
1 Yet more suffix-trees, more hybrid dynamic pro-

gramming

Although the suffix tree was initially designed and employed to handle complex prob-
lems of exact matching, it can be used to great advantage in various problems of
inexact matching. This has already been demonstrated in Sections ?? and ?? where
the k-mismatch and k- difference problems were discussed. The suffix tree in the
latter application was used in combination with dynamic programming to produce a
hybrid dynamic programming method that is faster than dynamic programming alone.
One deficiency of that approach is that it does not generalize nicely to problems of
weighted alignment. In this section, we introduce a different way to combine suffix
trees with dynamic programming for problems of weighted alignment. These ideas
have been claimed to be very effective in practice, particularly for large computational
projects. However, the methods do not always lend themselves to greatly improved
provable worst case time bounds. The ideas presented here loosely follow the pub-
lished work of Ukkonen [7] and an unpublished note of Gonnet and Baeza-Yates [1].
A related idea for using suffix trees in regular expression pattern matching (with er-
rors), and its large-scale application in managing genomic databases, appears in [5].
The method of Gonnet and Baeza-Yates has been implemented and extensively used
for large-scale protein comparisons [6, 4].

Two problems

We assume the existence of a scoring matrix used to compute the value of any align-
ment, and hence “edit distance” here refers to weighted edit distance. We will discuss
two problems in the text, and introduce two more related problems in the exercises.

1. The P -against-all problem: Given strings P and T , compute the edit dis-
tance between P and every substring T ′ of T .

2. The threshold all-against-all problem: Given strings P and T and a thresh-
old d, find every pair of substrings P ′ of P and T ′ of T such that the edit distance
between P ′ and T ′ is less than d.

The all-against-all problem is similar to problems mentioned in Section ?? concern-
ing the construction of non-redundant sequence databases. However, the all-against-
all problem is harder, because it asks for the alignment of all pairs of substrings, not
just the alignment of all pairs of strings. This critical distinction has been the source
of some confusion in the literature [2, 3].

1.1 The P -against-all problem

The problem again is: Given strings P and T , compute the edit distance between P
and every substring T ′ of T . This is an example of a large-scale alignment problem

1

that asks for a great amount of related alignment information. If not done carefully,
its solution will involve a large amount of redundant computation.

Assume that P has length n and T has length m > n. The most naive solution to
the P -against-all problem is to enumerate all

(

m

2

)

substrings of T , and then seperatly

compute the edit distance between P and each substring of T . This takes Θ(nm3)
total time. A moment’s thought leads to an improvement. Instead of choosing all
substrings of T , we need only choose each suffix S of T and compute the dynamic
programming edit distance table for strings P and S. If S begins at position i of T ,
then the last row of that table gives the edit distance between P and every substring
of T that begins at position i. That is, the edit distance between P and T [i..j] is
found in cell (n, j − i + 1) of the table. This approach takes Θ(nm2) total time.

We are interested in the P -against-all problem when T is very long. In that case,
the introduction of a suffix tree may greatly speed up the dynamic programming
computation, depending on how much repetition is contained in string T 1. (See also
Section ??.) To get the basic idea of the method, consider two substrings T ′ and
T ′′ of T that are identical for their first n′ characters. In the dynamic programming
approach above, the edit distances between P and T ′ and between P and T ′′ would
be computed separately. But if we compute edit distance column-wise (instead of in
the usual row-wise manner), then we can combine the two edit distance computations
for the first n′ columns, since the first n′ characters of T ′ and T ′′ are the same (see
Figure 1). It would be redundant to compute the first n by n′ subtable separately
for the two edit distances. This idea of using the commonality of T ′ and T ′′ can be
formalized and fully exploited through the use of a suffix tree for string T .

