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Chapter 1

Trees First

Our main interest is in genealogical and phylogenetic networks, which by def-
inition are not trees. However, many of the network models derive from tree
models, and many of the tools that address networks rely critically on tools for
trees. Therefore we must first understand some models of tree-like evolution and
some combinatorial and algorithmic results about evolutionary trees. The main
tree-based model of evolution that we use is called the (rooted, binary-character)
Perfect-Phylogeny model.

1.1 The (rooted, binary-character) Perfect-Phylogeny
Problem

Definition Let M be an n by m matrix representing n taxa in terms of m
characters or traits that describe the taxa. Each character takes on one of two
possible states, 0 or 1, and a cell (f, c) of M has a value of one if and only if the
state of character c is 1 for taxon f . Thus the characters are binary-characters
and M is called a binary matrix.

When a taxon f has state 1 for a binary character c, we also say that “f
possesses (or contains or has) character c”.

Definition Given an n by m binary-character matrix M for n taxa, a perfect-
phylogeny for M is a rooted (directed) tree T with exactly n leaves that obeys
the following properties:

1. Each of the n taxa labels exactly one leaf of T .

2. Each of the m characters labels exactly one edge of T .

3. For any taxon f , the characters that label the edges along the unique path
from the root to leaf labeled f specify all of the characters that taxon f
possesses (i.e., whose state is one).
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c1 c2 c3 c4 c5

r1 1 1 0 0 0
r2 0 0 1 0 0
r3 1 1 0 0 1
r4 0 0 1 1 0
r5 0 1 0 0 0

Table 1.1: Matrix M has a perfect-phylogeny T shown in Figure 1.1.

When needed, we will also assume if a leaf of T is labeled by a taxon f , then
it is labeled by the characters that f possesses, or equivalently, is labeled by the
binary sequence defined by row f of M .

A perfect-phylogeny exists for some M , but not for all M . The input M
shown in Table 1.1 does have a perfect-phylogeny, shown in Figure 1.1.
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Figure 1.1: Perfect-Phylogeny T for matrix M shown in Table 1.1.

In the definition given for a perfect-phylogeny T , it is required that T be
rooted and directed, and that the characters be binary. This is the default case,
the technically simplest case and most common case that will be discussed in
this book. However, we will sometimes relax these assumptions; when we do,
we will always explicitly state the alternative assumptions being used. So, when
we use “perfect-phylogeny” with no additional modifiers, we are referring to a
rooted, binary-character perfect-phylogeny.

The interpretation of a perfect-phylogeny T for M is that it gives an estimate
of the rooted evolutionary history of the taxa (in terms of branching pattern,
but not time), based on the following biological and technical assumptions:

1. The taxa in M are generally taxa whose states have been observed and
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are known.

2. There exists a taxon r (possibly unknown) which is ancestral to all the
taxa in M . The character-state sequence for taxon r is called the ancestral
sequence. This sequence is denoted Sr. For technical and expositional
convenience, we assume first that the state of r for each character is zero, so
Sr is the all-zero sequence. We will see later how to relax that assumption.

3. In the evolutionary history of the taxa, each of the characters mutates from
the zero state to the one state exactly once, and never from the one state
to the zero state. Hence every character c labels exactly one edge e in a
perfect-phylogeny T for M , indicating the unique point in the evolutionary
history of the taxa when character c mutates. It follows that any taxon
that labels a leaf below e (or in more graph-theoretic terminology, in the
“subtree” below e) must possess character c.

The key biological and combinatorial feature of the perfect-phylogeny model
is that each character mutates exactly once in the evolutionary history of the
taxa. This is principally motivated by the infinite sites model from population
genetics and widely collected SNP data (discussed in Section ??). The infinite
sites assumption is not always valid but is appropriate in the biological settings
that are the major focus of this book. The assumption of only one mutation
per character is also motivated by the biological basis of complex characters as
discussed in Section ??. In molecular sequences, a change at a single site (i.e.,
of a single character) is called a mutation.

Figure 1.2 shows the phylogeny of six SNP sites published in the Journal
of Human Genetics [24]. The SNP data fits the infinite sites model and the
phylogeny is a perfect-phylogeny.

1.1.1 Alternative definitions a perfect-phylogeny

There are two alternative, but equivalent, definitions of a perfect-phylogeny that
are often technically helpful, and that generalize nicely to non-binary and to
undirected or unrooted perfect-phylogeny problems, which we will discuss later.
First we need the following

Definition A node in a rooted tree T is called an internal node if it is neither
a leaf node nor the root of T .

A Second Definition of a Perfect-Phylogeny A perfect-phylogeny for
M is a rooted tree T with n leaves, where each leaf is labeled by a distinct taxon
of M , and where the root of T and each internal node of T , is labeled by an
m-length binary sequence specifying a state for each of the m characters, such
that:
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(a) Perfect-phylogeny of five sequences at six SNP
sites.
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Figure 1.2: The perfect-phylogeny developed in [24] for five sequences at six SNP
sites in the Human DTNBP1 gene (Dysbindin) on Chromosome six. It has been
suggested that variations in these sequences are associated with schizophrenia,
although the evidence is said to be contradictory. There are two DNA variants
at each SNP site (for example A and G at site 1, and C, T at site 5), and so
the SNPs can be recoded into binary, using 0 for the ancestral state and 1 for
the derived state. The six sites labelled 1 through 6 here are actually SNPs
2,3,5,6,8,11 in [24].
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For every character c and each state i (either 0 or 1) of c, the nodes
labeled with state i for character c form a connected subtree of T ,
denoted Tc(i).

This property is called the convexity requirement. Clearly, for any character
c and states i != j, the subtrees Tc(i) and Tc(j) of perfect-phylogeny T are node
disjoint. For example, the perfect-phylogeny from Figure 1.1, with its node
labels, is shown in Figure 1.3.
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Figure 1.3: Perfect-Phylogeny T with nodes labeled by the derived sequences.

Note that in this second definition of a perfect-phylogeny there is no mention
of mutations, or labels on edges, or the requirement that each character mutates
only once. However, it is easy to see that the two definitions of a perfect-
phylogeny are equivalent. We leave the proof to the reader.

There is a third related, and equivalent, view of a perfect-phylogeny that is
also often used.

A Third Definition of a Perfect-Phylogeny Given M , let T be a rooted
tree with n leaves, where each leaf is labeled by a distinct taxon of M , where
the non-leaf nodes of T are unlabeled. For a state i of character c, let Tc(i) now
denote the smallest subtree of T connecting all the leaves of T that are labeled
with state i for character c. Then T is called a perfect-phylogeny if and only if
for each c, the subtrees Tc(0) and Tc(1) are node disjoint.

We again leave it to the reader to convince themselves that this definition is
equivalent to the two prior definitions.

1.1.2 The Perfect-Phylogeny Problem and Solution

The Perfect-Phylogeny Problem: Given an n by m, binary matrix M ,
determine whether there is a perfect-phylogeny for M , and if so, build one.
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original column 2 1 3 5 4
c1 c2 c3 c4 c5

r1 1 1 0 0 0
r2 0 0 1 0 0
r3 1 1 0 1 0
r4 0 0 1 0 1
r5 1 0 0 0 0

Table 1.2: Matrix M resulting from sorting the columns of the matrix M shown
in Table 1.1. The first row of numbers above M indicates the original column of
each character in M . The second row of numbers gives the new name for each
character.

We will solve the perfect-phylogeny problem with a simple O(nm)-time al-
gorithm where each comparison operation and each reference to M takes one
time unit.

For the algorithm and its proof of correctness, it will be helpful to first sort
the columns of M by the number of ones they contain, largest first, breaking ties
arbitrarily. Let M denote the sorted matrix M . For an example, see Table 1.1.2.
Certainly, M has a perfect-phylogeny if and only if M does, and the perfect-
phylogeny for M differs from the perfect-phylogeny for M only by a change in
edge labels corresponding to the sorting of the columns of M . For example, see
Figure 1.4.

