
CS 224 HW 3 - take two weeks. Some of the problems are somewhat
vague and open ended. Do what you can.

1. In class we saw that BWT[i] = T[SA[i] - 1], where T is the input string,
BWT[i] is the character at position i in the BWT string for T, and SA[i] is
the i’th entry in the suffix array for T.

This shows how to compute the BWT from the SA. What about the other
direction? If we have the BWT, what else would we need to compute the
SA, and in linear time? I don’t know the answer.

2. Read the BWT inversion method that I posted on the class website.
That method derives the original string from the left to the right, the opposite
of what is done in the FM approach. As was done in the FM method, it should
be possible to define pointers that can be followed to spell out the original
string in forward order. Analogous to what was done in the FM paper, define
those pointers and write up a formula for them. Show how those pointers
relate to the FM pointers.

3. We know how to go from a Suffix Tree to a SA via a lexicographic dfs,
and we know how to go from a SA to the BWT, as detailed in problem 1.
So it seems it should be possible to come up with concise statement of what
the BWT string is in terms of the suffix tree for an input string. Actually,
we did this in class on thursday. Given that, we should be able to describe
what the FM BWT inversion algorithm is doing on the suffix tree. Do it.
Similarly, can you see what the FM exact search algorithm looks like on the
suffix tree - describe it as simply as possible.

4. The FM exact matching method finds occurrences of P in T working
from the right end of P to the left end of P. It runs in time proportional
to the length of P. Can you devise a similar algorithm that runs in time
proportional to the length of P that works from the left end. It may be
helpful to remember that there are methods that invert the BWT that work
from the left end.

5. In the Ferragina and Manzini JACM paper (posted on the class web-
site) in Section 2.3 they describe a compression algorithm for the BWT string.
It first uses MTF and then a run-length-encoder, but just of the zeros. It
seems to me that this is just the same as doing a run-length-encoding of runs
of identical characters in the BWT string. Am I missing something? Can
you see what the move to front is contributing? Maybe it is just recoding
to a smaller alphabet, or at least one where the distribution of characters
is more heavilly weighted towards small integers. That would be helpful for
large alphabets (English), but not so important in small alphabets (DNA).

1



Discuss.
6. In this guided exercise, you will work out the original suffix array

algorithm given in the Manber and Myers paper. The method involves a
general technique called “successive refinement”, which is valuable to know,
in addition to its use in suffix arrays.

Successive refinement methods

Successive refinement is a general algorithmic technique that has been
used for a number of string problems [?, ?, ?]. In the next several exercises,
we introduce the ideas, connect successive refinement to suffix trees, and
apply successive refinement to particular string problems.

Let S be a string of length n. The relation Ek is defined on pairs of
suffixes of S. We say iEkj if and only if suffix i and suffix j of S agree for
at least their first k characters. Note that Ek is an equivalence relation and
so it partitions the elements into equivalence classes. Also, since S has n

characters, every class in En is a singleton. Verify the following two facts:
Fact 1: For any i 6= j, iEk+1j if and only if iEkj and i + 1Ekj + 1.
Fact 2: Every Ek+1 class is a subset of an Ek class and so the Ek+1

partition is a refinement of the Ek partition.
We use a tree T , called the refinement tree, to represent the successive

refinements of the classes of Ek as k increases from 0 to n. The root of T

represents class E0 and contains all the n suffixes of S. Each child of the root
represents a class of E1 and contains the elements in that class. In general,
each node at level l represents a class of El and its children represent all the
El+1 classes that refine it.

Now modify T as follows. If node v represents the same set of suffixes as
its parent node v′, contract v and v′ to a single node. In the new refinement
tree, T ′, each non-leaf node has at least two children. What is the relationship
of T ′ to the suffix tree for string S? Show how to convert a suffix tree for S

into tree T ′ in O(n2) time.

