
The Unique Decypherability Problem

Basic Definitions: A code C is just a finite set of finite length strings,
called codewords. A message M is a string created by concatenating strings
from C, with repetitions allowed. So there is no bound on the length of a
message. A message M is called uniquely decypherable (UD) if there is only
one way to write M as the concatenation of strings in C. For example, if
C = {aba, a, abb, ab, ba} then the message abbab is UD, while the message
aba is not UD. A code C is called UD if and only if every message that can
be created from C is UD. So, the code C in the example is not UD, but if we
remove the strings ba and ab from C, the resulting code would be UD. Note
that the definition of a code being UD is over an infinite set of messages.

The UD problem, given a code C, is to determine if C is UD. At first,
it may seem that the UD problem would be undecidable (it seems similar to
the famous undecidable Post Correspondence Problem). But, in fact it has
a polynomial-time solution, and it is even conjectured to have a linear-time
solution. There are several algorithms for the UD problems, but they are all
similar and can be thought of as a path problem on a graph.

Given C, we build a graph G with one node for each string that occurs as
a suffix of any codeword in C, including a node for each complete codeword
(the trivial suffix). Note that the same string might occur as a suffix of more
than one codeword, but it is only represented by a single node in G. We
label each node by the suffix (string) it represents. In graph G, there is an
edge from node u to node v is there is a codeword c such that c = uv (this
is an L1 edge), or if u = cv (this is an L2 edge).

Then, C is not UD if and only if there is a path with at least one edge
from a node representing a codeword to a node representing a codeword.

Your problem is to give a proof of this result. Try to make the proof
contain an intuitive explanation.

OPTIONAL PROBLEMS:

A. With the use of a suffix tree, all the L1 and L2 edges can be found
in O(nm) time, where n is the total length of the codewords, and m is the
number of codewords. It is not an assigned problem, but you might think
about how to do this.

B. An open question is to find a solution to the UD problem that runs in
O(n) time.
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C. Here is another open problem related to the UD problem. It is known
that a necessary condition for a code to be UD is the following:

Let Σ denote the alphabet of characters used in the codewords. In the
above example, Σ = {a, b}, but in general the alphabet does not need to be
binary. Now chose any probability distribution p on the characters in the
alphabet, for example p(a) = 1/3, p(b) = 2/3, and then compute the prob-
ability of each codeword in the code, using the distribution p. For example
p(aba) = 1/3 × 2/3 × 1/3. Then sum those probabilities over all the code-
words in the code. Let S(C, p) denote the sum, where C is the code and p
is a chosen probability distribution on the alphabet of characters used in the
codewords.

A necessary, but not sufficient condition for a code C to be UD is that
S(C, p) ≤ 1 for any p. This is a generalization of what is called the MacMillin
condition, which is really just the special case where p is the uniform distri-
bution.

Open Problem: Given C, what is the p that maximizes S(C, p)? More
realisticly, what is an (efficient) algorithm to find the best p?
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