From this point on, the name of each character will be the same as the
column that it occupies in M , rather than in M . For example the character at
the left of M will be called character one. Therefore, for two characters c and
d, with c < d, character c must be to the left of character d in M . Similarly, if
character c is to the left of character d in M , then it must be that c ≤ d.

Theorem 1.1.1 The Perfect-Phylogeny Theorem Matrix M (or M) has
a perfect-phylogeny (with all-zero ancestral sequence) if and only if no pair of
columns c, d contains the three binary pairs 0,1; 1,0; and 1,1.

Proof First, suppose that T is a perfect-phylogeny for M and consider two
characters c and d. Let ec be the edge of T on which character c changes from
state zero to state one, and let ed be the similar edge for character d. Note that
all of the taxa that possess character c (or d) are found at the leaves of T below
edge ec (or edge ed), and one of four cases must hold: Either 1) ec = ed, or 2)
ec is on the path from the root of T to ed, or 3) ed is on the path from the root
of T to ec, or 4) the paths to ec and ed diverge before reaching either of those
edges.
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Figure 1.4: Perfect-Phylogeny for the sorted matrix M shown in Table 1.1.2.

In case 1), there cannot be a taxon with (ordered) states 0,1 or 1,0 for
character pair c, d. In case 2) there cannot be a taxon with (ordered) states 0,1
for c, d; similarly in case 3) there cannot be a taxon with (ordered) states 1,0
for c, d. In case 4) there cannot be a taxon with states 1,1 for c, d. This proves
the “only if” direction of the theorem.

We now consider the other direction. We can assume that no pair of columns,
c, d, are identical to each other, for if they were identical we could remove one,
column c say, and then if T is a perfect-phylogeny for the remaining characters
we could add character c on the edge of T that is labeled by character d. The
resulting tree would be a perfect-phylogeny for all characters. Hence, it suffices
to prove this direction of the theorem assuming that every column is distinct.

By definition, in any perfect-phylogeny T for M (assuming one exists), and
for any taxon f , the characters that appear on the path from the root of T
to the leaf labeled f , are exactly the characters that have state one for taxon
f . Moreover, those characters must appear in exactly the same order that they
appear (left to right) in row f of M . To see this, suppose taxon f possesses
both characters c and d, and that c < d. As above, characters c and d are
both on the path from the root of T to leaf f . Since the columns of M are
sorted by the number of ones they contain, there are more taxa with state one
for character c then there are with state one for character d, and so the edge
ec labeled by character c occurs above the edge labeled by character d. This
is because all the taxa that label the leaves below ec must possess character c.
Hence, in a perfect-phylogeny T (if one exists) the characters on the path from
the root of T to a leaf f must be in exactly the same order that they are in M .
So, assuming there is a perfect-phylogeny T for M , for any taxon f , the set of
characters and the order that those characters appear on the path from the root
of T to leaf f is precisely and uniquely determined. It then follows that there
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is a perfect-phylogeny for M if and only if those n separate and forced paths
can be assembled into a single tree, i.e., where each character labels exactly one
edge.

We will show constructively how to assemble those n forced paths into a
perfect-phylogeny for M , under the stated premise of the theorem, that no pair
of columns in M contains all the binary pairs 0, 1; 1, 0 and 1, 1. To that end, we
first develop a property that M has when no pair of columns contains all those
three binary pairs.

The Shared Prefix Property For two taxa f and g, let d be the largest
(rightmost in M) character that taxa f and g both possess (i.e., where both
have state one). Then, assuming no pair of columns contain all three binary
pairs 0, 1; 1, 0; 1, 1, rows f and g in M must be identical from column one (at
the left end of M) to column d. For example, in Table 1.1.2, character 3 is the
largest character that taxa B and D both possess; as required, the rows for B
and D are identical (containing 0,0,1) from columns 1 to 3.

To establish the Shared Prefix Property, suppose taxon f possesses a char-
acter c < d in M , so that columns c, d contain the binary pair 1, 1. Since the
columns of M are distinct and are sorted by the number of ones they contain,
columns c, d must also contain the ordered binary pair 1, 0. Therefore (by the
premise of the theorem) columns c, d cannot contain the ordered pair 0, 1, and
hence taxon g must also possess character c. Now the choice of taxon f in this
argument was arbitrary, so the conclusion holds for taxon g also, and hence if
either f or g possess a character c < d, then both f and g possess character c.
It follows that rows f and g are identical in M from column one to column d.
This establishes the shared prefix property for M .

Constructing a Perfect-Phylogeny The shared prefix property allows
a simple algorithm to construct a perfect-phylogeny. The algorithm builds up
the perfect-phylogeny T for M by processing the rows of M in order. It first
creates a root node for T and adds to it a single path from the root to a leaf
labeled by taxon 1. If taxon 1 possesses t characters, that path will contain t
edges successively labeled by one character possessed by taxon 1, in the order
that those characters appear in row 1 of M , followed by a single unlabeled edge
leading to leaf 1. Note that this single path is a perfect-phylogeny for the first
taxon of M .

Let Tf denote the intermediate tree that contains all the paths for the taxa
from 1 to f . We assume inductively that Tf is a perfect-phylogeny for the first
f taxa of M . Then tree Tf+1 is constructed from Tf as follows: Starting at the
root of Tf , examine the characters that taxon f+1 possesses (from left to right in
M) and in parallel, walk from the root of Tf down the (unique) path in the tree,
as long as the successive characters on the path match the successive characters
that taxon f + 1 possesses. For example, see Figure 1.5. The path is unique
because no character appears more than once anywhere in the perfect-phylogeny



1.1. ROOTED PERFECT-PHYLOGENY 11

Tf , and in particular, no character appears more than once on the edges leading
out of any node. The walk ends at a node, denoted vf+1, where no label on
any edge out of vf+1 matches the next character that taxon f + 1 possesses, or
where all the characters that taxon f + 1 possesses have been matched. Let c
denote the last matched character on the walk. Then create a new path out of
vf+1 containing all the characters to the right of c that taxon f + 1 possesses
(in the order they appear in M), followed by an unlabeled edge to a leaf labeled
f + 1. The result is a tree Tf+1.

We claim that Tf+1 is a perfect-phylogeny for the first f + 1 taxa of M .
Clearly, each path to a leaf h ≤ f + 1 in Tf+1 contains exactly the characters
that taxon h possesses. Also, since Tf is a perfect-phylogeny, no character
on the path to node vf+1 is anywhere else in Tf . So to prove that Tf+1 is a
perfect-phylogeny for the first f + 1 taxa only requires proving that none of
the characters on the new path out of vf+1 are in Tf . Let d be the rightmost
character (in M) that taxon f + 1 possesses, such that d labels some edge in
Tf . Let ed denote that edge in Tf . Any taxon h labeling a leaf below ed in Tf

possesses character d, and by the shared prefix property, rows h and f + 1 of
M are identical from column 1 to column d. Hence, the walk to vf+1 is a walk
towards the leaf labeled by taxon h. Moreover, by the choice of character d, and
the fact that all characters that taxon h possess are in Tf , taxa h and f + 1 do
not possess any common characters to the right of d. Hence, the characters on
the walk from the root of Tf to node vf+1 exactly match all the characters that
taxon f + 1 possesses, from the left end of M to character d. Therefore, by the
choice of d, none of the characters on the new path out of vf+1 are in Tf , and
hence Tf+1 is a perfect-phylogeny for the first f + 1 taxa of M .

When all taxa have been processed, the resulting tree T is perfect-phylogeny
for M and for M . This proves the if direction, and finishes the proof of Theorem
1.1.1.

Note that in this construction, each internal node is labeled. If the resulting
perfect-phylogeny contains a node with degree two, other than the root node,
we can merge the two incident edges, possibly creating an edge labeled by more
than a single character.

The proof of Theorem 1.1.1 shows that any perfect-phylogeny for M (as-
suming no duplicate columns) must be the superposition of n forced paths. This
establishes the following

Corollary 1.1.1 If there is a perfect-phylogeny for M , and every column in M
is distinct, there is only one, unique, perfect-phylogeny for M .

