
“bti1033” — 2005/6/10 — page 413 — #1

BIOINFORMATICS Vol. 21 Suppl. 1 2005, pages i413–i422
doi:10.1093/bioinformatics/bti1033

Efficient computation of close lower and upper
bounds on the minimum number of
recombinations in biological sequence evolution

Yun S. Song∗, Yufeng Wu and Dan Gusfield

Department of Computer Science, University of California, Davis, CA 95616, USA

Received on January 15, 2005; accepted on March 27, 2005

ABSTRACT
Motivation: We are interested in studying the evolution of DNA
single nucleotide polymorphism sequences which have under-
gone (meiotic) recombination. For a given set of sequences,
computing the minimum number of recombinations needed
to explain the sequences (with one mutation per site) is a
standard question of interest, but it has been shown to be NP-
hard, and previous algorithms that compute it exactly work
either only on very small datasets or on problems with special
structure.
Results: In this paper, we present efficient, practical methods
for computing both upper and lower bounds on the minimum
number of needed recombinations, and for constructing evolu-
tionary histories that explain the input sequences. We study in
detail the efficiency and accuracy of these algorithms on both
simulated and real data sets. The algorithms produce very
close upper and lower bounds, which match exactly in a sur-
prisingly wide range of data. Thus, with the use of new, very
effective lower bounding methods and an efficient algorithm
for computing upper bounds, this approach allows the effi-
cient, exact computation of the minimum number of needed
recombinations, with high frequency in a large range of data.
When upper and lower bounds match, evolutionary histories
found by our algorithm correspond to the most parsimonious
histories.
Availability: HapBound and SHRUB, programs implementing
the new algorithms discussed in this paper, are available at
http://wwwcsif.cs.ucdavis.edu/∼gusfield/lu.html
Contact: yssong@cs.ucdavis.edu

1 INTRODUCTION
Recombination is a biological process common to most
forms of life. Meiotic recombination takes two equal length
sequences and produces a third sequence of the same length
consisting of some prefix of one of the sequences followed
by a suffix of the other sequence. Meiotic recombination
is one of the principal evolutionary forces responsible for
shaping genetic variation within species, and other forms of

∗To whom correspondence should be addressed.

recombination allow the sharing of genetic material between
species. Efforts to deduce patterns of historical recombination
or to estimate the frequency or the location of recombination
are central to modern-day genetics. An example is the recent
study of the human genome (McVean et al., 2004).

Although the results and methods presented in this paper
mostly use the terminology of meiotic recombination in popu-
lations, the results and methods themselves are applicable in a
broader biological context. The results apply to any biological
phenomena involving a movement of material (represented as
a substring in a sequence) from one entity to another, as long
as its location in the new sequence is the same as in the origin-
ating sequence. Thus, the results also apply to many problems
in phylogenetic networks, lateral gene transfer and so on.

In studying recombination, a common underlying prob-
lem is to determine the minimum number of recombinations
needed to generate a given set of molecular sequences from
an ancestral sequence (which may or may not be known),
using some specified model of the permitted site mutations.
A mutation at a site is a change of state at that site not caused
by recombination. A common assumption is the infinite sites
model in population genetics, i.e. that any site (in the study)
can mutate at most once in the entire history of the sequences.
This implies that each site in any of the studied sequences
can take on only two states, and hence the sequences we see
today are binary sequences. The strongest current validation
of this binary sequence assumption comes from data where
each site is a single nucleotide polymorphism (SNP) site, i.e.
a site where two of the four possible nucleotides appear in the
population with a frequency above some set threshold.

Given a set M of binary sequences, we let Rmin(M) denote
the minimum number of recombinations needed to generate
M from any ancestral sequence, allowing only one mutation
per site over the entire history of the sequences. The prob-
lem of computing or estimating Rmin(M) has been studied
in a number of papers. A variation to the problem occurs
when a specific ancestral sequence is known in advance. No
polynomial-time algorithm for either problem is known, and
the second problem is claimed to be NP-hard (Wang et al.,
2001).

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i413

http://wwwcsif.cs.ucdavis.edu/

“bti1033” — 2005/6/10 — page 414 — #2

Y.S.Song et al.

Song and Hein (2003) developed an algorithm that com-
putes Rmin(M) exactly, but it takes super-exponential time, so
the program based on it can handle only very small datasets.
There is also a polynomial-time algorithm (Gusfield, 2004;
Gusfield et al., 2004) that computes Rmin(M) in special cases
that arise frequently when the recombination rate is ‘modest’.
Hein (1990, 1993) studied a problem similar to comput-
ing Rmin(M), but under a technically different model, and
provided a heuristic and a super-exponential time algorithm
for that problem. There are no known efficient algorithms (in
theory or practice) that compute non-trivial upper bounds on
Rmin(M). In this paper we discuss practical algorithms that
compute close upper and lower bounds on Rmin(M).

1.1 Lower bounds on Rmin(M)

Since there are no efficient algorithms to compute Rmin(M),
several papers (Bafna and Bansal, 2004, 2005; Gusfield and
Hickerson, 2004; Hudson and Kaplan, 1985; Myers and
Griffiths, 2003; Song and Hein, 2004) have considered effi-
cient computation of lower bounds on Rmin(M), and other
papers have shown that the use of good lower bounds can
address some questions about recombination, such as find-
ing potential recombination hotspots in genomes (Fearnhead
et al., 2004).

The first lower bound method was developed by Hudson and
Kaplan (1985), and it has been widely used both as a lower
bound on Rmin(M) and as a way to estimate where recombina-
tions may have occurred [e.g. see Clark et al. (1998)]. We call
this lower bound the HK bound.

