A cleaner proof of the correctness of the Min Cost Arborescence Algorithm. Feb. 1, 2011

Let G be the original graph, and for each node v, let δ_v be the minimum cost of the edges entering v. Now at every node $v \neq r$, subtract δ_v from the cost of every edge entering v, and let G_1 denote the resulting graph. Note that all edge costs are non-negative. We proved that a minimum cost arborescence in G_1 is a min cost arborescence in G. So we consider the problem of finding a min cost arborescence in G_1 .

The algorithm then selects exactly one edge of cost zero into each $v \neq r$. Let \tilde{E}_1 be the set of those n-1 selected edges. If they form an arborescence rooted at r, then return \tilde{E}_1 since it has cost zero which is the min possible cost in G_1 . If they do not form an arborescence, then we proved that there must be a directed cycle C in \tilde{E}_1 which does not contain r. Contract C to a single node c and let G_2 be the resulting graph¹ Then recursively find a minimum cost arborescence in G_2 .

The recursion ends because the instances get smaller (fewer nodes and edges). In the extreme case the algorithm creates a graph with one edge from r to a node v. After the cost reduction at that level of the recursion, that single edge has cost zero and so is a min cost arborescence. So assume, inductively that the algorithm finds a min cost arborescence T_2 for G_2 .

Let (u, c) be the edge in T_2 directed into node c, and let (u, v) be the corresponding edge in G_1 where $v \in C$. Now, starting with T_2 , expand c back to the cycle C minus the edge in C that is directed into v. The result is an arborescence T_1 in G_1 . We want to prove that T_1 is a min cost arborescence in G_1 . Note that the edge costs in T_1 are their costs in G_1 , but since the costs of the expanded edges from C are zero, the cost of T_1 in G_1 is the same as the cost of T_2 in G_2 .

Let T'_1 be a min cost arborescence in G_1 , and consider C as a set of nodes. Unless T'_1 already has this form, remove all but one edge in T'_1 into the nodes in C, say node v; remove any edge in T'_1 between two nodes in C; and then add in all the edges in C except the edge in C into node v. The resulting graph is an arboresence T''_1 rooted at r, and its cost is less than or equal to that of T'_1 . But this must be equality since T'_1 is a min cost arborescence in G_1 . Hence there always is a min cost arborescence in G_1 with the property

¹Note that in this exposition we only contract a single cycle even if there are several. This works fine and there is no loss of generalization in recursing after contracting just a single cycle.

that only one node in C has an edge into it from a node outside of C, and the edges between nodes strictly inside C have cost zero.

Now we want to prove that T_1 (the arborescence in G_1 created by the algorithm) and T''_1 have the same costs in G_1 . Suppose not, so that the cost of T''_1 is strictly less than the cost of T_1 in G_1 . By construction, if the nodes of C in T_1 are contracted to a single node, the result is the arborescence T_2 in G_2 . Moreover, the cost of T_1 in G_1 is equal to the cost of T_2 in G_2 . Now T''_1 also has the property that only one node in C has an edge into it from a node outside of C, and any edge between two nodes in C has cost zero. So consider the directed tree created by contracting the nodes of C in T''_1 to a single node. The result is an arborescence T''_2 in G_2 , and its cost is equal to the cost of T''_1 in G_1 . So the cost of T''_2 is strictly less than the cost of T_2 in G_2 . But that contradicts the assumption that T_2 is a min cost arborescence in G_2 .

Therefore the algorithm finds a min cost arborescence in G_1 and hence in G.