Corollary 1.1.1 applies when all the columns of M are distinct, but it is
easy to remove this assumption. As discussed in the proof of Theorem 1.1.1, we
can always remove duplicate characters and still construct a perfect-phylogeny
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Figure 1.5: The extension from TB to TC in the creation of the perfect-phylogeny
T shown in Figure 1.4. Here, f = B, and the walk from the root follows edges
labeled with characters 1 and 2. Then, a new edge to a leaf labeled C is added,
and that edge is labeled with character 4.

(if one exists) for all of the data. It then follows from Corollary 1.1.1 that a
perfect-phylogeny is always unique, if the reinserted duplicate characters label
their common edge as a set of characters. It is also possible to build a perfect-
phylogeny where duplicate characters label different edges. If so, then the edges
labeled by those duplicate characters must be in a consecutive path and the
intermediate nodes (nodes not at the two ends of the path) on that path must
have degree two. In that case, the perfect-phylogeny is unique except for the
order of the characters on that path. We leave the details to the reader. We
summarize these facts as:

Theorem 1.1.2 Suppose M contains some columns which are duplicated and
there is a perfect-phylogeny for M . If we require that all internal nodes of any
perfect-phylogeny have degree greater than two, then all the perfect-phylogenies
for M have the same leaf-labeled topology (i.e., the leaf-labeled trees are identical
after removal of all edge labels). Similarly, if we require that every edge be labeled
with at most one character, then all the perfect phylogenies for M have the same
leaf-labeled topology.

The proof of Theorem 1.1.1 not only establishes the theorem, it gives a
constructive method to build a perfect-phylogeny for M , when one exists.

Theorem 1.1.3 If there is a perfect-phylogeny T for M , it can be constructed in
O(nm) operations. And if each row f of M is presented as the set of characters
that taxon f possesses, then T can be constructed in time proportional to the
number of ones in M .
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Proof First, to create M from M we count the number of ones in each
column of M , in O(nm) operations. Those counts range from 0 to n, so we can
sort the numbers and the associated columns in O(m) operations by standard
bucket sort or counting sort, in decreasing order. The number of operations
needed to create Tf+1 from Tf is O(m), since no character appears twice in
Tf , implying that Tf has at most m labeled edges. Thus the total number of
operations needed to build the perfect-phylogeny for M is O(nm).

For the second part of the theorem, let t denote the number of ones in M ;
when the characters possessed by each taxon are presented as a set, t is just the
sum of the sizes of these n sets. By scanning the sets, we can create a linked-list
L(c) for each character c containing the taxa that possess c. These linked-lists
can be built, and the size of each list can be determined, in O(t) operations.
The size of the list for character c indicates the number of taxa which possess
character c; as above, those numbers (and their associated characters) can be
sorted in O(m) operations. Let C be the ordered list of characters, based on this
sort. Next we want to reorder the set of characters that each taxon f possesses,
to agree with the order of the characters in C. Let S(f) denote the desired
ordered set of characters that f possesses. These ordered sets are obtained by
processing the characters in C in order; when a character c is processed, we put
c at the end of the growing ordered set S(f), for every taxon f in L(c). The n
ordered sets are thus built in O(t) total operations, and essentially describe the
matrix M . Next we use the S(f) sets to build up the perfect-phylogeny T as
described in the proof of Theorem 1.1.1. The only added detail needed is that
when building up T , we create a pointer indexed by c, to the (unique) location
of each character c in the tree, at the time that character c is on a new path
entered into the tree. Then when inserting the path for any taxon f + 1, we
process the set S(f + 1) in order (simulating the left to right scan of row f + 1
in M), and when a character c is the next character in S(f), we use the pointer
indexed by c to determine if c appears in Tf , and if so, where it appears. In this
way, the number of operations needed to build Tf+1 from Tf is proportional to
the size of S(f +1), and the perfect-phylogeny T can be built in O(t) operations
in total.

The first proven O(nm)-time perfect-phylogeny algorithm was given in [12],
with a method that is different from the one given here. An alternate version
appears in [13]. An earlier perfect-phylogeny algorithm, developed in [23] and
discussed in [28], can also be shown to run in O(nm) time, but no time bound
was established in [23]. The O(t) method for building a perfect-phylogeny from
sets was first established in [2]. Note that a straightforward implementation of
Theorem 1.1.1 would give an Ω(nm2) time algorithm to determine if M has a
perfect-phylogeny, and would not construct one.
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An Alternate statement of the Perfect-Phylogeny Theorem

There is an alternate statement of the Perfect-Phylogeny Theorem that is often
used. For emphasis, we remind the reader that a perfect-phylogeny is a rooted
tree and the characters are binary.

Definition: For any column c of M , let Oc be the set of taxa that possess
character c.

Theorem 1.1.4 There is a perfect-phylogeny for M if and only if for every two
characters c and d, either Oc ∩ Od = ∅, or one set is contained in the other.

We leave the justification of this to the reader. A direct proof of Theorem
1.1.4 appears in [13].

Other proofs of Theorems 1.1.1 and 1.1.4 and of Corollary 1.1.1 appear in a
number of places, for example [5, 7, 6], and in somewhat different language in
[28]).

1.2 The case of a known, non-zero, ancestral sequence

We will now examine some ways that the basic assumptions in the definition
of a perfect-phylogeny can be relaxed, and how the modified Perfect-Phylogeny
Problem can be solved in those cases.

In the perfect-phylogeny model the root of the perfect-phylogeny is labeled
with the all-zero sequence, corresponding to the assumption that the ancestral
taxa does not possess any of the characters in M . This is a convenient technical
assumption, but it is not necessary. Suppose that the binary characters in M
are such that the known ancestral taxon r does possess some of the characters
in M . Therefore, the binary sequence labeling the root should not be the all-
zero sequence, but rather a binary sequence where values of one indicate the
characters that r possesses. What is the modified model for a perfect-phylogeny
in this case, and how can we solve the problem of determining if there is such a
perfect-phylogeny?

Definition: The Root-Known Perfect-Phylogeny Given an n by m binary-
character matrix M for n taxa, and a given binary sequence Sr (whose 1’s indi-
cate the characters that the ancestral taxon r possesses) an Sr-Perfect-Phylogeny
for M is a rooted (directed) tree T with exactly n leaves, with the following prop-
erties:

1. The root of T is labeled by the ancestral sequence Sr.

2. Each of the n taxa labels exactly one leaf of T .

3. Each of the m characters labels exactly one edge of T .
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4. For any taxon f , let Cf be the set of characters labeling edges on the path
in T from the root to the leaf labeled f . Then, the binary sequence for f
(i.e., the row in M for f) and the binary sequence Sr differ at exactly the
characters in Cf .

Another way to visualize this definition is that each leaf f is labeled with
a binary sequence (the row in M for f) which is derived from the ancestral
sequence Sr by walking from the root to leaf f , changing the state of character
c when an edge labeled by c is encountered.

Note that a perfect-phylogeny is just a root-known perfect-phylogeny in the
case that the known ancestral sequence Sr is the all-zero sequence. Thus, the
concept of a root-known perfect-phylogeny generalizes a perfect-phylogeny, but
through a small change in the definition of a perfect-phylogeny given earlier.

The Root-Known Perfect-Phylogeny Problem: Given M and
m-length binary sequence Sr, determine if there is an Sr-perfect-
phylogeny for M .

We efficiently solve this problem by reducing it back to the original (all-zero
root) perfect-phylogeny problem.

Theorem 1.2.1 Let M ′ be the binary matrix obtained from M by interchanging
all the 0 and 1 entries in each column c of M where Sr(c) = 1. Then there is
an Sr-perfect-phylogeny T for M if and only if there is a perfect phylogeny T ′

(with all-zero ancestral sequence) for M ′. Moreover, T and T ′ have the same
leaf-labeled topology.

As an example, see Table 1.2. Note that no changes are made in any column
c of M where Sr(c) = 0. Hence the same transformation (changing any 1’s to
0’s) applied to Sr, creates the all-zero sequence.