Very little progress was made in improving the HK bound
until the dissertation of Simon Myers (Myers, 2002; Myers
and Griffiths, 2003). There, the haplotype lower bound was
developed along with a ‘composite method’ that dramatically
improves the quality of the bound. The composite version of
the haplotype bound, which we will describe in detail below,
was implemented in a program called RecMin. [RecMin also
implements a different bound, called the history bound, but
that bound is computable in practice for only small datasets,
so when we refer to bounds computed by RecMin, we refer
only to those based on haplotype bounds. Bafna and Bansal
(2005) have recently made considerable progress on the his-
tory bound.] RecMin requires the setting of two parameters
(s and w), which affect both the time and the quality of
the bounds produced. Using the default parameter settings,
RecMin runs very quickly and the bounds produced are typ-
ically much larger than the HK bounds (often between two
and three times as large). Thus, RecMin is a tremendous
improvement over HK, and it has also proved superior to all
other known practical lower bound methods (until this paper).
However, it is common that better bounds are produced by
RecMin by increasing the parameters from their default set-
tings, and there is no theory that specifies a good time/accuracy
tradeoff for setting the parameters. Increasing the parameters
never reduces the bound produced and often increases it, while

typically increasing the running time. RecMin documentation
advises the user to experiment with these parameters, gradu-
ally increasing them until the bound does not change further.
That does not guarantee that the bound could not improve by
an additional increase of the parameters.

Since even the default setting of RecMin produces very
impressive bounds compared with other practical methods,
but higher bounds are typically observed when the paramet-
ers are increased, and one does not know where to stop, we
define the optimal RecMin problem: compute the lower bound
that RecMin would produce (if allowed enough time) when
both parameters are set to their maximum possible value. The
bound produced is called the optimal RecMin bound.

The program RecMin might produce the optimal RecMin
bound when the parameters are set below their maximum val-
ues, but the user would not know for sure that the optimal
RecMin bound had been obtained. Assurance is possible only
if the parameters are set to their maximum value, and in that
case RecMin will typically not terminate in a reasonable time
unless the problem is very small.

1.2 Main results: practical computation of close
upper and lower bounds

In this paper we do several things. First, we introduce an
algorithm that uses integer linear programming (ILP) to com-
pute the optimal RecMin bound. Second, with additional
ideas that dramatically speed up the ILP, we show through
extensive experimentation using simulated and real datasets
that this approach computes the optimal RecMin bound faster
than RecMin (when RecMin can compute it) and that it can
efficiently compute the optimal RecMin bound for problem
sizes considered large in current applications (where RecMin
fails). Third, we introduce additional ideas that allow the
algorithm to find lower bounds even better than the optimal
RecMin bound, and we show through extensive experiments
that this approach remains practical on problem sizes con-
sidered large today. Thus, we provide a practical method
that is superior to all other known practical lower bound
methods. Fourth, on the upper bound side, we present an
efficient algorithm that, when given an input set of sequences
M , constructs a network that generates M using recombina-
tions and one mutation per site. [For a formal definition
of a network—or an ancestral recombination graph (ARG)
in the population genetics literature—see (Gusfield, 2004;
Gusfield et al., 2004).] The number of recombinations used
in the network produced by the algorithm provides an upper
bound on Rmin(M), but the network itself is of independ-
ent interest. Fifth, and most importantly, through extensive
experimentation with simulated and real data, we show that
the computed upper and lower bounds are frequently very
close, and are equal with high frequency for a surprisingly
large range of data. Thus, with the use of a very effective
lower bound and an efficient algorithm for computing upper
bounds, this approach allows the efficient, exact computation

i414

“bti1033” — 2005/6/10 — page 415 — #3

Close lower and upper bounds on the minimum number of recombinations

of Rmin(M) with high frequency in a large range of data, much
larger than with the use of the algorithm in (Song and Hein,
2003). This is an important empirical result that is expec-
ted to have a very significant impact. Programs implementing
the new algorithms discussed in this paper are available at
http://wwwcsif.cs.ucdavis.edu/∼gusfield/lu.html. The lower
bounds are computed by the program HapBound, and the
upper bounds and networks are computed by the program
SHRUB, which also produces code that can be input to an
open source program to display the constructed network.

2 HAPLOTYPE AND COMPOSITE BOUNDS
Myers and Griffiths (2003) introduced a lower bound, h(M),
called the ‘haplotype bound’. Consider the set of sequences M

arrayed in a matrix. Then h(M) is the number of distinct rows
of M , minus the number of distinct columns of M , minus one.
It is easy to establish that this is a lower bound on Rmin(M).
Simulations using sequences generated by the program MS
(Hudson, 2002) show that h(M) by itself is a very poor bound,
often a negative number. However, using it with the composite
method explained below leads to impressive lower bounds.

2.1 The composite method
Recall that the sites in M have a fixed linear order. Myers and
Griffiths (2003) introduced the ‘composite method’ to com-
bine lower bounds computed (by any method) over a family
G of intervals of sites. For an interval I ∈ G, let M(I) denote
the matrix M restricted to the sites in I , and let L(I) denote
a lower bound computed (somehow) for Rmin(M(I)). Each
L(I) is called a ‘local bound’. Then, a composite lower bound
on Rmin(M) is computed from these local bounds by picking
the smallest number of points on the real line, so that for
any interval I ∈ G, at least L(I) of the selected points are
contained in interval I . The selection of the points can be
computed in linear time by a greedy left-to-right sweep of
the intervals. In particular, whenever the right endpoint of an
interval I is reached, if z < L(I) points in I have already been
selected, then select an additional L(I) − z points as far right
in I as possible. The correctness of this composite bound,
which we leave to the reader, relies on the assumption that the
linear ordering of the sites is fixed (as is true when the sites
come from a chromosome).

