
1 Problem

For a string A of length n, there are n cyclic rotations of A. For example, if
the string is A = abba, the 4 cyclic rotations are: abba, bbaa, baab, aabx.
If we lexicographically order those four strings, they are ordered aabx, abba,
baab, bbaa. The last character of each string, in this lexicographic string
order, concatenated together creates the string A’ = xaba. In general, given
string A, create the string A’ of length n by forming the n cyclic left rotations
of A, sorting them in lexicographic order, extracting and concatenating the
last character of each of the strings, in sorted order. Index I points to the
position in A’ occupied by the last character of the original string. In the
example, I = 2. Let (A’,I) denote the encoded string and the pointer to the
character contributed by the original string. So the encoding of abba is (A’,I)
= (xaba, 2).

Problem: Devise an efficient algorithm to reconstruct A from (A’,I) in
general. Describe an efficient algorithm, using a suffix tree or array to create
the encoding (A’,I).

The transform is a widely-used method called the Burrows Wheeler Trans-
form. It is often used on strings before using other compression methods:
(A’,I) is compressed rather than the original string A. Some compression
methods are typically able to better compress (A’,I) than A. This depends
of course on what A is and the compression method used.

2 Answer: BWT - inversion method

Here is a method to do the inversion of the BWT (assume the normal English
alphabet). Let A be the original string, and let A’ be the string produced
by the BW transform. Think of the BWT as a compact representation of
the lexicographically sorted list of left shifts of A. Let M denote the lexico-
graphically sorted list of shifts of A. Although the BWT does not explicitly
produce M, we can reason about it.

Method
1. Survey the characters in A′, i.e., the characters in the string, to learn

the number of a’s, b’s, etc. Therefore we know the complete partition of M
based on the first character of the strings in M. For example, suppose ‘a’
occurs 10 times in A. That means that the first 10 characters in A′ are the

1



last characters in the strings that begin with ‘a’. In general, for any character
c in A′, we can figure out the last characters in the strings that begin with c.

2. In the BWT we also have a pointer to the location in A′, and hence
into M, of the original string A, i.e., the null shift of A. Suppose it is in
position i in the section of the partition of A′ for character denoted c, and
let the character in A′ in that position be denoted x. That means that the
original string starts with c and ends with x, but we won’t immediately use
that fact.

We can deduce that the original string A starts with c and is the i’th
smallest string that starts with c. Now consider the left shifts of A that put
character c at the end. A left shift of A by one position is one of those strings.
Denote that string by A′′. It follows that A′′ is the i’th smallest string in M
that ends in c. Therefore, we can find the entry for A′′ in A′ by finding the
i’th occurrence of character c in A′. Suppose we find it in the j’th position
in the section of the partition for character c′. It follows that A starts with
cc′. It also follows that A is the j’th smallest string in M that ends with c′.
So, now we look for the j’th occurrence of character c′ in A′ to find the third
character of A etc.

What is the running time of this? With the proper data structures, it can
be done in linear time. The repeated task is to answer the question: Given
a character c and a position i, what part of the partition of A′ is the i’th
occurrence of c in? To be able to answer these queries repeatedly, when we
survey A′ from left to right, we build up an array for each character, noting
the part of the partition of A′ that each character falls into. With those
arrays, we do each task in constant time, so O(n) overall.

3 Another method

The above might just be a roundabout, but more efficient, way to describe
the better-known method:

0. Think of A’ as an n by 1 column vector, denoted by M.
Repeat n times:
1. Lexicographically (but stably, meaning that ties are broken based on

the relative order in M of any ties) sort the rows (strings) in M to obtain a
new matrix M ′.

2. Prepend a copy of A′ to M ′, assigning the resulting matrix to M .

2



This essentially implements radix sort on the set of n rotated strings, even
though we don’t know the full M. But it does this in a somewhat subtle way.
In radix sort, we work from the rightmost column to the left. So when doing
successive stable sorts on M, we are essentially sorting the strings after they
have been circularly shifted right again by n−1 places, so that the character
at the start of the BWT list is now at the end. But how do you make this
linear time?

4 Problems (should you wish to solve them)

1) Show that if we don’t know the pointer to the null shift, then we cannot
invert the BW string to obtain the original string.

2) Show that if we know only the first column, not the last column, then
we cannot invert - don’t just show that the inversion algorithm fails - explain
why no algorithm could work.

3) Show that if we don’t know the pointer to the null shift, we can still
deduce a circular shift of the original string.

3