Theorem 1.2.1 gives an efficient, constructive way to determine whether there
is a perfect-phylogeny with a given ancestral sequence Sr. The proof of Theorem
1.2.1 is simple and is left to the reader as an exercise.

The reduction of the root-known perfect-phylogeny problem to the origi-
nal perfect-phylogeny problem, combined with the Perfect-Phylogeny Theorem
(Theorem 1.1.1), yield the following:

The Root-Known Perfect-Phylogeny Theorem

Theorem 1.2.2 Binary matrix M has an Sr-perfect-phylogeny if and only if
no pair of columns c, d in M contains the three binary pairs that differ from the
(ordered) binary pair in positions c, d of Sr. Moreover, if all the columns of M
are distinct, and there is an Sr-perfect-phylogeny for M , there is one, unique
Sr-perfect-phylogeny for M .
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c1 c2 c3 c4 c5

Sr 1 1 0 0 1
r1 1 1 0 0 0
r2 0 0 1 0 0
r3 1 1 0 0 1
r4 0 0 1 1 0
r5 0 1 0 0 0

Table 1.3: When the matrix above is transformed based on Sr, the result is
the matrix M shown in Table 1.1. Matrix M has a perfect-phylogeny (with the
all-zero ancestral sequence), so there is an Sr-perfect-phylogeny for the above
table, and it has the same leaf-labeled topology as the perfect-phylogeny for M .

Proof By case analysis, we see that a pair of columns c, d in M contain
the three distinct binary pairs (in rows f, g, h say) that differ from the ordered
binary pair in positions c, d of Sr, if and only if the same rows f, g, h in M ′

contain the distinct ordered binary pairs that differ from the transformed Sr

at c, d. But the transformed Sr is the all-zero sequence, so columns c, d in M ′

contain all the binary pairs 0, 1; 1, 0; 1, 1, if and only if columns c, d in M contain
all the binary pairs that differ from the binary pair in positions c, d of Sr. Now
by Theorem 1.1.1 there is a perfect-phylogeny for M ′ if and only if no pair of
columns in M ′ contain all three binary pairs 0, 1; 1, 0; 1, 1. The first part of the
theorem then follows by application of Theorem 1.2.1.

To show uniqueness, let T1 be an Sr-perfect-phylogeny for M , and let T ′
1

be the perfect-phylogeny for M ′. By Theorem 1.2.1, T1 and T ′
1 have the same

leaf-labeled topology. Now if there exists a different Sr-perfect-phylogeny T2 for
M , then there exists a perfect-phylogeny T ′

2 for M that differs from T ′
1, which

violates the statement of uniqueness in Theorem 1.1.1.
Theorem 1.2.2 can be extended to handle the case of duplicate characters,

in the same way that Theorem 1.1.2 extends Corollary 1.1.1. We leave this as
an exercise for the reader.

1.3 The Root-Unknown Perfect-Phylogeny Problem

We now consider the most relaxed perfect-phylogeny model, when no ancestral
sequence is specified as part of the problem instance?

Definition Given a binary matrix M , but no specified ancestral sequence, the
root-unknown Perfect-Phylogeny Problem is to determine if there exists some
binary sequence Sr such that there is an Sr-perfect-phylogeny. Moreover, an
ancestral sequence Sr should be explicitly identified if one exists.
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Definition In an undirected, unrooted tree with a node of degree two, the
contraction of a node v of degree two removes v and merges the two edges
incident with v into a single edge. The new edge is labeled by the union of the
characters that labeled the two merged edges. See Figure 1.3, parts a) and b).
Definition An undirected perfect-phylogeny for M is a tree that is obtained
from a rooted perfect-phylogeny T for M , after removing all the directions on
the edges of T , and successively contracting nodes of degree two. See Figure 1.3
parts c) and d).

r 2,5

1

63

4 1,2,4,5

63

b)a) c) d)

2, 5

1
1,2,5v

v

Figure 1.6: a) Two edges incident with node v of degree two. b) The result of
contracting node v. c) A rooted directed tree with two nodes, r and v of degree
two. d) The undirected tree obtained by removing the directions on all edges,
and successively contracting the nodes r and v of degree two.

The contraction of nodes of degree two is in order to address the case of
duplicated characters, and the fact that the root of an Sr −perfect−phylogeny
might have degree two even if there are no duplicate characters. Note that in
the definition of an undirected perfect-phylogeny T , all internal nodes of T have
degree greater than two.

The root-unknown perfect-phylogeny problem can equivalently be stated as
the problem of determining if there is an undirected perfect-phylogeny for M ,
and the root-unknown perfect-phylogeny problem is also called the undirected or
unrooted perfect-phylogeny problem. We prefer the term root-unknown perfect-
phylogeny problem because we have defined a perfect phylogeny as a rooted,
directed tree. However, when no ancestral sequence is known (and this is often
the case), it may be more consistent with the known information if a perfect-
phylogeny T is converted to an undirected perfect-phylogeny.
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To solve the root-unknown perfect-phylogeny problem, we again use reduc-
tion, in this case to the root-known perfect-phylogeny problem. To see the
reduction, suppose there is a perfect-phylogeny T for M with some ancestral
sequence Sr. Each taxon f in M defines the sequence labeling a leaf of T , and
hence there is a directed path in T from the root to leaf f . Now imagine grab-
bing the leaf f and raising it above the root of T , making T hang down from
f . We could then consider f as the root of the resulting directed tree Tf , where
all of the sequences in M are derived from f . In particular, the sequence for
any taxon g is obtained from the sequence for f by changing the state of the
characters on the path from f to g. Tree Tf is almost a f -perfect-phylogeny for
M , but it does not strictly obey the definition of a perfect phylogeny because f
does not label a leaf. To rectify that, we simply add an unlabeled edge from the
root of Tf to a new leaf labeled f . This establishes the following:

Theorem 1.3.1 Given a binary matrix M and no specified ancestral sequence,
if there is an undirected perfect-phylogeny for M , then there is an f -perfect-
phylogeny for M , where f is any of the taxa in M .

Note that in the transformation from T to T ′, no edge labels changed, and
the leaf-labeled topology also did not change except for the addition of the edge
to the new leaf labeled f .

Theorem 1.3.1 leads to an efficient algorithm for the root-unknown perfect-
phylogeny problem: declare the sequence of some (any) taxon f in M to be the
ancestral sequence Sr, and then solve the root-known perfect-phylogeny problem.
If a (rooted, directed) Sr-perfect-phylogeny T is obtained, but an undirected tree
is more biologically valid, remove the directions on all edges of T .

The Root-Unknown Perfect-Phylogeny Theorem

Theorem 1.3.1 not only leads to an efficient algorithm, it leads to the classical
necessary and sufficient condition for the existence of a root-unknown perfect-
phylogeny for binary matrix M :

Theorem 1.3.2 The Four-Gametes Theorem When no ancestral sequence
is known, matrix M has an undirected perfect-phylogeny if and only if no pair
of columns contains all four binary pairs 0,0; 0,1; 1,0, and 1,1.

Proof If there is an undirected perfect-phylogeny for M then by Theorem
1.3.1 there is an f -perfect-phylogeny for any taxon f in M . Therefore by Theo-
rem 1.2.2 no pair of columns c, d in M can have all three binary pairs that differ
from the binary pair in columns c, d for sequence f . Then, since f is also in M ,
no pair of columns in M can have all four binary pairs.

Conversely, for any taxon f , if no pair of columns in M contain all the four
binary pairs, then no pair of columns of M contain all three binary pairs that
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differ from the binary pair that sequence f has in those columns. Therefore, by
Theorem 1.2.2, M has an f -perfect-phylogeny T , and so M has the undirected
perfect-phylogeny obtained from T .

The condition in Theorem 1.3.2 is called the four-gametes condition, or four-
gametes test in the population genetics literature [15], and is called the compat-
ibility condition in the phylogenetics literature [28, 8].