The program RecMin implements the composite method
and uses haplotype bounds for the local bounds, but with one
added idea. For a subset of sites S (not necessarily contigu-
ous), let M(S) be M restricted to the sites in S, and h(S)

be the haplotype bound on M(S). In RecMin, the user spe-
cifies two parameters s and w, and RecMin computes h(S)

for every subset S with s or fewer sites, provided that no pair
of sites in S is more than w positions apart. Then, for every
interval I , L(I) is set to the largest h(S), where S is con-
tained in I . The advantage is that h(S) may be larger than
h(M(I)). These local bounds on intervals are then used in
the composite method, as before, to obtain an overall lower

bound on Rmin(M). RecMin also uses heuristics to avoid the
explicit examination of some of the specified subsets. The
default settings for RecMin are s = 8 and w = 12, but we have
found that it gives better bounds in reasonable time when we
set s = w = 20. Overall, RecMin is a very impressive, effi-
cient program for computing lower bounds on Rmin(M), and
it is far superior to any of the (previous) practical alternat-
ives. However, as noted earlier, for large problem instances
of the size of current interest, RecMin cannot compute the
optimal RecMin bound and know that the bound has been
computed.

3 NEW RESULT: COMPUTING THE OPTIMAL
RecMin BOUND

We now begin to develop the new results in this paper, first
showing an efficient method (in practice) to compute the
optimal RecMin bound.

At the conceptual level, to compute the optimal RecMin
bound, it suffices to find for each interval I in M , a subset
of sites S∗ in I (possibly strictly in I) that maximizes h(S)

over every subset of sites, S, in I . Then, for each I , we set
L(I) = h(S∗); the composite method uses these local bounds
to obtain the optimal RecMin bound. It is easy to write an
integer (0/1) linear programming formulation to find h(S∗)
for any interval I . That formulation uses one variable per site,
one variable per row and one inequality per pair of rows. How-
ever, for any interval I , an optimal subset S∗ can be found by
finding a smallest subset of sites S in I so that every row in
M(S) is distinct after removing duplicate rows. [S.R. Myers,
(personal communication) also observed this during his thesis
work.] This problem is easily cast as a classic set cover prob-
lem, where each site j in M can cover a pair of rows {i, i′} if
M[i, j] �= M[i′, j]. Any such instance of set cover is easily
formulated as an integer programming problem, with one vari-
able per site and one inequality per pair of rows, but no explicit
variables for rows. The result is that often many identical
inequalities are produced, and duplicate inequalities can be
removed, allowing faster solution of the ILP. After consid-
erable experimentation, we found that this ILP formulation
solves much faster than the formulation using row variables.
For problem sizes considered large today, we can in general
find S∗ for a large interval I in somewhere between fractions
of a second and several seconds. In our experiments, we have
used the GNU ILP solver so that we can release a free version
of our software, and we have also used the commercial ILP
solver CPLEX. For large problems, CPLEX is significantly
faster, but the GNU ILP solver is fast enough to illustrate the
practicality of our programs (see Section 3.2 and Appendix).
Recently, Bafna and Bansal (2005) also considered finding
the haplotype bound using ILP. Unlike us, however, they did
not solve their ILP exactly; they instead proposed a greedy
algorithm for constructing good estimates.

In the above method to compute the optimal RecMin bound,
we explicitly find L(I ′) for every subinterval I ′ of I = [1, m].

i415

http://wwwcsif.cs.ucdavis.edu/

“bti1033” — 2005/6/10 — page 416 — #4

Y.S.Song et al.

If M has m sites, then this approach executes C(m, 2) integer
programs. This is quadratic in m, rather than exponential in m

(the worst case for RecMin), but each computation solves an
(expensive) ILP problem. However, the number of intervals
we need to examine, and the number of ILP computations, can
be considerably reduced. Suppose we find an optimal subset
S∗ for interval I = [1, m], and the leftmost and rightmost
points of S∗ are p and q, respectively. Then S∗ will also be
an optimal subset for any interval I ′ contained in [1, m] but
containing [p, q]. There is no need to solve an ILP problem
for that I ′, and further L(I ′) can be ignored in obtaining the
overall composite bound. We can exclude those intervals from
further consideration. However, that reasoning does not (yet)
exclude the subintervals contained in [1, q − 1], [p + 1, m],
[p + 1, q] or [p, q − 1]. But we can recursively apply the
same idea in each of these four intervals: for each of these four
intervals, we find an optimal S∗, and then we recurse on four
new subintervals defined from the interval and the span of S∗.
Generally, over the entire computation, far fewer than C(m, 2)

ILP computations are needed. In our simulations, this simple
idea greatly reduces the number of ILP problems that need to
be solved. When m and n are about the same size, we typically
need to solve ∼25% of the C(m, 2) problems, but when m is
several times larger than n, the percentage typically falls to
<5%. On problems of the size of current interest, HapBound
runs in seconds to minutes (see Section 3.2 and Appendix).

3.1 Improving the optimal RecMin bound
The program HapBound has an option (-S) that typically pro-
duces a better lower bound than the optimal RecMin bound.
The option increases the running time, but not beyond the
range of practicality.

In the above method, if S∗ is the optimal subset found for
interval I , then L(I) is h(S∗) = n − |S∗| − 1, where M is
assumed to have n distinct rows. But an increase in the local
bound for I may increase the composite bound. In the program
HapBound, we have implemented a test to determine whether
the sequences in M(S∗) can actually be generated with only
h(S∗) recombinations. If not, then L(I) can be set to h(S∗)+1.
We can also test whether that bound is tight, or whether L(I)

should be increased again by one.
Given a set of sequences M(S), we say that M(S) is self-

derivable (SD) if M(S) can be generated from some ancestral
sequence in M(S) using recombinations and one mutation per
site in S, and if during the generation of M(S) only sequences
in M(S) are generated. Not every set of sequences is SD.

Lemma 3.1. Given a subset of sites S in M , the sequences
M(S) can be generated using only h(S) recombinations, and
one mutation per site of S, if and only if the sequences M(S)

are SD.

