
CS 224 HW 3 - take two weeks. Some of the problems are somewhat
vague and open ended. Do what you can.

1. In class we saw that BWT[i] = T[SA[i] - 1], where T is the input string,
BWT[i] is the character at position i in the BWT string for T, and SA[i] is
the i’th entry in the suffix array for T.

This shows how to compute the BWT from the SA. What about the other
direction? If we have the BWT, what else would we need to compute the
SA, and in linear time? I don’t know the answer.

Answer: Assume that the original string S has $ at the end, and that the
total length of S, including the $ is n. Recall the list M of the n rotated
strings, and the list of pointers LF that were used in the inversion method
to recover S from the BWT string. S(n) is $ and the first string in M starts
with $. So, SA(1) = n. Now LF (1) is used to indentify character n − 1 in
S, i.e., LF (1) points to the position in M where the string in M ends with
character S(n− 1). But the strings in M are sorted lexicographically, which
is also the sorted order of the suffixes of S. So the suffix of S that starts
in position n− 1 must be the LF (1)’st lexicographically smallest suffix. So,
SA(LF (1)) = n− 1.

In general, LF (i) points to the position in M where the string in M ends
with character S(n − i), and SA(LF (i)) = n − i. So to fill in SA we just
chase the LF pointers as if we were reconstructing S, and use the rule that
SA(LF (i)) = n− i. Hence this takes linear time.

2. Read the BWT inversion method that I posted on the class website.
That method derives the original string from the left to the right, the opposite
of what is done in the FM approach. As was done in the FM method, it should
be possible to define pointers that can be followed to spell out the original
string in forward order. Analogous to what was done in the FM paper, define
those pointers and write up a formula for them. Show how those pointers
relate to the FM pointers.

Answer: Define F as the first column of M . As before, we can construct
F by sorting the characters in the BWT string L. Define lk is the number of
occurances of character F (k) in the first k positions of F . Of course, because
of the sorted property of F , all occurances of character F (k) are consecutive
in F , so the lk values are particularly easy to accumulate. Define l(c, i) to
be the position of the i’th occurance of character c in L. These values can
be accumulated and put into a two-dimensional array in O(n) total time.
Finally, define FL(k) = l(F (k), lk) as a pointer from entry k in F to another
entry in F . F (FL(k)) is the character the comes after F (k) in the original

1



string S. Suppose we have the pointer I that points to the position in L
corresponding to the string S. Then we start with k = I and i = 1, and
S(i) = F (k). Then increment i, set k = FL(k), and S(i) = F (k). Repeat
until i = n.

If we don’t initially have the pointer I, but instead we have added $ to
S before the BWT was created, then find I by setting it to the position of $
in L. Then proceed as above, where it was assumed that we know I.

The relationship of FL to LF : Essentially, the FL are just the reverse of
the LF pointers. That is, if an LF pointer points from position i to position
j, then an FL pointer points from j to i. So, FL(LF (k)) = k = LF (FL(k)).

2