Back to a rooted problem
Through the reductions used in the proofs, we have seen a very close re-

lationship between unrooted, undirected versions of problems and results and
root-known versions. As another reflection, we can now give a different, but
equivalent, way to discuss Theorem 1.2.2, as follows:

Definition Given an n by m binary matrix M and a fixed binary sequence
S of length m (which need not be in M), let M +S be the binary matrix created
by adding S to M .

Corollary 1.3.1 Binary matrix M , and an ancestral sequence Sr (which need
not be in M), M has an Sr-perfect-phylogeny if and only if no pair of sites in
M + Sr contains all four gametes.

1.3.1 Uniqueness

The Four-Gamete Theorem establishes when there is an undirected perfect-
phylogeny for a binary matrix, but does not address the question of uniqueness.
We address that now.

Theorem 1.3.3 Suppose M has an undirected perfect-phylogeny. If all columns
of M are distinct, then there is one, unique, undirected perfect-phylogeny for M .
If the columns of M are not all distinct, all of the undirected perfect phylogenies
for M have the same leaf-labeled topology.

Proof Suppose all the columns of M are distinct and that there are two
different undirected perfect phylogenies, T and T ′, for M . Let f be a taxon
in M ; hence there is a leaf labeled f in both T and T ′. By Theorem 1.3.1
there are two f -perfect-phylogenies Tf and T ′

f . These trees must be different
because T and T ′ are different, and the transformations of T and T ′ to Tf and
T ′

f respectively add a new edge from the root to the new leaf f , and preserve all
the prior edges and edge labels. But by Theorem 1.2.2, when all columns of M
are distinct, there can be only one unique f -perfect-phylogeny for M .
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A note on the importance of uniqueness Theorems 1.2.2 and 1.3.3, and
Corollary 1.3.1 all establish that when there is a perfect-phylogeny (under dif-
ferent models), there is only one, unique perfect-phylogeny. Uniqueness has
probably been a critical factor in making the perfect-phylogeny model (under
different names in different areas of biology) of interest in biology. Uniqueness
implies that if or when the underlying biological reality fits the mathematical
assumptions of the perfect-phylogeny model, the obtained tree will be the bi-
ologically correct and relevant tree. It is not just one tree among many that
display some aspects of the data – it is the tree that explains the true evolution-
ary history of the sequences. In contrast, even if a model perfectly captures the
underlying biological reality, when a large set of trees fit that model, one does
not know how much biologically correct information can be extracted from any
one of those trees, or which of the trees is the most biologically informative.

So, the uniqueness of the perfect-phylogeny is a very significant feature. Of
course, the caveat is that this feature is of greatest utility when the biological
reality fits, or nearly fits, the mathematical assumptions of the model. We will
see in Chapter ?? that uniqueness, or essential-uniqueness, is also one of the
primary attractions of a generalization of perfect-phylogeny to networks called
galled-trees.

In addition to uniqueness, one of the arguments in favor of the perfect-
phylogeny model, is that a set of random binary sequences is very unlikely to
be derivable on a by perfect-phylogeny. Therefore, when one has a set of binary
sequences that can be derived on a perfect-phylogeny (or can after some small
modification of the data), there is a strong belief that the history of the sequences
did conform to the perfect-phylogeny model.

Alternate roots

There is an alternative reduction that can solve the undirected perfect-phylogeny
problem, which uses an interesting fact detailed in Theorem 1.3.4 below.

Definition For any character c, if more than half of the taxa have state i for c,
then i is called the majority state of c. A character c does not have a majority
state if and only if the number of taxa that possess character c exactly equals
the number of taxa that do not possess c. A sequence Sm is said to be a majority
sequence if Sm has the majority state for every character c that has a majority
state. If character c does not have a majority state, then the value of Sm at
position c is permitted to be either 0 or 1.

Theorem 1.3.4 Given a binary matrix M and no specified ancestral sequence,
if there is an undirected perfect-phylogeny for M , then there is an Sm-perfect-
phylogeny for M , where Sm is a majority sequence for M .
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There are applications where the use of Theorem 1.3.4 is preferred to the use
of Theorem 1.3.1. We leave the proof of Theorem 1.3.4 as a simple exercise for
the reader.

Finally, we note the undirected analog to Theorem 1.1.4. Recall that Oc and
Od are the sets of taxa that posses characters c and d respectively. Let Oc and
Od be the sets of taxa that don’t posses characters c and d respectively.

Theorem 1.3.5 There is an undirected perfect-phylogeny for M if and only if
for every two characters c and d, one of the sets Oc ∩ Od, Oc ∩ Od, Oc ∩ Od,
Oc ∩ Od is empty.

1.4 The Splits-Equivalence Theorem

In this book we have chosen to first expose the combinatorial structure of evolu-
tionary trees through the viewpoint of the perfect-phylogeny model and variants
of it. However, a different approach is also common [28], using the viewpoint
of splits and the Splits-Equivalence Theorem. In this section we will develop
that theorem and show that it is essentially the same as Theorem 1.3.3 de-
veloped for the root-unknown perfect-phylogeny problem. Thus, although the
two viewpoints may at first seem different, they are really addressing the same
combinatorial phenomena.

Let T be an undirected tree whose leaves have distinct labels. The removal of
any edge e from T creates exactly two connected subtrees, defining a bipartition
the leaves of T .

Definition We define the split for e as the bipartition of the leaves (equivalently,
the leaf labels) defined by the two undirected subtrees resulting from the removal
of edge e from T . Given a tree T with m edges, we define the splits of T as the
set of m splits, one split for each edge in T . Note that if T has a node of degree
two, then there will be two adjacent edges which define exactly the same split.
This will not happen if each non-leaf node has degree at least three.

For example, there are eight splits in the tree shown in Figure 1.4 (on page
9). Those splits are:

{r4}, {r1, r2, r3, r5}; {r2}, {r1, r3, r4, r5}; {r2, r4}, {r1, r3, r5}; {r2, r4}, {r1, r3, r5}; {r5},

{r1, r2, r3, r4}; {r1, r3}, {r2, r4, r5}; {r1}, {r2, r3, r4, r5}; {r3}, {r1, r2, r4, r5}.

Note that the two edges labeled with sites 1 and 3 define the same split.
The splits of a tree are very informative, as shown next.

Theorem 1.4.1 The Splits-Equivalence Theorem For any undirected tree
T with distinct leaf labels, the splits of T uniquely define T .
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Stated differently, for any (distinctly) leaf-labeled, undirected tree T , there
is no other undirected tree with the same set of splits as T . Therefore, we can
uniquely reconstruct T if we know the splits of T . This is one of the most
fundamental and useful facts about the combinatorial structure of trees. We
will prove the Splits-Equivalence Theorem by relating it to the root-unknown
perfect-phylogeny problem and Theorem 1.3.3.

Proof of Theorem 1.4.1 We assume that the splits of T are distinct, and
leave the case when they are not distinct to the reader. We represent the splits
of T in a binary matrix SP where each leaf of T is represented by a row of SP
and each split of T (equivalently, each edge in T ) is represented by a column of
SP . The zeros in the column for split e identify the leaves on one side of the
split, and the ones in the column identify the leaves on the other side of the
split. Note that we could interchange all the zeros and ones in any column and
still define exactly the same bipartition; the zeros and ones only serve to specify
the bipartition and have no other meaning.

Now consider matrix SP as an input matrix to the root-unknown perfect-
phylogeny problem. We claim that there is an undirected perfect-phylogeny
for SP with the same leaf-labeled topology as T . To show this in detail, we
must exhibit an Sr-perfect-phylogeny for SP which becomes T when all edge
directions are removed, and every node of degree two is contracted. To create
the desired Sr-perfect-phylogeny, label each edge e in T by the column in SP
associated with e (i.e. the column that describes the split for e in T ), and label
each leaf in T by the row in SP associated with that leaf. Next, choose any leaf
f in T to be the root and set the ancestral sequence Sr to the sequence for f in
SP . Finally, add a new edge from the root to a new leaf labeled f and direct
all the edges away from the root. The result is an Sr-perfect-phylogeny for SP
that establishes that T is an undirected perfect-phylogeny for SP .