We omit the proof, but it is an easy extension of the proof that
h(S) is a correct lower bound on Rmin(M(S)).

3.1.1 Algorithms for the self-derivability test We use an
algorithm which runs in polynomial time in n, and exponential
time in m (worst case), but is observed to be practical for large
datasets of current interest. It works as follows. When only
recombinations are permitted, the test for self-derivability of a
set of sequences M(S) from a fixed pair of ancestral sequences
has an efficient solution (Kececioglu and Gusfield, 1998). To
start, a ‘reached set’ of sequences consists of the ancestral
sequences alone. Then, at each step, we try to expand the
reached set by finding a pair of sequences (A, B) in the reached
set that can recombine to create a sequence C that is in M(S)

but not in the reached set. Repeat until either the reached set
contains all of M(S) or until no further expansion is possible.
This approach can be sped up by preprocessing (Kececioglu
and Gusfield, 1998), but clearly it takes only polynomial time.

The above method must be modified when there is only
one ancestral sequence and site mutations are allowed. How-
ever, if M(S) is SD, then for every site i ∈ S, during any
self-derivation of M(S), a mutation at site i must occur in
some sequence in M(S) and generate another sequence in
M(S). Therefore those two sequences differ by exactly one
site. [It also follows that if there is a site i such that no pair
of sequences in M(S) differs only at i, then M(S) is not SD.]
Let MUTi be the set of sequence pairs that differ at exactly
site i. We modify the self-derivability test for recombinations
alone by now starting the reached set with a single ancestral
sequence and allowing the reached set to expand either by a
recombination, as before, or by the addition of a sequence B

in M(S) if a sequence A is already in the reached set and
(A, B) is in MUTi for some i, where no prior expansion
of the reached set used a pair in MUTi . That is, if M(S)

is SD, then there is a generation of M(S) where for every
site i in S, exactly one pair in MUTi is used to expand the
reached set. The self-derivability algorithm simply tries all
sequences in M(S) as the ancestral sequence, and all ways
to choose exactly one pair from each MUTi . The number of
choices is n × ∏

i∈S |MUTi |, which is bounded by [n/2]m
but is generally much less. Further, some combinations of
choices can be immediately ruled out and additional effect-
ive heuristics reduce the number of choices (details omitted
here).

The self-derivability test determines whether a local hap-
lotype bound is tight, or whether the local bound should be
increased by one. To test whether a local bound should be
increased by two, we note that this is the case when M(S)

is not SD and including one new sequence not in M(S) is
also not sufficient to allow the expanded set to be SD. If
one new sequence did allow the expanded set to be SD, then
the new sequence must either be the recombination of two
sequences in M(S) or differ from a sequence in M(S) at
exactly one site in S. There are only a polynomial number
of such candidate sequences, and so we can efficiently gener-
ate each new candidate sequence in turn, and test the resulting
set for self-derivability. If the sequences are SD in none of

i416

“bti1033” — 2005/6/10 — page 417 — #5

Close lower and upper bounds on the minimum number of recombinations

these tests, then the local bound should be increased by two,
otherwise just by one. We can continue in this way to determ-
ine whether the local bound should be increased by three,
etc. However, the time for each test increases too rapidly for
practical implementation.

The program HapBound, with option -S, tests each optimal
subset S∗ it finds to see whether M(S∗) is SD, and if not, to
see whether the local bound based on S∗ should be increased
by one or by two. For the datasets that we have examined, the
extra computation time for the -S option does not reduce the
practicality of the algorithm and frequently results in a lower
bound on Rmin(M) that is higher than the optimal RecMin
bound (comprehensive test results are shown in the Appendix
section).

3.2 Lower bounds for the LPL and ADH datasets
As an illustration, we examined the LPL data from Clark et al.
(1998), containing 88 rows and (coincidently) 88 sites before
removing sites with missing or non-SNP data. That data-
set was also examined by Myers and Griffiths (2003). (The
first paper uses 42 sites from the full data in the recombina-
tion analysis, and the second paper uses 48 sites. For clearer
comparison, we also use the same 48 sites.)

Using CPLEX to solve the ILP problems, HapBound com-
puted the optimal RecMin bound of 75 in 31 s, and HapBound
-S computed a bound of 78 in 1643 s, on a 2 GHz machine.
Using the GNU ILP solver on the same machine, the times
were 871 and 3326 s, respectively. The program RecMin with
the default settings produced a bound of 59 in 3 s. It found the
optimal RecMin bound of 75 with parameters s = w = 25
in 7944 s. As mentioned earlier, a user would not know that
this was the optimal RecMin bound and we set s = w = 48,
but RecMin did not finish within 5 days of execution. Inter-
estingly, the analysis by Myers and Griffiths (2003), based on
RecMin, reports a lower bound on Rmin(M) for these data of
only 70, rather than 75. This is due to running RecMin with
parameters that are too low (S.R. Myers, personal communica-
tion). This illustrates a central point of this section, that with
RecMin one does not know which parameter settings are high
enough, and illustrates the utility of program HapBound. For
comparison, the HK bound is 22.

Th program HapBound has another option (-M) that is also
based on the self-derivability test but is more time consum-
ing, and it typically increases the lower bound by only a small
amount. Still, for small datasets, the program HapBound -M
has produced higher lower bounds than any other lower bound
program. For example, the ‘benchmark’ dataset by Kreitman
(1983) has 11 sequences and 43 sites. Song and Hein (2003)
established that Rmin(M) is exactly 7 for these data. The lower
bound method by Song and Hein (2004) has never been imple-
mented, but was manually applied to these data, producing a
lower bound of 7. HapBound -M ran in ∼3 s on these data
and also computed the lower bound of 7. The improved his-
tory lower bound of Bafna and Bansal (2005) also produces 7.

