CS 124 Homework 1. Due October 6, but you can probably don’t need
that much time, and I will probably will release the next homework before
then, so the sooner you get to it the better.

This homework is intended to “get you going” and does not rely on any-
thing we have talked about in the class. It does assume that you already
are familiar with Dynamic Programming. It may be that you can find an
answer to the problem(s) on the web or in a text. Please don’t look for them
there or copy from there. You will learn more when you think the problems
through on your own, and when I detect web-found answers to homework
problems, I tend to get unpleasant.

The following problems involve dynamic programming. If you are not
comfortable with DP and want to see a discussion on RNA folding, there are
several books that discuss it. For one, see the algorithm text by Kleinberg
and Tardos. Also, for some figures illustrating the basic RNA folding recur-
rences, see the powerpoint for the WABI 2009 talk by Yelena Frid posted at
http://wwwesif.cs.ucdavis.edu/~gusfield /talks.html. Pages 6-15 of the pow-
erpoint describe the recurrences and DPs.

1 Basic RNA folding

The input to the basic RNA-folding problem consists of a string K of length
n over the four-letter alphabet {A,U,C,G}, and an optional integer d. Each
letter in the alphabet represents an RNA nucleotide. Nucleotides A and
U are called complimentary as are the nucleotides C' and G. A matching
consists of a set M of disjoint pairs of sites in K. If pair (7, 7) is in M, then
the nucleotide at site ¢ is said to match the nucleotide at site j. It is also
common to require a fixed minimum distance, d, between the two sites in
any match. A match is a permitted match if the nucleotides at sites i and
j are complimentary, and |[i — j| > d. ' A matching M is non-crossing or
nested if and only if it does not contain any four sites i < ¢ < j < j’ where
(1,7) and (7', j') are matches in M. Graphically, if we place the sites in K in
order on a circle, and draw a straight line between the sites in each pair in
M, then M is non-crossing if and only if no two such straight lines cross.

Finally, a permitted matching M is a matching that is non-crossing, where
each match in M is a permitted match. The basic RNA-folding problem is
to find a permitted matching of mazimum cardinality.

"'We let d=1 here, for simplicity, but in general, d can be any value from 0 to n.



The original O(n?) time dynamic programming solution

Let S(i,j) represent the score for the optimal solution that is possible for
the subproblem consisting of the sites in K between i and j inclusive (where
j >1). B(i,j) = 1if the nucleotides in positions 7 and j are complementary,
and is 0 otherwise.

Then the following recurrences hold:

S(i,7) = max{
S(i+1,7—1)4 B(i,j)  rule a,
S(i,7—1) rule b ,
S(i+1,7) rule c,

Mazicp<;S(i,k)+S(k+1,5) ruled

t

Rule @ covers all matchings that contain an (7, j) match; Rule b covers
all matchings when site 7 is not in any match; Rule ¢ covers all matchings
when site ¢ is not in any match; Rule d covers all matchings that can be
decomposed into two non-crossing matchings in the interval ..k, and the
interval k£ + 1..7.

These recurrences can be evaluated in different ordering of the variables
1,7,k. A common suggestion is to evaluate the recurrences in order of in-
creasing distance between i and j. That is, the solution to the RNA folding
problem is found for all substrings of K of length two, followed by all sub-
strings of length three, etc. up to length n.

An alternative O(n?)-time dynamic programming solu-
tion
for j =2ton do

for i =1to j—1 do {rules a and b}
S(i,j)=max( S(i+1,j-1)+B(i,j) ,S(i,j-1))

for:=j—1to1l do
S(i,j)=max(S(i+1,) , S(i) ) (Rule c)

for k = j — 1 to i+1 do {The loop is called the Rule d loop}
S(i,j)=max(S(i,j), S(i,k-1)+S(k,j) ) (Rule d)
The recurrences used in this algorithm are the same as before, but the
order of evaluation of S(i,j) is different.
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Problem 1: Argue that this algorithm correctly solves the RNA folding
problem and runs in O(n?) time.

Problem 2: Now suppose that instead of wanting to find the the permit-
ted matching of largest cardinality, we want to count the exact number of
permitted matchings. That problem can also be solved in O(n?) time by DP.
One is tempted to redefine S(i,j) to be the number of permitted matchings
inside the interval [i, ..., j] inclusive, and then use the following recurrences:

S(i,5) = A

S(i+1,7—1)+ B(i,j)  rule a,

+ S(i,7—1) rule b |

+ S(i+1,79) rule c,

+ >0 <k <j[S(,k)xSk+1,j)] rule d
}

This will not work.