It follows from Theorem 1.3.3, since all the splits in T are distinct, that
T is the unique undirected perfect-phylogeny for matrix SP . Further, if we
interchange the zeros and ones in any column of SP , creating matrix SP ′, tree
T will also be the unique undirected perfect-phylogeny for SP ′. The needed
S′

r-perfect-phylogeny for SP ′ is obtained from the Sr-perfect-phylogeny for SP
by interchanging the zeros and ones in Sr at every position where the values in
SP were interchanged to create SP ′. Hence, no matter how the splits of T are
encoded in SP , tree T is the unique undirected perfect-phylogeny for SP .

Now suppose there is another tree T ′ which is different from T but has exactly
the same splits as T , encoded in a matrix SP ′. By the argument in the prior
paragraphs, T ′ is an undirected perfect-phylogeny for SP ′. But no matter how
the splits of T ′ are encoded, matrix SP ′ also describes the splits of T , so T is
the unique undirected perfect-phylogeny for SP ′, contradicting the assumption
that T and T ′ are different.

The proof of Splits-Equivalence Theorem assumes that all splits are distinct,



1.4. SPLITS EQUIVALENCE 23

but it can be easily extended to the case when there are duplicate splits. In
that case, all undirected perfect-phylogenies for the matrix SP (encoding the
splits of T ) will have the same leaf-labeled perfect phylogenies, and this can
be used to prove that the splits of T uniquely define T , even if some of the
splits are not distinct. We leave the details to the reader. We note that T can
have a duplicate split only if it has an internal node of degree two, so the Splits-
Equivalence theorem as stated applies to the common case that all internal nodes
have degree greater than two.

The existence problem

The Splits-Equivalence Theorem says that the splits of an existing undirected
tree T uniquely define T . But often we are given a set of splits, and need to
determine if they come from an undirected tree T . A little reflection shows that
this existence problem has already been solved.

We showed above that when the splits come from a tree T and are encoded
in a binary matrix SP , tree T is the unique undirected perfect-phylogeny for
SP , so to determine if a set of splits come from a tree T , we simply consider the
splits in matrix SP and apply the Four-Gametes Theorem. However, the splits
literature uses somewhat different terminology, as follows.
Definition A pair of columns in a binary matrix is called incompatible if they
contain all four binary pairs 0,0; 0,1; 1,0; and 1,1. Otherwise the pair is called
compatible. A split can be represented as a column in a binary matrix SP , as
above. We say that two splits are compatible if and only if their associated
columns in SP are compatible.

Using this terminology, the Four-Gamete Theorem becomes:

Theorem 1.4.2 Let SP be a binary matrix defining a set of splits of a set Z.
Then there exists an undirected tree T whose leaves are labeled by Z, and whose
splits, defined by the edges of T , contain the splits of SP , if and only if every
pair of columns in SP is compatible.

Definition An edge e = (u, v) in a tree is called an internal edge if neither
u nor v is a leaf node.

We can strengthen Theorem 1.4.2, requiring that every internal edge of T
define a distinct split of SP , by successively identifying and contracting any edge
that defines a split defined by another remaining edge of T . We call such a tree
a “reduced tree”. Note that in a reduced tree, the split defined by an edge that
touches a leaf need not be a split in SP . However, every tree whose leaves are
labeled by Z will contain this set of |Z| splits defined by an edge touching a leaf.
Then by Theorem 1.4.1, it follows that
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Theorem 1.4.3 If there is an undirected tree T whose splits contain the splits
of SP , then there is a unique reduced tree whose splits contain the splits of SP .

Although compatibility and incompatibility have been defined as properties
of pairs of columns (sites, characters), we will sometimes need to focus on indi-
vidual characters, and will somewhat abuse the definitions as follows.

Definition An individual character c in M is called compatible if c is not
incompatible with any character in M . If a character c is incompatible with
some other character, then we will simply say that c is not compatible.

A rooted version of the Splits-Equivalence Theorem

Suppose T is a rooted tree with n leaves and m edges, where each leaf has a
distinct label. A split for an edge e again creates a bipartition of the leaves
of T , but now the two sides of the split can be distinguished by noting which
side contains the root of T . These rooted splits can be represented by an n by
m matrix SP where each row represents a leaf and each column represents an
edge of T ; a cell SP (i, e) has the value of 0 if leaf i is in the subtree of T − e
containing the root of T , and has value 1 otherwise. Note that the set of leaves
with value 1 in the column for edge e, precisely specifies all of the leaves below
e in T . In some literature, this set of leaves is called a cluster.

Observe that SP (i, e) = 1 if and only if edge e is on the path from the
root of T to leaf i. That is, each row in SP precisely specifies the edges in the
path from the root of T to leaf i. Hence we can interpret SP as input M to
the perfect-phylogeny problem, and interpret T as a perfect-phylogeny for M .
Moreover, any other tree T ′ that has exactly the same splits as given in SP
is also a perfect-phylogeny for M . By the Perfect-Phylogeny Theorem, when a
binary matrix M can be represented by a (rooted) perfect-phylogeny (with all-
zero ancestral sequence), the perfect-phylogeny for M is unique. This implies
the following

Theorem 1.4.4 The set of rooted splits (or clusters) of a rooted, directed, tree
T uniquely determine T , including its root and the direction of each edge.

Incompatibility is defined for undirected problems. There is also a notion of
incompatibility that is used for rooted or directed problems.

Definition Given an n by m binary matrix M and a binary sequence s of length
m, then two sites c and d in M are said to conflict relative to s if c and d are
incompatible in M + s.

With this definition, we can restate Theorem 1.2.2 as follows:

Theorem 1.4.5 Binary matrix M has an Sr-perfect-phylogeny if and only if no
pair of sites conflict relative to Sr.
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Sometimes we can assume that Sr is part of M , in which case we will only
need results concerning incompatibility, rather than results explicitly about con-
flict.

1.5 Advanced Material: extensions of perfect-phylogeny
to non-binary data

So far in this book, we have assumed that the data is binary. This assumption
is biologically valid in most contexts of current interest, for example in modeling
SNP data, or modeling the presence or absence of complex traits. In all but this
section of the book, we will continue to to assume that the data is binary; this
has been the universal assumption in all studies of networks with recombination.

However, despite the current and anticipated centrality of binary data, other
important multi-state (non-binary) polymorphism data are now being systemat-
ically collected in populations, and the frequencies of these polymorphisms are
much greater than has been assumed in the past [29, 16, 27, 32, 33, 22, 17].
Some of these polymorphisms have functional consequence and may be under
selective pressure [25, 26, 30]. Non-binary data consists of sequences, one from
each sampled individual in a population, where the value at a single site is not
restricted to 0 or 1, but can be a larger integer (the allele is “multi-allelic” rather
than “diallelic”). The meaning of an integer at a site varies by the type of poly-
morphism. In some cases it is an actual count and has an ordinal meaning, and
in other cases it only identifies the state of the polymorphism (as in the binary
case). The need to handle such data has lead to a generalization of the (binary
character) perfect-phylogeny model to the Multi-State Perfect-Phylogeny model.

In this section we introduce a little bit about the multi-state perfect-phylogeny
problem. In particular, we will discuss the three-state perfect-phylogeny problem
in detail, as it is closely related to the binary case.

Introduction to k-state Perfect-Phylogeny

In the k-state Perfect-Phylogeny Problem, the input is an n by m matrix
M whose values are integers from the set Z(k) = {1, 2, ..., k}. Each row of M
again represents a single taxon; each column of M represents a single character;
and each value in cell (f, c) is the state of character c that taxon f possesses.

A directed k-state Perfect-Phylogeny for M is a generalization of a perfect-
phylogeny (for binary data). In the binary case, each character changes (mu-
tates) exactly once from the state it has in the ancestral sequence. The natural
generalization to k states is to allow a character to mutate k − 1 times in a
perfect-phylogeny, but to insist that for any character c and any state i of char-
acter c, there is at most one mutation in the tree that changes the state of
character c to i.
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Although true evolutionary history is always directed (in time), the true
ancestral sequences and the true root may not be known. Consequently, the
literature on multi-state perfect-phylogeny has usually addressed the undirected
version, and we will do that here. We now state a more formal definition.