All other implemented lower bound methods that we know of
(nine in total) produce lower bounds of 5 or 6.

4 UPPER BOUND
In this section, we describe a method of computing upper
bounds on Rmin(M).

4.1 Definition of the upper bound
Given a k×� matrix A of binary sequences, the recombination
weight w(r|A − r) associated with row r is defined as the
minimum number of recombinations required to derive that
row from some other rows in A. More formally, w(r|A − r)

is the minimum value of d such that row r can be written as

Ai1,1 · · · Ai1,j1Ai2,j1+1 · · · Aid ,jd
Aid+1,jd+1 · · · Aid+1,�, (1)

where i1, . . . , id+1 ∈ {1, . . . , k}− {r}. We point out that some
of the row indices i1, . . . , id+1 appearing in (1) may be the
same, and that w(r|A − r) can be computed very efficiently
using a simple algorithm, which we describe in Section 4.2.

A column is called non-informative if it contains fewer than
two 0s or fewer than two 1s. For a given dataset M , our upper
bound on Rmin(M) uses the following procedure1:

Step 1. Set W = 0.

Step 2. Collapse identical rows into one and remove non-
informative columns. Repeat these operations until
neither is possible.

Step 3. Let A denote the data passed on from Step 2. If A is
empty, then stop. Otherwise, remove a row from A,
say the r-th row, set W ← W + w(r|A − r), and go
back to Step 2.

Note that, because non-informative columns get removed in
Step 2, it is always possible to write a row in A in terms of other
rows, and therefore w(r|A − r) is well-defined. Associated
with the execution of the above procedure is a sequence (or a
history) H of row removals considered in Step 3. Let WH (M)

denote the final value of W for that sequence of row removals.
Then, our full upper bound on Rmin(M) is defined as

Ru(M) := min
H∈H

WH (M), (2)

1We note that the procedure defined here is very similar to the procedure used
in the aforementioned history lower bound (Myers and Griffiths, 2003). One
difference between the two procedures is that we set W ← W +w(r|A−r) in
Step 3, whereas the history lower bound method sets W ← W +1. However,
even a single execution of our procedure will yield an upper bound, whereas
a lower bound can be obtained only if one finds the minimum possible value
over all possible sequences of row removals. This is a crucial difference,
and unlike our upper bound computation, there is no ‘fast’ version of the
history lower bound. In our upper bound approach, we try to explore many
possible sequences of removals in order to improve the quality of the upper
bound, but even a single execution of the procedure yields an upper bound.
Another difference is that our upper bound needs to be computed for the entire
data only, whereas the history lower bound method is a composite method,
combining the local history bounds from all subintervals.

i417

“bti1033” — 2005/6/10 — page 418 — #6

Y.S.Song et al.

where H denotes the set of all possible sequences of row
removals. If more than 30 or so sequences remain after the
first execution of Step 2, finding the full upper bound can take
a very long time, even if branch and bound techniques are
used. In such cases, the following modified step can be used
in lieu of Step 3 to obtain an efficient fast upper bound:

Step 3′. When removing a row, choose one of the rows which
minimize the sum w(r|A − r) + L(A − r), where
L(A − r) denotes some efficient lower bound for
A−r . Everything else remains the same as in Step 3.

Our current implementation—called SHRUB, an acronym for
‘simulated history recombination upper bound’—can use the
HK bound or an approximate haplotype bound for L(A − r).

Our experimental study shows that fast and full upper
bounds are either very close or equal quite frequently. In
SHRUB, the user can choose whether the full or a fast upper
bound should be computed. If the former option is chosen,
a fast upper bound is first computed, which is then used in a
full branch and bound search. If the latter option is chosen, the
user can also specify the maximum number K of different row
removals to be tried in Step 3′. When K is less than the total
number of rows that satisfy the condition in Step 3′, SHRUB
randomly chooses K rows from such rows. Because of the
randomization idea just mentioned, different runs of SHRUB
with a small value of K generally give different upper bounds.
From our experience, however, it seems that setting K to a
value between 3 and 5 yields bounds that are very close to the
K = ∞ bounds. For K > 1, the algorithm uses the branch
and bound ideas described in Section 4.3 to limit its search.
Note that the algorithm runs in polynomial time for K = 1.
When choosing K = 1, the user may also specify how many
runs should be performed; if more than one is chosen, a run
may terminate before completion if it is found that it cannot
improve on the current best bound. This algorithm also runs
in polynomial time and yields reasonably good upper bounds.

That Ru(M) is an upper bound on Rmin(M) follows from the
fact that every execution of the above steps generates, back-
wards in time, an ARG consistent with the given data M . In
fact, our software can generate an explicit representation of a
possible evolutionary history with as many recombinations as
that found by our method. In regard to constructing an ARG
backwards in time, collapsing two identical rows corresponds
to creating a new node where two edges meet (i.e. a coalescent
event); removing a non-informative column corresponds to a
mutation event; and removing the r-th row in Step 3 corres-
ponds to creatingw(r|A−r) recombination andw(r|A−r)+1
coalescent nodes, which get joined between themselves and
to other nodes in an appropriate way. Note that the specific
recombination and coalescent events in Step 3 depend on how
the removed row can be written in terms of some other rows
in the computation of the recombination weight.