Problem 3: Explain why the recurrences above will not correctly count
the number of permitted matchings. Will they overcount or undercount?
Now give recurrences that can be used to correctly count the number of
permitted matchings, and give a DP that computes the count in O(n?) time.
This may be a bit challenging.

2 Simpler Nested Matching Problems

Let S be a string consisting of a total of n left and right parentheses. The
number of left parens need not equal the number of right parens. Here is a
recursive definition of what it means for a string of left and right parens to
be properly nested i.e., balanced: a) the string ”()” is properly nested b) If
A is a properly nested string and B is a properly nested string, then A B is
a properly nested string. c¢) If A is a properly nested string, then ”( A )” is
a properly nested string.

For example, ”(( () (()) ) () )” is properly nested, while ”(()(” is not.
Is "()()()” properly nested under the above definition? Hint: Yes, but you
might be tempted to say No if you don’t understand recursion.

Here is an algorithm that checks if the parens are properly nested i.e.,
balanced. Scan the string S left to right. When a ”(” is encountered, push
it on a stack. When a ”)” is encountered, check if the stack is empty. If so,
then S is not properly nested. If the stack is not empty, then pop the stack.



When the end of S is reached, check if the stack is empty. If yes, then S is
properly nested; if not, then S is not properly nested.

Problem 4. Explain (prove) that the algorithm correctly determines if S
is properly nested. What is the running time of the algorithm? Justify you
answer.

Problem 5. Modify the algorithm to become an O(n) time algorithm
that finds the smallest possible subset of parentheses to delete, so that the
remaining parens are properly nested. Equivalently, find the largest subset
of parens that can be properly nested. The algorithm must find a subset,
not just its size. Justify your answer.

Problem 6. Suppose we modify the RNA folding problem so that the
input strings are just on an alphabet of size 2, i.e., on binary strings. In this
case 0 and 1 are permitted to match each other, but 0 cannot match a 0
and 1 cannot match a 1, and no symbol can match a neighbor, i.e., d = 1.
We want to find a permitted matching to maximize the number of matched
pairs. It is easy to modify the DP for RNA folding so that this problem can
be solved in O(n?) time.

However, suppose d = 0, so we permit a symbol to match a neighbor,
provided of course that the type of the neighbor is the opposite of the type
of the symbol. Give an algorithm for this that runs in O(n) time. Argue that
your algorithm is correct and that it does run in O(n) time. The solution is
not by DP in this case.

Note: This problem only relates to the binary case, i.e. when the string
only has 0’s and 1’s. Several people asked about the case of four symbols
and correctly found that getting an O(n) time algorithm for that case is not
easy. In fact, I don’t know of an O(n) time algorithm for that case.

Problem 6a. Does the O(n) solution work if d = 1, i.e., neighbors are not
permitted to match even if they are different? Can the RNA folding problem
(with four characters) be solved in O(n) time if d = 07 If not, does it seem
odd that the binary case can be solved in O(n) time, but the 4-character
case takes so much more time. Is that just a fluke of nature, or do you think
it is because we have not figured out yet how to solve the RNA problem in
O(n) time?

Problem 6b: The above problem of finding a largest nested matching of
0’s and 1’s (when a number can match its neighbor if they are different) is
very similar to the problem of finding the largest subset of left and right



parens which properly nest, and yet the solutions are a bit different. In fact,
in the case of parens, it can happen that some ”(”s and some ”)”s remain
unmatched, while in the case of 0’s and 1’s, either all 0’s or all 1’s (or both)
are matched. Explain the fundamental difference between these two similar
problems, that explains the difference between the solutions.

3 First problem on string matching

Problem 7. Suppose you have a string matching algorithm that can take in
(linear) strings S and 7' and determine if S is a substring (contiguous) of
T. However, you want to use it in the situation where S is a linear string
but T is a circular string, so it has no beginning or ending position. You
could break T at each character and solve the linear matching problem |T|
times, but that would be very inefficient. Show how to solve the problem by
only one use of the string matching algorithm. This has a very simple, cute,
solution when you see it.