Definition For any character c and any sate i of c, the set of taxa in M that
possess state i for character c is denoted by Xc(i); the set of taxa which do not
possess state i is denoted by Xc(i). Note that Xc(i),Xc(i) defines a split of the
taxa.

Definition Given M as above, a taxa-labeled tree T for M is an undirected
tree with n leaves, where each leaf is labeled by a distinct taxon in M , and each
internal node of T is labeled by a vector from Z(k)m (which need not be in M),
specifying the state of each of the m characters. We define Tc(i) as the subgraph
of T induced by the nodes in T that are labeled with state i for character c.

Definition A taxa-labeled tree T for M is a Perfect-Phylogeny for M if
and only if, for every character c and every state i of c, the subgraph Tc(i) is a
connected subtree of T . An example is shown in Figure 1.5.

This definition of a multi-state perfect-phylogeny is the natural generalization
of the Second Definition given for a (rooted, binary) perfect-phylogeny on page
5.

The requirement in the definition of a perfect-phylogeny that each subgraph
Tc(i) be a subtree is called the convexity requirement. For another way to
view convexity, arbitrarily designate a node in T as the root and direct all the
edges in T away from the root; consider this directed tree as giving a history
of character mutations. The convexity requirement is then equivalent to saying
that for any character/state pair (c, i), there is at most one edge in T where
the state of character c mutates to i. Note that for any character c and states
i != j, the convexity requirement implies that subtrees Tc(i) and Tc(j) of a
perfect-phylogeny T must be node disjoint.

Definition The k-state Perfect Phylogeny Problem is to determine, for input
M , if there is a k-state perfect-phylogeny for M , and to construct one if there
is one.

If none of the parameters k, n or m is fixed (so k can grow with n), then the
k-state perfect-phylogeny problem is NP-complete [3, 31]. In contrast, if k is
any fixed integer, independent of n, then the problem can be solved in time that
is polynomial in n and m. In fact, for k = 2, we showed in Theorem 1.1.3 that
the problem can be solved in linear time. A polynomial-time solution for k = 3
was shown in [4]; a polynomial-time solution for k = 3 or 4 was shown in [18];
and a polynomial bound for any fixed k was shown in [1]. The later result was
improved in [19] to a time bound of O(22knm2). An excellent survey of most of
these results appears in [9].
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Figure 1.7: A three-state perfect-phylogeny with n = 5,m = 3. The input M is
given in Table 1.5. The subtree T3(3) contains the leaves labeled r3, r4, r5 and
the two interior nodes.

The polynomial-time algorithm for k = 3, developed in the paper by A.
Dress and M. Steel [4] is relatively simple in comparison to the other methods,
and is related to the solution to the binary case. Hence, we will discuss that
method in detail.

1.5.1 The Dress-Steel solution to the 3-state Perfect Phylogeny
Problem

For the exposition, create another matrix M derived from the input matrix M ,
with three characters Cc(1), Cc(2), Cc(3) for each character c in M . All the taxa
that have state i for c in M are given state 1 for character Cc(i) in M , and
the other taxa are given state 0 for Cc(i). So, the original input matrix M is
recoded as a binary matrix M with three expanded binary characters for each
character in M . Table 1.5.1 shows the matrix M expanded from matrix M in
Table 1.5. Note that each expanded character defines a split of the taxa. The
main structural result in [4], interpreted in terms of M is:

Theorem 1.5.1 [4] Given matrix M with k = 3, there is a 3-state perfect-
phylogeny for M , if and only if there is a set of (binary) characters S of M
which are pairwise compatible, where for each character c in M , S contains at
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c1 c2 c3

r1 3 2 1
r2 2 3 2
r3 3 2 3
r4 1 1 3
r5 1 2 3

Table 1.4: Input matrix M for the 3-state perfect-phylogeny show in Figure 1.5.

C1(1) C1(2) C1(3) C2(1) C2(2) C2(3) C3(1) C3(2) C3(3)
r1 0 0 1 0 1 0 1 0 0
r2 0 1 0 0 0 1 0 1 0
r3 0 0 1 0 1 0 0 0 1
r4 1 0 0 1 0 0 0 0 1
r5 1 0 0 0 1 0 0 0 1

Table 1.5: Matrix M resulting from expanding the matrix M shown in Table
1.5

.

least two of the characters Cc(1), Cc(2), Cc(3).

Proof Suppose there is a 3-state perfect-phylogeny T for M . For any
character c of M , the subtrees Tc(1), Tc(2) and Tc(3) are node disjoint and
contain all the nodes of T . Now for each character c, contract, in T , all of the
nodes of Tc(i) to a single node. The resulting graph must be a path Pc with
three nodes; we label each node v in Pc with the distinct state (1, 2, or 3) of
the nodes that contract to v. For example, in the perfect-phylogeny T shown
in Figure 1.5, if we contract each of the subtrees T3(1), T3(2), T3(3) to a single
node, we get a path P3 labeled with end nodes 1 and 2 and with interior node
labeled 3.

In general, we use i and j to denote the state-labels of the two nodes at
the leaves of Pc. Since Pc is a path with two edges, there is an edge e in Pc

the node labeled i from the interior node and the node labeled j. Edge e is
an uncontracted edge from T , and so edge e separates all the taxa with state
i for character c from all the taxa with the other two states, and hence defines
a bipartition of the taxa and the split (Xc(i),Xc(i)). Similarly, there is also
an edge in T that defines the split (Xc(j),Xc(j)). Then, for character c, select
characters Cc(i) and Cc(j) to be in S. Repeating this for each character c of M
selects a set S of characters of M that contains exactly two expanded characters
for each character c in M . Further, since each selected split is defined by an edge
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in T , and every pair of splits defined by edges in T are compatible (by Theorem
1.4.2), the characters in S are pairwise compatible, and the necessary direction
of Theorem 1.5.1 is proved.

Conversely, suppose there is a set of characters S in M satisfying the con-
ditions of Theorem 1.5.1. Let Z denote the set of taxa in M . By construction,
each character in M defines a split of the taxa Z, and so S defines a set of
pairwise-compatible splits of the taxa. For a taxon s in M , the “trivial split”
for s is the bipartition {s,Z − s}, which is clearly compatible with any other
split. We augment the splits defined by S with these n trivial splits, and call
the resulting set of splits S′. By the Splits-Equivalent Theorem there is some
tree T ′ with n leaves, each labeled with a distinct taxon in Z, and containing
edges that define the splits in S′. We can assume that each edge in T ′ actually
defines one of the splits in S′, by contracting any edge that does not define such
a split. Also, we can assume that no internal node of T ′ has degree two, since
otherwise two neighboring edges define the same split, in which case one edge
can be contracted. We now show how to map the taxa to leaves of T and how
to label the interior nodes in T ′ so that T becomes a perfect-phylogeny for M .