As a concrete example, consider the toy dataset shown in
Figure 1. In Step 2 of the procedure, after the sixth column

Fig. 1. An ARG for a toy dataset. This corresponds to a particular
execution of the procedure described in Section 4.1. Closed circles
represent mutation events and open circles recombination events. A
mutation event at the i-th site is denoted by mi . For each recombina-
tion event, we use (i, j) to indicate that the corresponding crossover
point lies between columns i and j ; the recombinant sequence gets
its prefix (suffix) from the edge labeled ‘P’ (‘S’).

is removed, rows 3 and 6 become identical, thus allowing
us to remove one of them. No further removal of columns
or collapsing of rows is possible, so we proceed to Step 3.
In Step 3, any of the remaining five rows may be removed.
The ARG shown in Figure 1 corresponds to removing the row
with 00001. The recombination weight for this row is 2. Note
that there is more than one way to write this row in terms of
other rows. The history shown in Figure 1 corresponds to the
case where 00001 is derived from 00111, 11000 and 11011.
When 00001 is removed, the second column of the matrix
is now non-informative and therefore can be removed. No
further reduction can be done, so we again carry out Step 3.
The ARG under consideration corresponds to removing the
row with 0111. Its associated recombination weight is 1, and
it is derived from 0100 and 1011. The next execution of Step 2
completely eliminates the matrix, so the procedure terminates.

4.2 Computing the recombination weight
The recombination weight w(r|D − r) can be computed effi-
ciently by finding the number of consecutive right-maximal
intervals, which we now define. For non-negative integers a

and b satisfying a ≤ b, let I (a, b) denote the integral interval
{a, a + 1, . . . , b − 1, b}. Let (r1, r2, . . . , r�) be the r-th row in
a k × � matrix A = (Aij). We say that an interval I (a, b) is
right-maximal with respect to r in A if there exists a row i in
A − r satisfying rj = Aij , ∀j ∈ I (a, b), but there exists no
row in A − r satisfying rj = Aij , ∀j ∈ I (a, b + 1).

Lemma 4.2. Suppose that there are c+1 consecutive inter-
vals from 1 to � that are all right-maximal with respect to r in
A. Then w(r|A − r) = c.

Proof. Suppose that I (1, m1), I (m1 + 1, m2), . . . ,
I (mc−1 + 1, mc), I (mc + 1, �) are such intervals. Since

i418

“bti1033” — 2005/6/10 — page 419 — #7

Close lower and upper bounds on the minimum number of recombinations

I (1, m1) is right-maximal, j1 ≤ m1 in every sequence of
the form shown in (1). Similarly, since I (m1 +1, m2) is right-
maximal, j2 ≤ m2 in every sequence of the form shown in (1)
and so on. Therefore, d ≤ c for every sequence of the form
shown in (1).

4.3 Branch and bound
SHRUB uses two ideas to accelerate its search. The first one
is perhaps somewhat obvious and the second one perhaps
rather subtle. On some examples we analyzed, the second
idea proved to be very powerful, sometimes accelerating the
search by hundreds of times.

Looking forward. Let L(A) denote an efficient lower
bound for data A. Suppose that C is the current minimum
value of WH (M) and that we have created A, with W as its thus
far accumulated recombination weight. If W + L(A) ≥ C,
then we can backtrack the current search path.

Looking backward. There can often be more than one
sequence of row removals that lead to the same matrix A.
For any reduced matrix A, let WA be the current value of
accumulated recombination weights that is minimal over all
hitherto considered search paths producing A. When consid-
ering a new sequence of row removals that creates A, we can
backtrack if its accumulated recombination weight Wnew is
greater than or equal to WA. If Wnew < WA, then we can set
WA ← Wnew and continue on that search path.

The ideas sketched above are the key to the applicability of
our upper bound method. Combined with the aforementioned
algorithm for fast upper bounds, branch and bound methods
seem very effective for analyzing complex datasets. The prov-
able worst-case running time for finding the full upper bound
(2) is O(2n) rather than �(n!) as might be thought. For many
problems of current interest, this difference allows practical
computation. For example, we could obtain the optimal upper
bound for a dataset containing 40 sequences and 100 sites in
a few seconds; without branch and bound methods, an execu-
tion of the algorithm for computing the full upper bound did
not finish even after 1 day.

5 APPLICATIONS OF CLOSE LOWER AND
UPPER BOUNDS

5.1 Kreitman’s ADH data
As discussed in Section 3.2, HapBound -M yields a lower
bound of 7 for the ADH data of Kreitman (1983). Although
the exact method described by Song and Hein (2003) always
yields the minimum number, the currently available software
can handle at most nine sequences after data reduction, and
it generally requires large memory and long CPU time; for
Kreitman’s data, it required ∼1.5 GB of memory and took
∼30 min on 1.26 GHz Pentium III processor to produce the
minimum number 7.

Table 1. Lower and upper bounds for the LPL data, partitioned into three
site regions

Our new methods RecMin
Population Region 1 Region 2 Region 3 Region 1 Region 2 Region 3

Jackson 11 (13) 10 (10) 13 (16) 10 9 12
North Karelia 2 (2) 15 (17) 8 (10) 2 13 7
Rochester 1 (1) 14 (14) 8 (8) 1 12 7
All 13 (14) 21 (22) 25 (31) 12 21 22

Numbers in parentheses are upper bounds. Lower bounds on the left-hand side were
computed using HapBound -S -M.

In contrast, the current implementation of our upper bound
method took only a fraction of a second to analyze Kreitman’s
data, while also giving 7 for the number of recombination
events. Independently of all other methods, the fact that our
new lower and upper bounds agree implies that 7 is the
minimum number of recombination events for Kreitman’s
data, and the ARG produced by SHRUB corresponds to a
most parsimonious history.

5.2 The human LPL data
We applied our methods to the human LPL data (Nickerson
et al., 1998). These sequences were sampled from three
populations—namely, Jackson, North Karelia and Rochester.
In our analysis, we removed sites with missing or non-SNP
data. [That is, we ignored insertions/deletions, unphased sites
and sites with missing data. This is the treatment of the data
that was used by Nickerson et al. (1998) but is a different treat-
ment than in Section 3.2.] Following Myers and Griffiths, we
partitioned the LPL data into three site regions [cf. Table 5
of Myers and Griffiths (2003)]. It has been suggested that
region 2 corresponds to a recombination hotspot (Templeton
et al., 2000).