Consider a suffix tree T for string T and recall that any path from the root of T
specifies some substring S of T . If we traverse a path from the root of T , and we let
S denote the growing substring corresponding to that path, then during the traversal
we can build up (columnwise) the dynamic programming table for the edit distance
between P and the growing substring S of T . The full idea then is to traverse T in a
depth- first manner, computing the appropriate dynamic programming column (from
the column to its left) for every substring S specified by the current path. When
the traversal reaches a node v of T , it stores there the last (most recently generated)
column and last subrow of the current subtable (the last row will always be row n).
That is, if S is the substring specified by the path to a node v, then what will be
stored at v is the last row and column of the dynamic programming table for the edit
distance between P and S. When the depth-first traversal visits a child v′ of v, it
adds columns (one for each character on the (v, v′) edge) to this table to correspond
to the extension of substring S. When the depth-first traversal reaches a leaf of T
corresponding to the suffix starting at a position i (say) of T , it can then output the
values in the last row of the current table. Those values specify the edit distances

1Recent estimates put the amount of repeated human DNA at 50 to 60%. That is, 50 to 60% of

all human DNA is contained in non- trivial length, structured substrings that show up repeatedly
throughout the genome.

2

n’

n’

P

P

T’

A C
T’’

A B

Figure 1: A cartoon of the dynamic programming tables for computing the edit
distance between P and substring T ′, and between P and substring T ′′. The two
tables share the subtable for P and substring A (shown as a shaded rectangle). This
shaded subtable only needs to be computed once.

3

between P and every substring beginning at position i of T . When the depth-first
traversal backs up to a node v and v has an unvisited child v′, the row and column
stored at v are retrieved and extended as the traversal follows a new (v, v′) edge (see
Figure 2).

A

B C

T’
T’’

v

root

Figure 2: A piece of the suffix tree for T . The traversal from the root to node v is
accompanied by the computation of subtable A (from the previous figure). At that
point, the last row and column of subtable A are stored at node v. Computing the
subtable B corresponds to the traversal from v to the leaf representing substring T ′.
After the traversal reaches the leaf for T ′, it backs up to node v, retrieves the row and
column stored there, and uses them to compute the subtable C needed to compute
the edit distance between P and T ′′.

It should be clear that this suffix-tree approach does correctly compute the edit
distance between P and every substring of T , and it does exploit repeated substrings
(small or large) that may occur in T . But how effective is it compared to the Θ(nm2)-
time dynamic programming approach?

Definition The string-length of an edge label in a suffix tree is the length of the
string labeling that edge (even though the label is compactly represented by a constant
number of characters). The length of a suffix tree is the sum of the string-lengths for
all of its edges.

4

The length for a suffix tree T for a string T of length m can be anywhere between
Θ(m) and Θ(m2), depending on how much repetition exists in T . In computational
experiments using long substrings of mammalian DNA (length around one million),
the string-length of the resulting suffix trees have been around m

2

10
. Now the number

of dynamic programming columns that are generated during the depth-first traversal
of T is exactly the length of T . Each column takes Θ(n) time to generate, so

Lemma 1.1 The time used to generate the needed columns in the depth-first traversal
is Θ(n × (length of T)).

We must also account for the time and space used to write the rows and columns
stored at each node of T . In a suffix tree with m leaves there are Θ(m) internal
nodes and a single row and column take at most O(m + n) time and space to write.
Therefore, Θ(m2 + nm) = Θ(m2) time and space is needed for the row and column
stores. Hence

Theorem 1.1 The total time for the suffix-tree approach is Θ(n×(length of T)+m2),
and the maximum space used is Θ(m2).

Reducing space

The size of the required output is Θ(m2), since the problem calls for the edit distance
between P and each of Θ(m2) substrings of T , so the Θ(m2) term in the time bound is
acceptable. On the other hand, the space used seems excessive since the space needed
by the dynamic programming solution without using a suffix tree is just Θ(nm) and
can be reduced to O(m). We now modify the suffix-tree approach to also use only
O(n + m) space, and the same time bounds as before.

First, there is no need to store the current column at each node v. When backing
up from a child v′ of v, we can use the current column at v′ and the string labeling
edge (v, v′) to recompute the column for node v. This does however double the total
time for computing the columns. There is also no need to keep the current row n
at each node v. Instead, only O(n) space is needed for row entries. The key idea is
that the current table is expanded columnwise, so if the string-depth of v is j and the
string- depth of v′ j + d, then the row n stored at v and v′ would be identical for the
first j entries. We leave it as an exercise to work out the details. In summary,

Theorem 1.2 The hybrid suffix-tree/dynamic programming approach to the P -against-
all problem can be implemented to run in Θ[n(length of T) + m2] time and O(n + m)
space.