Because of the trivial splits in S′, each taxon in Z labels a leaf of T ′, satisfying
one requirement for a perfect-phylogeny for M . We next need to show how to
label the interior nodes of T ′ so that for every character c and every state i for
c, T ′

c(i) is a connected subtree of T ′. For a character c in M , suppose, without
loss of generality, that characters Cc(1) and Cc(2) are in S′, and let e(1) and
e(2) be the edges in T ′ that define the splits (Xc(1),Xc(1)), and (Xc(2),Xc(2)).
Removal of e(1) from T ′ creates two connected subtrees, one which contains all
and only the taxa in Xc(1) labeling its leaves. Label each of the nodes in that
subtree with state 1 for character c, defining subtree T ′

c(1). Define T ′′ as the
tree T ′ after the removal of all nodes and edges in T ′

c(1). Clearly, T ′′ contains
all the leaves labeled by taxa in Xc(2). T ′′ also contains edge e(2); otherwise
e(2) would be an edge in T ′

c(1) and since all interior nodes have degree three
or more, there would be a leaf labeled 1 on both sides of e(2), contradicting
the assumption that e(2) defines the split (Xc(2),Xc(2)). So, removal of e(2)
from T ′′ defines two connected subtrees of T ′, one which contains all and only
the taxa in Xc(2); label the nodes of that subtree with state 2 for character c,
defining T ′

c(2). Removing T ′
c(2) from T ′′ leaves a connected subtree of T ′ that

must contain all and only the leaves labeled by taxa in Xc(3). Label the nodes
in that subtree with state 3 for character c, creating T ′

c(3). These three subtrees
are node disjoint and show that character c obeys the convexity requirement.
Since the argument holds for any c, we conclude that T ′ (with interior nodes
labeled as above) is a 3-state perfect-phylogeny for M .
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A polynomial-time algorithm for the three-state perfect-phylogeny
problem

In order to find a perfect-phylogeny for M , Theorem 1.5.1 requires we select
a set S of at least two characters from Cc(1), Cc(2), Cc(3), for each character
c in M , such that the characters in S are pairwise compatible in M . This
may seem at first to be a computationally difficult task since there are four
possible choices for each character c, leading to a time of Ω(4m) if all choices are
explicitly considered. How can we make the selections efficiently? Below we will
explain the polynomial-time solution developed in [4]. However, a more direct
approach [14] is to observe that the selection problem can be formulated as the
satisfiability problem where clauses only contain two literals. This is the classic
2-SAT problem, which is well known [11] to have a polynomial-time solution1.

Given M we want to create, in polynomial time, a 2-SAT formula F that
is satisfiable if and only if we can select a set of characters S in M that obeys
the conditions described above. To model the condition that S cannot contain
two incompatible characters in M , suppose c(i) and c′(i′) are incompatible. The
clause

(¬c(i) ∨ ¬c′(i′)),

where ¬ indicates boolean negation, imposes that condition that S cannot con-
tain both characters. Formula F will contain such a clause for each pair of
incompatible characters in M . To model the condition that S must contain at
least two characters from Cc(1), Cc(2), Cc(3), create the following three clauses:

(Cc(1) ∨ Cc(2))

(Cc(1) ∨ Cc(3))

(Cc(2) ∨ Cc(3))

Formula F will conatin such a set of three clauses for each character c in M .
Clearly, F can be constructed in polynomial time from M , and every clause
in F has only two literals. We leave it to the reader to fully prove that F is
satisfiable if and only if a proper set of characters S can be selected.

1.5.1.1 The Dress-Steel algorithm

For a warm-up to the general method, consider a character c in M and its
three expanded characters Cc(1)Cc(2), Cc(3) in M . If one of these characters,
say Cc(1) for concreteness, is incompatible with two expanded characters from
another character c′, then character Cc1 must be excluded (not selected for
S) because selecting it would make it impossible to select two (and certainly

1If you are not familiar with the 2-SAT problem, you can skip ahead to the subsection
1.5.1.1 without loss of understanding.
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three) compatible characters from Cc′(1)Cc′(2), Cc′(3). If any character in M
has two expanded characters in M that must be excluded, then there is no
perfect-phylogeny for M .

In general when a character Cc(j) is excluded from S, both of the other
characters that are expanded from c must be included in S. Similarly, when a
character Cc(j) is selected for S, any character that is incompatible with it must
be excluded from S. So when a character Cc(j) is included or excluded, a series
of other forced inclusions and exclusions may be created.

With this warm up, we can present the full algorithm, shown in Figure
1.5.1.1.

Dress-Steel Algorithm (M)
S = ∅

while (there is a character c in M where fewer than two of the
expanded characters Cc(1), Cc(2), Cc(3) have been selected) do

Tentatively, select one of those unselected characters,
say Cc(1) for concreteness, and then follow the series of
forced character inclusions and exclusions until either there
are no more forced decisions, or until the series finds
a problem, i.e., two characters expanded from some c are forced
to be excluded or until the series leads to a reversal of a prior decision.

if (the forced series ends in the first way) then
accept all of the decisions made in the series.

endif

if (If the series ends by finding a problem) then
undo all the decisions made in that series, exclude Cc(1) from S
and follow the new series of forced decisions.

endif

if (the second series also ends with a problem) then
declare there is no perfect-phylogeny for M , and stop early.

else
accept all the decisions made in the second series.

endif

if (the algorithm reaches this point,
i.e., it has not declared there is no perfect-phylogeny) then

declare there is a three-state perfect-phylogeny for M
and use S to construct one, as detailed in the proof of Theorem 1.5.1.

endif

endwhile
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Theorem 1.5.2 The Dress-Steel Algorithm correctly determines, in polynomial
time, if M has a three-state perfect-phylogeny and constructs one if there is one.

Proof Consider any forced series of decisions that starts with the ten-
tative selection of character Cc(j), and makes a forced decision about some
character Cc′(i) for c′ != c. In that series of decision, two of the characters
Cc′(1), Cc′(2), Cc′(3) will be selected for S and the other character excluded, so
no further decisions about those characters will be made in the algorithm, unless
the forced series ends with a problem. So if the algorithm does declare there is
no perfect-phylogeny, then at least two of the characters Cc(1), Cc(2), Cc(3) will
be in S, for each character c in M .

Next, note that when a series of forced decisions is made, adding some char-
acters to S, any character Cc′(i) that was not excluded from S in that series
must be compatible with all the characters that were selected for S. If that were
not true, then Cc′(i) would have been part of the forced series. So inductively,
the characters that are selected for S are pairwise compatible. So, the algorithm
is correct when it declares there is a perfect-phylogeny.

Finally, note that if the algorithm declares there is no perfect-phylogeny,
then some character Cc(j) was first tentatively selected for S and next excluded
from S, and in both cases, forced decisions discovered a problem. Therefore, the
algorithm is correct when it declares there is no perfect-phylogeny.

For the polynomial time bound, note that the time to implement any forced
series of decisions is polynomial in m (in fact, it can be made linear in m), and
there can be at most two forced series for each expanded character. So there
can be at most O(m) forced series of decisions.

1.5.2 Generalizations of the Four-Gamete and Splits-Equivalence
theorems

The Four-Gamete Theorem (and equivalently the Splits-Equivalence Theorem)
contains two, separable, mathematical facts about the existence of a perfect-
phylogeny for a binary matrix M . One fact is that there is a perfect-phylogeny
for M if and only if there is a perfect phylogeny for each pair of sites in M . A
second fact is that there is a perfect-phylogeny for a pair of sites in M if and only
if the rows of M do not contain all four binary combinations 0,0; 0,1, 1,0; 1,1 at
that pair of sites. One or the other, or both, of these fact might be generalizable
to multi-state perfect-phylogeny problems. In fact, for the case of three states,
that generalization has been found [20, 21]. The generalization of the first fact
is:

Theorem 1.5.3 Let M be a matrix with up to three states per site. There is a
3-state perfect-phylogeny for M if and only if there is a 3-state perfect-phylogeny
for each subset of three sites in M .
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Much earlier [10], Fitch established that this is the “tightest” possible gen-
eralization:

Theorem 1.5.4 There is a matrix M , where every pair of sites in M has a
3-state perfect-phylogeny, but M does not have a 3-state perfect-phylogeny.

The second fact has also been generalized [20, 21], in the case of three states:

Theorem 1.5.5 A subset S of three sites in M has a 3-state perfect-phylogeny,
if and only if M(S) does not contain one of four specific patterns of data.

We will not detail those four patterns here. The reader is refereed to [20, 21]
for details.

Given these generalizations of the Four-Gametes Theorem to the case of
three states, it is natural to conjecture what a generalization to k states would
be. That question is still open, however, the following is known:

Theorem 1.5.6 For any fixed k, there is a matrix M where every subset of
k−1 sites has a k-state perfect-phylogeny, but M does not have a k-state perfect-
phylogeny.

This was first stated, and examples given for k = 3, 4, 5 in [23]. The result
was more fully formalized and a full proof was given in [20, 21].
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