Several string algorithms use successive refinement without explicitly find-
ing or representing all the classes in the refinement tree. Instead, they con-
struct only some of the classes or only compute the tree implicitly. The
advantage is reduced use of space in practice, or an algorithm that is better
suited for parallel computation [?]. The original suffix array construction
method [?] is such an algorithm. In that algorithm, the suffix array is ob-
tained as a byproduct of a successive refinement computation where the Ek

partitions are computed only for values of k that are a power of two. First

2



we need an extension of Fact 1:
Fact 3: For any i 6= j, iE2kj if and only if iEkj and i + kEkj + k.
From Fact 2, the classes of E2k refine the classes of Ek.
The algorithm of [?] starts by computing the partition E1. Each class of

E1 simply lists all the locations in S of one specific character in the alphabet,
and the classes are arranged in lexical order of those characters. For example,
for S =mississippi$, E1 has five classes: {12}, {2, 5, 8, 11}, {1}, {9, 10}, {3, 4, 6, 7}.
The class {2, 5, 8, 11} lists the position of all the i’s in S and so comes before
the class for the single m, which comes before the class for the s’s etc. The
end-of-string character $ is considered to be lexically smaller than any other
character.

How E1 is obtained in practice depends on the size of the alphabet and the
manner that it is represented. It certainly can be obtained with O(n logn)
character comparisons.

For any k ≥ 1, we can obtain the E2k partition by refining the Ek par-
tition, as suggested in Fact 3. However, it is not clear how to efficiently
implement a direct use of Fact 3. Instead, we create the E2k partition in
O(n) time, using a reverse approach to refinement. Rather than examining
a class C of Ek to find how C should be refined, we use C as a refiner to see
how it forces other Ek classes to split, or to stay together, as follows. For
each number i > k in C, locate and mark number i − k. Then, for each Ek

class A, any numbers in A marked by C identify a complete E2k class. The
correctness of this follows from Fact 3.

Give a complete proof of the correctness of the reverse refinement ap-
proach to creating the E2k partition from the Ek partition.

Each class of Ek, for any k, holds the starting locations of a k-length
substring of S. The algorithm in [?] constructs a suffix array for S using the
reverse refinement approach, with the added detail that the classes of Ek are
kept in the lexical order of the strings associated with the classes.

In more detail, to obtain the E2 partition of S = mississippi$, process the
classes of E1 in order, from the lexically smallest to the lexically largest class.
Processing the first class, {12}, results in the creation of the E2 class {11}.
The second E1 class {2, 5, 8, 11} marks indices {1, 4, 7} and {10}, and hence
creates the three E2 classes {1}, {4, 7}, {10}. Class {9, 10} of E1 creates the
two classes {8}, {9}. Class {3, 4, 6, 7} of E1 creates classes {2, 5}, {3, 6} of E2.
Each class of E2 holds the starting locations of identical substrings of length
one or two. These classes, lexically ordered by the substrings they represent,

3



are: {12}, {11}, {8}, {2, 5}, {1}, {10}, {9}, {4, 7}, {3, 6}. The classes of E4,
in lexical order are: {12}, {11}, {8}, {2, 5}, {1}, {10}, {9}, {7}, {4}, {6}, {3}.
Note that {2, 5} remain in the same E4 class because {4, 7} were in the same
E2 class. The E2 classes of {4, 7} and {3, 6} are each refined in E4. Explain
why.

Although the general idea of reverse refinement should now be clear, effi-
cient implementation requires a number of additional details. Give complete
implementation details and analysis, proving that the E2k classes can be ob-
tained from the Ek classes in O(n) time. Be sure to detail how the classes
are kept in lexical order.

Assume n is a power of two. Note that the algorithm can stop as soon
as every class is a singleton and this must happen within log2 n iterations.
When the algorithm ends, the order of the (singleton) classes describes a
permutation of the integers 1 to n. Prove that this permutation is the suffix
array for string S. Conclude that the reverse refinement method creates a
suffix array in O(n log n) time.

4


