
Chapter 1Exa
t Mat
hing:Fundamental Prepro
essingand First Algorithms1.1 The Naive methodAlmost all dis
ussions of exa
t mat
hing begin with the Naive Method, andwe follow this tradition. The naive method aligns the left end of P with theleft end of T , then
ompares the
hara
ters of P and T left to right untileither two unequal
hara
ters are found or until P is exhausted, in whi
h
ase an o

urren
e of P is reported. In either
ase, P is then shifted onepla
e to the right, and the
omparisons are restarted from the left end of P .This pro
ess repeats until the right end of P shifts past the right end of T .Using n to denote the length of P and m to denote the length of T ,the worst
ase number of
omparisons made by this method is �(nm). Inparti
ular, if both P and T
onsist of the same repeated
hara
ter, thenthere is an o

urren
e of P at ea
h of the �rst m � n + 1 positions of Tand the method performs exa
tly n(m�n+1)
omparisons. For example ifP = aaa and T = aaaaaaaaaa then n = 3; m = 10 and 24
omparisons aremade.The naive method is
ertainly simple to understand and program, butits worst
ase running time of �(nm) may be unsatisfa
tory and
an beimproved. Even the pra
ti
al running time of the naive method may betoo slow for larger texts and patterns. Early on, there were several relatedideas to improve the naive method, both in pra
ti
e and in worst
ase. Theresult is that the O(n�m) worst-
ase bound
an be redu
ed to O(n+m).Changing \�" to \+" in the bound is extremely signi�
ant (try n = 1000and m = 10; 000; 000, whi
h are realisti
 numbers in some appli
ations.1

2CHAPTER 1. EXACTMATCHING: FUNDAMENTAL PREPROCESSINGAND FIRST ALGORITHMS1.2 The prepro
essing approa
hMany string mat
hing and analysis algorithms are able to eÆ
iently skip
omparisons by �rst spending \modest" time learning about the internalstru
ture of either the pattern P or the text T . During that time, the otherstring may not even be known to the algorithm. This part of the overallalgorithm is
alled the prepro
essing stage. Prepro
essing is followed by asear
h stage, where the information found during the prepro
essing stageis used to redu
e the work done while sear
hing for o

urren
es of P inT . In the above example, the smarter method was assumed to know that
hara
ter a did not o

ur again until position 5, and the even smarter methodwas assumed to know that the pattern abx was repeated again starting atposition 5. This assumed knowledge is obtained in the prepro
essing stage.For the exa
t mat
hing problem, all of the algorithms mentioned in theprevious se
tion prepro
ess pattern P . (The opposite approa
h of prepro-
essing text T is used in other algorithms, su
h as those based on suÆxtrees. Those methods will be explained later in the book.) These prepro-
essing methods, as originally developed, are \similar in spirit" but oftenquite di�erent in detail and
on
eptual diÆ
ulty. In this book we take adi�erent approa
h and do not initially explain the originally developed pre-pro
essing methods. Rather, we highlight the similarity of the prepro
essingtasks needed for several di�erent mat
hing algorithms, by �rst de�ning afundamental prepro
essing of P that is independent of any parti
ular mat
h-ing algorithm. Then we show how ea
h spe
i�
 mat
hing algorithm uses theinformation
omputed by the fundamental prepro
essing of P . The resultis a simpler more uniform exposition of the prepro
essing needed by several
lassi
al mat
hing methods, and a simple linear time algorithm for exa
tmat
hing based only on this prepro
essing (dis
ussed in Se
tion 1.5). Thisapproa
h to linear-time pattern mat
hing was developed in [?℄.1.3 Fundamental prepro
essing of the patternFundamental prepro
essing will be des
ribed for a general string denotedS. In spe
i�
 appli
ations of fundamental prepro
essing, S will often be thepattern P , but here we use S instead of P be
ause fundamental prepro
essingwill also be applied to strings other than P .The following de�nition gives the key values
omputed during the fun-damental prepro
essing of a string.De�nition Given a string S and a position i > 1, let Zi(S) be the lengthof the longest substring of S that starts at i and mat
hes a pre�x of S.In other words, Zi(S) is the length of the longest pre�x of S[i::s℄ whi
h