The above time and space bounds should be compared to the Θ(nm2) time and
O(n + m) space bounds that result from a straightforward application of dynamic
programming. The effectiveness in practice of this method depends on the length of

5

T for realistic strings. It is known that for random strings, the length of T is Θ(m2),
making the method unattractive. (For random strings, the suffix tree is bushy for
string depths of logσ m or less, where σ is the size of the alphabet. But beyond that
depth, the suffix tree becomes very sparse, since the probability is very low that a
substring of length greater than log

σ
m occurs more than once in the string.) But

strings with more structured repetitions (as occur in DNA) should give rise to suffix
trees with length that is small enough to make this method useful. We examined this
question empirically for DNA strings up to one million characters, and the lengths of
the resulting suffix trees were around m2/10.

1.2 The (threshold) all-against-all problem

Now we consider the most ambitious problems, to find the edit distance between every
pair of substrings, one from P and one from T , or to find every pair of substrings
where the edit distance is below a fixed threshold d. Computations of this type have
been conducted when P and T are both equal to the combined set of protein strings in
the database Swiss- Prot [6]. The importance of this kind of large-scale computation
and the way in which its results are used, are discussed in and [4]. The way suffix
trees are used to accelerate the computation is discussed in [1].

Since P and T have respective lengths of n and m, the full all- against-all problem
calls for the computation of n2m2 pieces of output. Hence no method for this problem
can run faster than Θ(n2m2) time. Moreover, that time bound is easily achieved: pick
a pair of starting positions in P and T (in nm possible ways), and for each choice
of starting positions i, j fill in the dynamic programming table for the edit distance
of P [i..n] and T [j..m] (in O(nm) time). For any choice of i and j, the entries in the
corresponding table give the edit distance for every pair of substrings that begin at
position i in P and at position j in T . So to achieve the O(n2m2) bound for the full
all-against-all problem, no suffix trees are needed.

But the full all-against-all problem calls for an amount of output that is often
excessive, and the threshold version of the problem usually produces results that
are more meaningful. And, one can further modify the threshold problem so that
trivial alignments are also omitted. That is, one might only want to report a pair of
substrings if they both exceed a certain length and yet have an edit distance below
a given threshold. Or the criteria for reporting a substring pair might be a function
of both length and edit distance. Whatever the specific reporting criteria, if it is no
longer necessary to report the edit distance of every pair, it is no longer certain that
Θ(n2m2) time is required. Here we develop a method whose worst case running time
is expressed as O(C + R), where C is a computation time that may be less than
Θ(n2m2) and R is the output size, i.e., the number of reported pairs of substrings.
In this setting, the use of suffix trees may be quite valuable depending on the size of
the output and the amount of repetition in the two strings.

6

An O(C + R)-time method

The method uses a suffix tree TP for string P and a suffix tree TT for string T . The
worst case time for the method will be shown to be O(C+R), where C is the length of
TP times the length of TT independent of whatever the output criteria are, and R is the
size of the output. That is, the method will compute certain dynamic programming
cell values, which will be the same no matter what the output criteria are, and then
when a cell value satisfies the particular output criteria, the algorithm will collect the
relevant substrings associated with that cell. Hence our description of the method
holds for the full all-against-all problem, the threshold version of the problem, or any
other version with different reporting criteria.

To start, recall that each node in TP represents a substring of P and every substring
of P is a prefix of a substring represented by a node of TP . In particular, each suffix
of P is represented by a leaf of TP . The same is true of T and TT .

Definition The dynamic programming table for a pair of nodes (u, v), from TP

and TT respectively, is defined as the dynamic programming table for the edit distance
between the string represented by node u and the string represented by node v.

The threshold all-against-all problem could be solved (ignoring time) by comput-
ing the dynamic programming table for each pair of leaves, one from each tree, and
then examining every entry in each of those tables. Hence it certainly would be solved
by computing the dynamic programming table for each pair of nodes, and then ex-
amining each entry in those tables. This is essentially what we will do, but in a way
that avoids redundant computation and examination. The following lemma gives the
key observation.