Shown on the left-hand side of Table 1 is a summary of
our new lower and upper bounds for the three site regions.
We considered the three populations separately as well as
together. HapBound -S and HapBound -S -M produced sim-
ilar lower bounds. The only difference was in region 2 of the
Jackson population, where HapBound -S produced 9, whereas
HapBound -S -M produced 10. For upper bounds, we used
fast methods as well as the full method for most cases; only a
fast upper bound method was used for regions 2 and 3 when
all populations were considered. When populations were con-
sidered separately, most run times varied from a fraction of
a second to a few minutes. Our lower and upper bounds are
generally quite close. In particular, they match perfectly for
the Rochester population.

Optimal RecMin bounds are shown on the right-hand side
of Table 1 for comparison. This table differs from Table 5 of
Myers and Griffiths (2003), because Myers and Griffiths did
not remove insertion/deletion sites when they performed their
analysis.

i419

“bti1033” — 2005/6/10 — page 420 — #8

Y.S.Song et al.

Fig. 2. The frequency fm of the time that lower and upper bounds
match for 25 sequences. We used 1000 simulated datasets for each
pair of θ and ρ, the mutation and recombination rates, respect-
ively. For θ , ρ ≤ 5, the two bounds agree more than 95% of
the time.

5.3 Simulated data
To study more extensively how often lower and upper bounds
agree, we used the program MS (Hudson, 2002) to generate
simulated datasets. We used HapBound -S -M and the full
upper bound method for this study. For varying values of
the scaled mutation and recombination rates—denoted θ and
ρ, respectively—the frequency fm of having matching lower
and upper bounds is shown in Figure 2 for 25 sequences.
Each point shown in this figure comes from analyzing 1000
simulated datasets. Note that the lower and upper bounds agree
quite often. In particular, for θ ≤ 5 and ρ ≤ 5, the two bounds
agree more than 95% of the time. This is a major accomplish-
ment, as there currently exists no other method that can find
Rmin for more than nine sequences after data reduction. As
the figure illustrates, the match frequency begins to fall off as
θ or ρ increases. It would be interesting to find out whether
this is largely due to the inaccuracy of the lower bound or the
upper bound, or perhaps both.

Suppose that, out of k simulated datasets, d datasets had
different lower and upper bounds, respectively denoted Li

and Ui , i = 1, . . . , d. To examine by how much our lower
and upper bounds differ when they do differ, we computed
the following average of their ratio: λ = 1

d

∑d
i=1 Li/Ui . For

the simulated datasets used in Figure 2, λ was as shown in
Figure 3. It is interesting that the difference between our lower
and upper bounds captured by this measure does not depend so
much on θ and ρ. Although the numerical difference between
lower and upper bounds is expected to grow as θ orρ increases,
their ratio seems more stable. We also remark that, for both
lower and upper bounds, the average number of recombina-
tions found when the two bounds do not match was much
higher (by about a factor of 2 or 3 for most parameter values)
than the average when they match.

We also studied the dependence of fm on the number
n of sequences. Our results are summarized in Figure 4.
Again, each point in the figure is the result of analyzing 1000
simulated datasets. It is a significant finding that lower and
upper bounds agree quite frequently even for n = 100. It

Fig. 3. Here, λ denotes the average of the ratio of the lower bound
to the upper bound when they do not match. This plot is for the same
simulated datasets as in Figure 2. Note thatλdoes not depend so much
on θ and ρ, the mutation and recombination rates, respectively.

Fig. 4. The frequency fm of the time that lower and upper bounds
match for a varying number n of sequences. The parameters θ and
ρ denote the scaled mutation and recombination rates, respectively.
Compared with Figure 2, this plot shows that the match frequency
does not depend on n as much as it does on θ or ρ.

seems that the match frequency does not depend on n as much
as on θ or ρ.

ACKNOWLEDGEMENTS
We would like to thank Andrew Clark for providing us with
the LPL data. We would also like to thank Charles Langley and
Simon Myers for useful discussion. This research is supported
by NSF EIA-0220154.

REFERENCES
Bafna,V. and Bansal,V. (2004) The number of recombination events

in a sample history: conflict graph and lower bounds. IEEE/ACM
Trans. Comput. Biol. Bioinf., 1, 78–90.

Bafna,V. and Bansal,V. (2005) Improved recombination lower
bounds for haplotype data. In Proceedings of RECOMB 2005,
in press.

Clark,A.G., Weiss,K.M., Nickerson,D.A., Taylor,S.L.,
Buchanan,A., Stengard,J., Salomaa,V., Vartiainen,E., Perola,M.,
Boerwinkle,E. and Sing,C.E. (1998) Haplotype structure and
population genetic inferences from nucleotide-sequence variation
in human lipoprotein lipase. Am. J. Hum. Genet., 63, 595–612.

Fearnhead,P., Harding,R.M., Schneider,J.A., Myers,S. and
Donnelly,P. (2004) Application of coalescent methods to reveal
fine scale rate variation and recombination hotspots. Genetics,
167, 2067–2081.

i420

“bti1033” — 2005/6/10 — page 421 — #9

Close lower and upper bounds on the minimum number of recombinations

Gusfield,D. (2004) Optimal, efficient reconstruction of Root-
unknown phylogenetic networks with constrained recombination.
Technical Report, Department of Computer Science, University
of California, Davis, CA.

Gusfield,D. and Hickerson,D. (2004) A new lower bound on the
number of needed recombination nodes in both unrooted and
rooted phylogenetic networks. Technical Report UCD-ECS-06,
University of California, Davis, CA.

Gusfield,D., Eddhu,S. and Langley,C. (2004) Optimal, efficient
reconstruction of phylogenetic networks with constrained recom-
bination. J. Bioinf. Comput. Biol., 2, 173–213.