1.3. FUNDAMENTAL PREPROCESSING OF THE PATTERN 3mat
hes a pre�x of S. For example, when S = aab
aabxaaz thenZ5(S) = 3 (aab
:::aabx:::);Z6(S) = 1 (aa:::ab:::);Z7(S) = Z8(S) = 0;Z9(S) = 2 (aab:::aaz):When S is
lear by
ontext, we will use Zi in pla
e of Zi(S).To introdu
e the next
on
ept,
onsider the boxes drawn in Figure 1.1.Ea
h box starts at some position j > 1 su
h that Zj is greater than zero.The length of the box starting at j is meant to represent Zj . Therefore, ea
hbox in the �gure represents a maximal-length substring of S that mat
hes apre�x of S, and that doesn't start at position one. Ea
h su
h box is
alleda Z-box. More formally,De�nition For any position i > 1 where Zi is greater than zero, theZ-box at i is de�ned as the interval starting at i and ending at positioni+ Zi � 1.De�nition For every i > 1, ri is the rightmost endpoint of the Z-boxesthat begin at or before position i. Another way to state this is: ri is thelargest value of j + Zj � 1 over all 1 < j � i su
h that Zj > 0. (See Figure1.1.We use the term li for the value of j spe
i�ed in the above de�nition.That is, li is the position of left end of Z-box that ends at ri. In
ase there ismore than one Z-box ending at ri, then li
an be
hosen to be the left endof any of those Z-boxes. As an example, suppose S = aabaab
axaabaab
y.Then Z10 = 7, r15 = 16 and l15 = 10.
S

Zl i

l
i

r
i

i

ααFigure 1.1: Ea
h solid box represents a substring of S that mat
hes a pre�xof S and that starts between positions 2 and i. Ea
h box is
alled a Z-box.We use ri to denote the rightmost end of any Z-box that begins at or to theleft of position i, and � to denote the substring in the Z-box ending at ri.Then li denotes the left end of �. The
opy of � that o

urs as a pre�x ofS is also shown in the �gure.The linear time
omputation of Z values from S is the fundamentalprepro
essing task that we will use in all the
lassi
al linear-time mat
hing

4CHAPTER 1. EXACTMATCHING: FUNDAMENTAL PREPROCESSINGAND FIRST ALGORITHMSalgorithms that prepro
ess P . But before detailing those uses, we show howto do the fundamental prepro
essing in linear time.1.4 Fundamental prepro
essing in linear timeThe task of this se
tion is to show how to
ompute all the Zi values for S inlinear time, i.e., in O(jSj) time. A dire
t approa
h based on the de�nitionwould take �(jSj2) time. The method we will present was developed in [?℄for a di�erent purpose.The prepro
essing algorithm
omputes Zi; ri and li for ea
h su

essiveposition i, starting from i = 2. All the Z values
omputed will be kept bythe algorithm, but in any iteration i, the algorithm only needs the rj and ljvalues for j = i�1. No earlier r or l values are needed. Hen
e the algorithmonly uses a single variable, r, to refer to the most re
ently
omputed rjvalue; similarly it only uses a single variable l. Therefore, in ea
h iterationi, if the algorithm dis
overs a new Z-box (starting at i), variable r will bein
remented to end of that Z-box, whi
h is the rightmost position of anyZ-box dis
overed so far.To begin, the algorithm �nds Z2 by expli
itly
omparing, left to right,the
hara
ters of S[2::jSj℄ and S[1::jSj℄ until a mismat
h is found. Z2 is thelength of the mat
hing string. If Z2 > 0, then r = r2 is set to Z2 + 1 andl = l2 is set to 2. Otherwise r and l are set to zero. Now assume indu
tivelythat the algorithm has
orre
tly
omputed Zi for i up to k � 1 > 1, andassume that the algorithm knows the
urrent r = rk�1 and l = lk�1. Thealgorithm next
omputes Zk, r = rk, and l = lk.The main idea is to use the already
omputed Z values to a