Lemma 1.2 Let u′ be the parent of node u in TP and let α be the string labeling the
edge between them. Similarly let v′ be the parent of v in TT and let β be the string
labeling the edge between them. Then, all but the bottom right |α||β| entries in the
dynamic programming table for the pair (u, v) appear in one of the tables for (u′, v′)
or (u′, v) or (u, v′). Moreover, that bottom right part of the (u, v) table can be obtained
from the other three tables in O(|α||β|) time. See Figure 3.

The proof of this lemma is immediate from the definitions and the edit distance
recurrences.

The computation for the new part of the (u, v) table produces an |α| by |β|
rectangular subtable which forms the lower right section of the (u, v) table. In the
algorithm to be developed below, we will store and associate with each node pair
(u, v) the last column and the last row of this |α| by |β| subtable.

We can now fully describe the algorithm.

7

suffix tree for P

u

u’

v

v’

suffix tree for T

u

α

u’

Z

X w v’ β v

New part

of the (u,v)

table

Z

α

X

w

Y

β

Y

Figure 3: The dynamic programming table for (u, v) is shown below the suffix trees
for P and T . The string on the path to node u is Zα and the string to node v is XY β.
All cells in the (u, v) table, except those in the lower right rectangle, are also in the
(u, v′) or (u′, v) or (u′, v′) tables. The new part of the (u, v) table can be computed
from the shaded entries and substrings α and β. Exactly one entry from the (u′, v′)
table is needed; |α| entries from the last column in the (u, v′) table are needed; and
|β| entries from the last row in the (u′, v) table are needed.

8

Details of the algorithm

First, number the non-root nodes of TP according to string-depth, smaller string-
depth first.2 Separately, number the nodes of TT according to string-depth. Then
form a list L of all pairs of node numbers, one from each tree, in lexicographic order.
Hence, pair (u, v) appears before pair (p, q) in the list if and only if u is less than p,
or u is equal to p and v is less than q. See Figure 4. It follows that if u′ is the parent
of u in TP and v′ is the parent of v in TT , then (u′, v′) appears before (u, v).

suffix tree for P
suffix tree for T

1
2

3
4

5 6

7 8

1

2

3
4

5 6

Figure 4: The suffix trees for P and T with nodes numbered by string-depth. Note
that these numbers are not the standard suffix position numbers that label the leaves.
The ordered list of node pairs begins (1, 1), (1, 2), (1, 3)... and ends with (6, 8).

Next, process each pair of nodes (u, v) in the order that it appears in L. Assume
again that u′ is the parent of u, that v′ is the parent of v, and that the labels on the
respective edges are α and β. To process a node pair (u, v), retrieve the value in the
single lower right cell from the stored part of the (u′, v′) table; retrieve the column
stored with the pair (u, v′), and retrieve the row stored with the pair (u′, v). These
three pairs of nodes have already been processed, due to the lexicographic ordering
of the list. From those retrieved values, and from the substrings α and β, compute
the new |α| by |β| subtable completing the (u, v) table. Store with pair (u, v) the last
row and column of newly computed subtable.

Now suppose cell (i, j) is in the new |α| by |β| subtable, and its value satisfies
the output criteria. The algorithm must find and output all locations of the two
substrings specified by (i, j). As usual, a depth- first traversal to the leaves below u
and v will then find all the starting positions of those strings. The length of the strings
is determined by i and j. Hence, when it is required to output pairs of substrings
that satisfy the reporting criteria, the time to collect the pairs is just proportional to
the number of them.

2Actually, any topological numbering will do, but string depth has some advantages when heuris-
tic accelerations are added.

9

1.2.1 Correctness and time analysis

The correctness of the method follows from the fact that at the highest level of de-
scription, the method computes the edit distance for every pair of substrings, one
from each string. It does this by generating and examining every cell in the dynamic
programming table for every pair of substrings (although it avoids redundant exami-
nations). The only subtle point is that the method generates and examines the cells in
each table in an incremental manner to exploit the commonalities between substrings,
and hence it avoids regenerating and re-examining any cell that is part of more than
one table. Further, when the method finds a cell satisfying the reporting criteria (a
function of value and length), it can find all the pairs of substrings specified by that
cell using a traversal to a subset of leaves in the two suffix trees. A formal proof of
correctness is left to the reader as an exercise.

