
A cleaner proof of the correctness of the Min Cost Arborescence Algo-
rithm. Feb. 1, 2011

Let G be the original graph, and for each node v, let δv be the minimum
cost of the edges entering v. Now at every node v 6= r, subtract δv from the
cost of every edge entering v, and let G1 denote the resulting graph. Note that
all edge costs are non-negative. We proved that a minimum cost arborescence
in G1 is a min cost arboresence in G. So we consider the problem of finding
a min cost arborescence in G1.

The algorithm then selects exactly one edge of cost zero into each v 6= r.
Let Ẽ1 be the set of those n− 1 selected edges. If they form an arborescence
rooted at r, then return Ẽ1 since it has cost zero which is the min possible
cost in G1. If they do not form an arborescence, then we proved that there
must be a directed cycle C in Ẽ1 which does not contain r. Contract C to
a single node c and let G2 be the resulting graph1 Then recursively find a
minimum cost arborescence in G2.

The recursion ends because the instances get smaller (fewer nodes and
edges). In the extreme case the algorithm creates a graph with one edge
from r to a node v. After the cost reduction at that level of the recursion,
that single edge has cost zero and so is a min cost arborescence. So assume,
inductively that the algorithm finds a min cost arborescence T2 for G2.

Let (u, c) be the edge in T2 directed into node c, and let (u, v) be the
corresponding edge in G1 where v ∈ C. Now, starting with T2, expand c

back to the cycle C minus the edge in C that is directed into v. The result is
an arborescence T1 in G1. We want to prove that T1 is a min cost arborescence
in G1. Note that the edge costs in T1 are their costs in G1, but since the
costs of the expanded edges from C are zero, the cost of T1 in G1 is the same
as the cost of T2 in G2.

Let T ′

1
be a min cost arborescence in G1, and consider C as a set of nodes.

Unless T ′

1
already has this form, remove all but one edge in T ′

1
into the nodes

in C, say node v; remove any edge in T ′

1
between two nodes in C; and then

add in all the edges in C except the edge in C into node v. The resulting
graph is an arboresence T ′′

1
rooted at r, and its cost is less than or equal to

that of T ′

1
. But this must be equality since T ′

1
is a min cost arborescence in

G1. Hence there always is a min cost arboresence in G1 with the property

1Note that in this exposition we only contract a single cycle even if there are several.

This works fine and there is no loss of generalization in recursing after contracting just a

single cycle.

1



that only one node in C has an edge into it from a node outside of C, and
the edges between nodes strictly inside C have cost zero.

Now we want to prove that T1 (the arborescence in G1 created by the
algorithm) and T ′′

1
have the same costs in G1. Suppose not, so that the cost

of T ′′

1
is strictly less than the cost of T1 in G1. By construction, if the nodes

of C in T1 are contracted to a single node, the result is the arborescence T2

in G2. Moreover, the cost of T1 in G1 is equal to the cost of T2 in G2. Now
T ′′

1
also has the property that only one node in C has an edge into it from a

node outside of C, and any edge between two nodes in C has cost zero. So
consider the directed tree created by contracting the nodes of C in T ′′

1
to a

single node. The result is an arborescence T ′′

2
in G2, and its cost is equal to

the cost of T ′′

1
in G1. So the cost of T ′′

2
is strictly less than the cost of T2 in

G2. But that contradicts the assumption that T2 is a min cost arborescence
in G2.

Therefore the algorithm finds a min cost arborescence in G1 and hence
in G.

2


