The Unique Decypherability Problem

Basic Definitions: A code C'is just a finite set of finite length strings,
called codewords. A message M is a string created by concatenating strings
from C, with repetitions allowed. So there is no bound on the length of a
message. A message M is called uniquely decypherable (UD) if there is only
one way to write M as the concatenation of strings in C'. For example, if
C = {aba, a,abb,ab,ba} then the message abbab is UD, while the message
aba is not UD. A code C'is called UD if and only if every message that can
be created from C'is UD. So, the code C' in the example is not UD, but if we
remove the strings ba and ab from C', the resulting code would be UD. Note
that the definition of a code being UD is over an infinite set of messages.

The UD problem, given a code C, is to determine if C'is UD. At first,
it may seem that the UD problem would be undecidable (it seems similar to
the famous undecidable Post Correspondence Problem). But, in fact it has
a polynomial-time solution, and it is even conjectured to have a linear-time
solution. There are several algorithms for the UD problems, but they are all
similar and can be thought of as a path problem on a graph.

Given C, we build a graph G with one node for each string that occurs as
a suffix of any codeword in C, including a node for each complete codeword
(the trivial suffix). Note that the same string might occur as a suffix of more
than one codeword, but it is only represented by a single node in G. We
label each node by the suffix (string) it represents. In graph G, there is an
edge from node u to node v is there is a codeword ¢ such that ¢ = uwv (this
is an L1 edge), or if u = cv (this is an L2 edge).

Then, C' is not UD if and only if there is a path with at least one edge
from a node representing a codeword to a node representing a codeword.

Your problem is to give a proof of this result. Try to make the proof
contain an intuitive explanation.

OPTIONAL PROBLEMS:

A. With the use of a suffix tree, all the L1 and L2 edges can be found
in O(nm) time, where n is the total length of the codewords, and m is the
number of codewords. It is not an assigned problem, but you might think
about how to do this.

B. An open question is to find a solution to the UD problem that runs in
O(n) time.



C. Here is another open problem related to the UD problem. It is known
that a necessary condition for a code to be UD is the following:

Let ¥ denote the alphabet of characters used in the codewords. In the
above example, > = {a, b}, but in general the alphabet does not need to be
binary. Now chose any probability distribution p on the characters in the
alphabet, for example p(a) = 1/3,p(b) = 2/3, and then compute the prob-
ability of each codeword in the code, using the distribution p. For example
p(aba) = 1/3 x 2/3 x 1/3. Then sum those probabilities over all the code-
words in the code. Let S(C,p) denote the sum, where C' is the code and p
is a chosen probability distribution on the alphabet of characters used in the
codewords.

A necessary, but not sufficient condition for a code C' to be UD is that
S(C,p) <1 for any p. This is a generalization of what is called the MacMillin
condition, which is really just the special case where p is the uniform distri-
bution.

Open Problem: Given C, what is the p that maximizes S(C,p)? More
realisticly, what is an (efficient) algorithm to find the best p?