Hein,J. (1990) Reconstructing evolution of sequences subject to
recombination using parsimony. Math. Biosci., 98, 185–200.

Hein,J. (1993) A heuristic method to reconstruct the history
of sequences subject to recombination. J. Mol. Evol., 36,
396–405.

Hudson,R. (2002) Generating samples under the Wright–Fisher
neutral model of genetic variation. Bioinformatics, 18,
337–338.

Hudson,R. and Kaplan,N. (1985) Statistical properties of the num-
ber of recombination events in the history of a sample of DNA
sequences. Genetics, 111, 147–164.

Kececioglu,J.D. and Gusfield,D. (1998) Reconstructing a history of
recombinations from a set of sequences. Discrete Appl. Math., 88,
239–260.

Kreitman,M. (1983) Nucleotide polymorphism at the alcohol
dehydrogenase locus of Drosophila melanogaster. Nature, 304,
412–417.

McVean,G.A.T., Myers,S., Hunt,S., Deloukas,P., Bentley,D.R. and
Donnelly,P. (2004) The fine-scale structure of recombination rate
variation in the human genome. Science, 304, 581–584.

Myers,S.R. (2002) The detection of recombination events using DNA
sequence data. PhD Thesis, Department of Statistics, University
of Oxford, Oxford.

Myers,S.R. and Griffiths,R.C. (2003) Bounds on the minimum num-
ber of recombination events in a sample history. Genetics, 163,
375–394.

Nickerson,D.A., Taylor,S.L., Weiss,K.M., Clark,A.G.,
Hutchinson,R.G., Stengard,J., Salomaa,V., Vartiainen,E.,
Boerwinkle,E. and Sing,C.F. (1998) DNA sequence diversity in a
9.7-kb region of the human lipoprotein lipase gene. Nat. Genet.,
19, 233–240.

Song,Y.S. and Hein,J. (2003) Parsimonious reconstruction of
sequence evolution and haplotype blocks: finding the minimum
number of recombination events. In Benson,G. and Page,R.
(eds), In Proceedings of the Third International Workshop on
Alogarithms in Bioinfomatics (WABI 2003), Budapest, Hun-
gary, September 15–20, LNCS 2812. Springer-Verlag, NY. pp.
287–302.

Song,Y.S. and Hein,J. (2004) On the minimum number of recom-
bination events in the evolutionary history of DNA sequences.
J. Math. Biol., 48, 160–186.

Templeton,A.R., Clark,A.G., Weiss,K.M., Nickerson,D.A.,
Boerwinkle,E. and Sing,C.F. (2000) Recombinational and
mutational hotspots within the human lipoprotein lipase gene.
Am. J. Hum. Genet., 66, 69–83.

Wang,L., Zhang,K. and Zhang,L. (2001) Perfect phylogenetic net-
works with recombination. J. Comput. Biol., 8, 69–78.

Table A1. Average ratio of the running time of RecMin to that of HapBound.

θ = ρ

n 10 20 30

25 1.4 3.9 14.0
50 1.7 41.7 >111.3
75 11.2 26.5 >103.6

As usual, θ and ρ are scaled mutation and recombination rates, respectively, and n

denotes the number of sequences.

Table A2. An example, with 25 sequences and 376 sites, for which RecMin
fails to output the optimal RecMin bound after a long time

Program/options Bound Time

RecMin 36 1 s
RecMin -s 30 -w 30 42 3 min 25 s
RecMin -s 35 -w 35 43 24 min 2 s
RecMin -s 40 -w 40 43 2 h 9 min 4 s
RecMin -s 45 -w 45 43 10 h 20 min 59 s
HapBound 44 2 min 59 s
HapBound -S 48 39 min 30 s

A1 APPENDIX
A1.1 The running times of HapBound and

RecMin
We compared the running times of RecMin and HapBound
on simulated datasets, generated using MS (Hudson, 2002).
A 2 GHz Pentium PC was used for this study and the GNU
ILP solver was used for running HapBound. To get the run-
ning times of RecMin, we incremented the parameters s and
w until RecMin computed the optimal RecMin bound, and
then we increased those parameters by five each. The pur-
pose of the last increase was to recreate what a user might do
(increasing parameters until no further change in the bound is
observed). We report only problem instances where RecMin
was able to compute the optimal RecMin bound in a reason-
able time. Average ratios of the running time of RecMin to
that of HapBound are shown in Table A1.

For most datasets of interest, RecMin may take a very long
time to compute the optimal RecMin bound when parameters
are set to their maximum values, but it might compute the
same bound in a reasonable time using smaller parameter set-
tings. However, we note here that, as n or θ and ρ increase,
we have frequently seen cases where RecMin cannot produce
its optimal bound even after many hours of computation. One
such a case, with 25 sequences and θ = ρ = 100, is shown in
Table A2. RecMin was not able to produce a bound equal to
the optimal RecMin bound even after more than 10 h of com-
putation. In contrast, HapBound found the optimal RecMin

i421

“bti1033” — 2005/6/10 — page 422 — #10

Y.S.Song et al.

Table A3. The percentage of the time that HapBound -S gives a bound
sharper than the optimal RecMin bound for 25 sequences

ρ

θ 1 5 10 20

1 0.0 0.4 0.5 1.5
5 0.7 4.0 10.4 27.0
10 1.4 9.2 17.8 40.4
20 1.4 10.5 27.8 45.4

bound in ∼3 min and HapBound -S produced a better bound
in <40 min.

A1.2 The bounds of HapBound -S and HapBound
We also studied how often HapBound -S computes a bound
sharper than the optimal RecMin bound. Shown in Table A3
is a summary of comparison for 25 sequences. Note that as θ

or ρ increases, HapBound -S becomes more and more likely
to produce a bound that is sharper than the optimal RecMin
bound, determined using HapBound without any option.

i422