For the time analysis, recall that the length of TP is the sum of lengths of all the
edge labels in TP . If P has length n, then the length of TP ranges between n and
n2/2, depending on how repetitive P and T are. The length of TT is similarly defined
and ranges between m and m2/2, where m is the length of T .

Lemma 1.3 The time used by the algorithm for all the needed dynamic programming
computations and cell examinations, is proportional to the product of the length of TP

and the length of TT . Hence that time, defined as C, ranges between nm and n2m2.

Proof In the algorithm, each pair of nodes is processed exactly once. At the point
a pair (u, v) is processed, the algorithm spends O(|α||β|) time to compute a subtable
and examine it, where α and β are the labels on the edges into u and v respectively.
Each edge label in TP therefore forms exactly one dynamic programming table with
each of the edge labels in TT . The time to build those tables is |α|(length of TT).
Summing over all edges in TP gives the claimed time bound. 2

The above lemma counts all the time used in the algorithm except the time used
to collect and report pairs of substrings (by their starting position, length and edit
distance). But the algorithm collects substrings when it sees a cell value that satisfies
the reporting criteria. So the time devoted to output is just the time needed to
traverse the tree to collect output pairs. We have already seen that this time is
proportional to the number of pairs that are collected, and is R. Hence,

Theorem 1.3 The complete time for the algorithm is O(C + R).

How effective is the suffix tree approach?

As in the P -against-all problem, the effectiveness of this method in practice depends
on the lengths of TP and TT . Clearly, the product of those lengths, C, falls as P and T
increase in repetitiveness. We have built a suffix tree for DNA strings of total length
around one million bases, and observed that the tree length is around one tenth of

10

the maximum possible. In that case, C is around n
2
m

2

100
, so all else being equal (which

is unrealistic), standard dynamic programming for the all- against-all problem should
run about one hundred times slower than the hybrid dynamic programming approach.

A vastly larger “all-against-all” computation on amino acid strings was reported
in [6]. Although their description is very vague, they essentially used the suffix tree
approach described here, computing similarity instead of edit distance. But, rather
than a one-hundred fold speed up, they claim to have achieved nearly a million-
fold speed up over standard dynamic programming3. That level of speedup is not
supported either by theoretical considerations (recall that for a random string S of
length m, a substring of length greater than log

σ
m is very unlikely to occur in S

more than once), or by the experiments we have done. The explanation may be the
incorporation of an early stopping rule described in [6] only by the statement “Time is
saved because the matching of patricia4 subtrees is aborted when the score falls below
a liberally chosen similarity limit”. That rule is apparently very effective in reducing
running time, but without a clearer description of it we cannot define precisely what
specific all-against-all problem was solved.

References

[1] R. Baeza-Yates and G. Gonnet. All-against-all sequence matching. unpublised
note.

[2] G. J. Barton. Computer speed and sequence comparison (letter to the editor).
Science, 257:1609–1609, 1992.

[3] S. A. Benner, M. A. Cohen, and G. H. Gonnet. Response to barton’s letter:
Computer speed and sequence comparison. Science, 257:1609–1610, 1992.

[4] S. A. Benner, M. A. Cohen, and G. H. Gonnet. Empirical and structural models
for insertions and deletions in the divergent evolution of proteins. J. Mol. Biol.,
229:1065–1082, 1993.

[5] P. Bieganski. Genetic sequence data retrieval and manipulation based on general-
ized suffix trees. PhD thesis, University of Minnesota, Department of Computer
Science, 1995.

[6] G. H. Gonnet, M. A. Cohen, and S. A. Benner. Exhausive matching of the entire
protein sequence database. Science, 256:1443–1445, 1992.

[7] E. Ukkonen. Approximate string-matching over suffix trees. Proc. 4’th Symp. on
Combinatorial Pattern Matching. Springer LNCS 684, pages 228–242, 1993.

3They finish a computation in 405 cpu days that they claim would otherwise have taken more

than a million cpu years without the use of suffix trees
4A patricia tree is a variant of a suffix tree.

11