eleratethe
omputation of Zk . In fa
t, in some
ases, Zk
an be dedu
ed from theprevious Z values without doing any additional
hara
ter
omparisons. Asa
on
rete example, suppose k = 121, all the values Z2 through Z120 havealready been
omputed, and r120 = 130 and l120 = 100. That means thatthere is a substring of length 31 that starts at position 100 and that mat
hesa pre�x of S (of length 31). It follows that the substring of length 10 startingat position 121 must mat
h the substring of length 10 starting at position22 of S, and so Z22 may be very helpful in
omputing Z121. As one
ase, ifZ22 is three, say, then a little reasoning shows that Z121 must also be three.So in this illustration, Z121
an be dedu
ed without any additional
hara
ter
omparisons. This
ase, along with the others, will be formalized and proven
orre
t below.

1.4. FUNDAMENTAL PREPROCESSING IN LINEAR TIME 5The Z AlgorithmGiven Zi for all 1 < i � k � 1 and the
urrent values of r and l, Zk and theupdated r and l are
omputed as follows:Begin1. If k > r, then �nd Zk by expli
itly
omparing the
hara
ters startingat position k to the
hara
ters starting at position 1 of S, until a mismat
his found. The length of the mat
h is Zk. If Zk > 0, then set r to k+ Zk � 1and set l to k.2. If k � r, then position k is
ontained in a Z-box, hen
e S(k) is
ontained substring S[l::r℄ (
all it �) su
h that l > 1 and � mat
hes a pre�xof S. Therefore
hara
ter S(k) also appears in position k0 = k � l + 1 of S.By the same reasoning, substring S[k::r℄ (
all it �) must mat
h substringS[k0::Zl℄. It follows that the substring beginning at position k must mat
h apre�x of S of length at least the minimum of Zk0 and j�j (whi
h is r�k+1).See Figure 1.2.We
onsider two sub
ases based on what that minimum is.2a. If Zk0 < j�j then Zk = Zk0 and r; l remain un
hanged (see Figure1.3).2b. If Zk0 � j�j then the entire substring S[k::r℄ must be a pre�x of Sand Zk � j�j = r � k + 1. However, Zk might be stri
tly larger than j�j,so
ompare the
hara
ters starting at position r + 1 of S to the
hara
tersstarting a position j�j+ 1 of S until a mismat
h o

urs. Say the mismat
ho

urs at
hara
ter q � r + 1. Then Zk is set to q � k, r is set to q � 1 andl is set to k (see Figure 1.4).End
k

α
α

k’ Z

S ββ

l
l rFigure 1.2: String S[k::r℄ is labeled � and also o

urs starting at position k0of S.Theorem 1.4.1 Using Algorithm Z, value Zk is
orre
tly
omputed andvariables r and l are
orre
tly updated.Proof In
ase 1, Zk is set
orre
tly sin
e it is
omputed by expli
it
omparisons. Also (sin
e k > r in
ase 1), before Zk is
omputed, no Z- boxhas been found that starts between positions 2 and k�1 and that ends at orafter position k. Therefore when Zk > 0 in
ase 1, the algorithm does �nd a

6CHAPTER 1. EXACTMATCHING: FUNDAMENTAL PREPROCESSINGAND FIRST ALGORITHMS
k

α
αS

k’Z

γγ γ

k

k’

β

+Zk

β

Z+

1-

k’

k’

- 1

l rFigure 1.3: Case 2a. The longest string starting at k0 that mat
hes a pre�xof S is shorter than j�j. In this
ase, Zk = Zk0 :
k

α
S

α

+ Zk’

β β ?

k’
- 1

k’

