1(i),S2(j) align to each other in A.

Case 2: S1(i) appears to the left of S2(j) in A.

Case 3: S1(i) appears to the right of S2(j) in A.

You should convince yourselves that these three cases cover all the
possibilities.

Sequence Alignment



Case 1 in detail

When character S1(i) aligns with S2(j)

S1[1..i ] - - - - - - - - - - - - - - - - i
S2[1..j] - - - - - - - - - - - - - - - - j

Either characters S(i) and S(j) are identical or not.

If S(i) and S(j) are identical, then

V (i , j) = 1+??

Sequence Alignment



Case 1 in detail

When character S1(i) aligns with S2(j)

S1[1..i ] - - - - - - - - - - - - - - - - i
S2[1..j] - - - - - - - - - - - - - - - - j

Either characters S(i) and S(j) are identical or not.

If S(i) and S(j) are identical, then

V (i , j) = 1+??

Comment: Here I wait for classroom participation - Hope for the
baroque, “over-answered” reply

Sequence Alignment



Case1 in detail

The point I want to emphasize is that we (the recursion designer)
don’t know how much will be added. That will be determined at
execution time by the computer. But we know how to name what
will be added.

Sequence Alignment



Case1 in detail

The point I want to emphasize is that we (the recursion designer)
don’t know how much will be added. That will be determined at
execution time by the computer. But we know how to name what
will be added.
It is named

V (i − 1, j − 1)

Sequence Alignment



Case1 in detail

The point I want to emphasize is that we (the recursion designer)
don’t know how much will be added. That will be determined at
execution time by the computer. But we know how to name what
will be added.
It is named

V (i − 1, j − 1)

So

V (i , j) = 1 + V (i − 1, j − 1) when S1(i) = S2(j)

Sequence Alignment



When characters S1(i) and S2(j) align

If S1(i) and S2(j) align to each other, but are not identical, then

V (i , j) =??

Sequence Alignment



When characters S1(i) and S2(j) align

If S1(i) and S2(j) align to each other, but are not identical, then

V (i , j) =??

V (i , j) = V (i − 1, j − 1) when S1(i) 6= S2(j)

Sequence Alignment



Case 1 in detail

Recap: When character S1(i) aligns with S2(j)

Then:

V (i , j) = 1 + V (i − 1, j − 1) if S1(i) = S2(j)
and

V (i , j) = V (i − 1, j − 1) if S1(i) 6= S2(j)

Sequence Alignment



Cases 2 and 3 in detail

When S1(i) appears to the left of S2(j), then S2(j) must appear
opposite a space in A. In that case,

V (i , j) = V (i , j − 1).

Symmetrically, when S1(i) appears to the right of S2(j), then S1(i)
must appear opposite a space in A. In that case,

V (i , j) = V (i − 1, j).

Sequence Alignment



Putting it all together

Putting the three cases together, the general recurrences are

V (i , j) equals the Maximum of:

1 + V (i − 1, j − 1) (if S1(i) = S2(j))

V (i − 1, j − 1) (if S1(i) 6= S2(j))

V (i , j − 1).

V (i − 1, j).

Sequence Alignment



Putting it all together

Putting the three cases together, the general recurrences are

V (i , j) equals the Maximum of:

1 + V (i − 1, j − 1) (if S1(i) = S2(j))

V (i − 1, j − 1) (if S1(i) 6= S2(j))

V (i , j − 1).

V (i − 1, j).

We also need the Base Case:
V (i , 0) = V (0, j) = 0 for any i and j .

Sequence Alignment



Evaluating the recurrences

At this point we have correct recurrences to express V (i , j) in
terms of smaller problem instances, and we can easily encode the
recurrences in a program. The program would start with a call to

compute V (n,m), which would then recursively compute smaller
instances. But this top-down use of the recurrences would be very

inefficient, due to redundant recursive calls.

Sequence Alignment



Instead, we use the recurrences in a bottom-up manner. We don’t
make explicit recursive calls to determine V values, but only do
look-ups of previously computed V values.

First we take care of all of the Base-Cases, V (i , 0) = V (0, j) = 0.

At this point, note that the value of V (1, 1) can be determined.

That is, the general recurrence for V (i , j) requires that we have
available V (i − 1, j − 1),V (i − 1, j) and V (i , j − 1). For i = j = 1,
we do have those values, so V (1, 1) can be determined, using the
recurrences.

Sequence Alignment



Evaluating the recurrences bottom up

After setting the value for V (1, 1), we can set the value for V (1, 2)
or for V (2, 1).

Extending this observation, we can set the all the values V (1, j) for
increasing values of j , or set all the values of V (i , 1) for increasing
values of i .

Then we can determine the values for V (i , 2) or V (2, j) etc.

Finally, when we have determined V (n,m), we have the value of
the optimal alignment, but not the actual alignment itself.

Row-wise or Colum-wise evaluation of V - This is Dynamic
Programming!

Sequence Alignment



How efficient is the Dynamic Programming approach

We have (n + 1) × (m + 1) values of V that have to be
determined. Using the recurrences, and evaluating V values by DP
(not by recurrsive calls), each V value can be determined with a
constant number of operations.

So the total number of operatations is O(nm). Vastly, Vastly
faster than exhaustive enumeration of all alignments, and vastly
faster than a top-down use of the recurrences.

Sequence Alignment



The traceback to actually determine the optimal alignment. That
is for the next lecture.

Sequence Alignment


