
CS 224 Fall 2009 HW 5, Due thursday Nov. 19
1. Read the proof of Theorem 4.3.2 on page 67 of the notes on lower

bounds. Is it essential to the proof and the method for finding S∗(I), that M

is first modified to be M̃? Explain. A more specific question is: If we don’t
change M , how must the statement of the theorem be changed in order to
identify S∗(I) in terms of M instead of in terms of M̃?

2. As commented on the bottom of page 51 of the notes on lower bounds,
if sites p and q > p in M are incompatible, then in any ARG for M , p and
q must be together on some recombination cycle whose crossover point is in
the range (p, q]. Lemma 4.1.1 on that page proves that there must be such a
crossover point in any ARG for M , and an earlier result showed that p and
q must be contained in some common recombination cycle. Your problem is
to prove that the common recombination cycle must have crossover point in
the range (p, q].

3. Given a set K of k binary strings, each of length n, we want to find each
triple of strings S1, S2, S3 such that a single crossover recombination between
S1 and S2 produces S3. For any triple, S1, S2, S3, we can easilly determine in
O(n) time whether S1 and S2 can recombine to create S3. Explain one such
way.

Therefore, all desired triples could be found in O(k3n) time. However,
this problem can be solved in O(nk + k3) time. Explain how (hint: think
suffix tree).

Can you also see a way to solve the problem in O(nk + w) time, where w

is the number of desired triples? I don’t know the answer to that.

4. Given a set K of k binary strings, each of length n, and a binary string
S of length n, we want to create S from K by a series of single crossover
recombinations, minimizing the total number of recombination events. A
string in K can be used several times in such a scenario. Show how to do
this in O(nk) time.

5. Lemma 4.3.2 in the notes (the self-derivability lemma) is correct in the
context of checking whether H(M(S∗(I))) should be used for b(I), or if b(I)
should be H(M(S∗(I)))+ 1. That is, it may not be true for arbitrary S, but
it is true for S∗(I). So replace S with S∗(I), and explain now why the proof
works. The key issue before was the implicit claim in the proof that there
are only D

c
(M(S)) tree nodes, so now the key issue is why there are only

1



D
c
(M(S∗(I))) tree nodes.

2