β
l rFigure 1.4: Case 2b. The longest string starting at k0 that mat
hes a pre�xof S is at least j�j.new Z-box ending at or after k, and it is
orre
t to
hange r to k + Zk � 1.Hen
e the algorithm works
orre
tly in
ase 1.In
ase 2a, the substring beginning at position k
an mat
h a pre�x ofS only for length Zk0 < j�j. If not, then the next
hara
ter to the right,
hara
ter k + Zk0 , must mat
h
hara
ter 1 + Zk0 . But
hara
ter k + Zk0mat
hes
hara
ter k0 + Zk0 (sin
e Zk0 < j�j) so
hara
ter k0 + Zk0 mustmat
h
hara
ter 1+Zk0 . But that would be a
ontradi
tion to the de�nitionof Zk0 , for it would establish a substring longer than Zk0 that starts at k0 andmat
hes a pre�x of S. Hen
e Zk = Zk0 in this
ase. Further, k+Zk� 1 < r,so r and l remain
orre
tly un
hanged.In
ase 2b, � must be a pre�x of S (as argued in the body of the algo-rithm) and sin
e any extension of this mat
h is expli
itly veri�ed by
om-paring
hara
ters beyond r to
hara
ters beyond the pre�x �, the full extentof the mat
h is
orre
tly
omputed. Hen
e Zk is
orre
tly obtained in this
ase. Furthermore, sin
e k + Zk � 1 � r, the algorithm
orre
tly
hanges rand l. 2Corollary 1.4.1 Repeating algorithm Z for ea
h position i > 2
orre
tlyyields all the Zi values.Theorem 1.4.2 All the Zi(S) values are
omputed by the algorithm in O(jSj)time.Proof The time is proportional to the number of iterations, jSj, plus thenumber of
hara
ter
omparisons. Ea
h
omparison results in either a mat
h

1.5. THE SIMPLEST LINEAR-TIME EXACTMATCHINGALGORITHM7or a mismat
h, so we next bound the number of mat
hes and mismat
hesthat
an o

ur.Ea
h iteration that does any
hara
ter
omparisons at all ends the �rsttime it �nds a mismat
h, hen
e there are at most jSj mismat
hes during theentire algorithm. To bound the number of mat
hes, note �rst that rk � rk�1for every iteration k. Now, let k be an iteration where q > 0 mat
hes o

ur.Then rk is set to rk�1 + q at least. Finally, rk � jSj, so the total number ofmat
hes that o

ur during any exe
ution of the algorithm is at most jSj. 21.5 The simplest linear-time exa
t mat
hing algo-rithmBefore dis
ussing the more
omplex (
lassi
al) exa
t mat
hing methods, weshow that fundamental prepro
essing alone provides a simple linear time ex-a
t mat
hing algorithm. This is the simplest linear-time mat
hing algorithmwe know of.Let S = P$T be the string
onsisting of P followed by the symbol \$"followed by T , where \$" is a
hara
ter appearing in neither P nor T . Re
allthat P has length n and T has length m, and n � m. So, S = P$T haslength n+m+ 1 = O(m). Compute Zi(S) for i from 1 to n+m+ 1. Sin
e\$" does not appear in P or T , Zi � n for every i. Any value of i > n + 1su
h that Zi(S) = n identi�es an o

urren
e of P in T starting at positioni�(n+1) of T . Conversely, if P o

urs in T starting at position j of T , thenZ(n+1)+j must be equal to n. Sin
e all the Zi(S) values
an be
omputed inO(n+m) = O(m) time, this approa
h identi�es all the o

urren
es of P inT in O(m) time.The method
an be implemented to use only O(n) spa
e (in additionto the spa
e needed for pattern and text) independent of the size of thealphabet. Sin
e Zi � n for all i, position k0 (determined in step 2) willalways fall inside P . Therefore there is no need to re
ord the Z values for
hara
ters in T . Instead, we only need to re
ord the Z values for the n
hara
ters in P , and also maintain the
urrent l and r. Those values aresuÆ
ient to
ompute (but not store) the Z value of ea
h
hara
ter in T andhen
e to identify and output any position i where Zi = n.There is another
hara
teristi
 of this method that is worth introdu
inghere. The method is
onsidered an alphabet independent linear time method.That is, we never had to assume that the alphabet size was �nite, or thatwe knew the alphabet ahead of time { a
hara
ter
omparison only deter-mines whether the two
hara
ters mat
h or mismat
h, it needs no furtherinformation about the alphabet. We will see that this
hara
teristi
 is alsotrue of the Knuth-Morris-Pratt and Boyer-Moore algorithms, but not of theAho-Corasi
k algorithm or methods based on suÆx trees.

