
1 Computing alignments in only linear space

One of the defects of dynamic programming for all the problems we have discussed
is that the dynamic programming tables use Θ(nm) space when the input strings
have length n and m. (When we talk about the space used by a method, we refer
to the maximum space ever in use simultaneously . Reused space does not add to the
count of space use.) It is quite common that the limiting resource in string alignment
problems is not time but space. That limit makes it difficult to handle large strings, no
matter how long we may be willing to wait for the computation to finish. Therefore,
it is very valuable to have methods that reduce the use of space without dramatically
increasing the time requirements.

Hirschberg [2] developed an elegant and practical space reduction method that
works for many dynamic programming problems. For several string alignment prob-
lems, this method reduces the required space from Θ(nm) to O(n) (for n < m) while
only doubling the worst case time bound. Miller and Myers expanded on the idea and
brought it to the attention of the computational biology community [3]. The method
has since been extended and applied to many more problems [1]. We illustrate the
method using the dynamic programming solution to the problem of computing the
optimal weighted global alignment of two strings.

1.1 Space reduction for computing similarity

Recall that the similarity of two strings is a number, and that under the similarity
objective function there is an optimal alignment whose value equals that number.
Now if we only require the similarity V (n, m), and not an actual alignment with that
value, then the maximum space needed (in addition to the space for the strings) can
be reduced to 2m. The idea is that when computing V values for row i, the only
values needed from previous rows are from row i − 1; any rows before i − 1 can be
discarded. This observation is clear from the recurrences for similarity. Thus, we can
implement the dynamic programming solution using only two rows, one called row C
for current, and one called row P for previous. In each iteration, row C is computed
using row P , the recurrences and the two strings. When that row C is completely
filled in, the values in row P are no longer needed and C gets copied to P to prepare
for the next iteration. After n iterations, row C holds the values for row n of the full
table and hence V (n, m) is located in the last cell of that row. In this way, V (n, m)
can be computed in O(m) space and O(nm) time. In fact, any single row of the full
table can be found and stored in those same time and space bounds. This ability will
be critical in the method to come.

As a further refinement of this idea, the space needed can be reduced to one row
plus one additional cell (in addition to the space for the strings). So m + 1 space is
all that is needed. And, if n < m then space use can be further reduced to n+1. We
leave the details as an exercise.

1



1.2 How to find the optimal alignment in linear space

The above idea is fine if we only want the similarity V (n, m) or just want to store one
preselected row of the dynamic programming table. But what can we do if we actually
want an alignment that achieves value V (n, m)? In most cases it is such an alignment
that is sought, not just its value. In the basic algorithm, the alignment would be
found by traversing the pointers set while computing the full dynamic programming
table for similarity. But the above linear space method does not store the whole table
and linear space is not sufficient to store the pointers.

The high-level idea for finding the optimal alignment in only linear space is to
do several smaller alignment computations, each using only linear space and each
determining a bit more about an actual optimal alignment. The net result of these
computations is a full description of an optimal alignment. We first describe how the
initial piece of the full alignment is found using only linear space.

Definition For any string α, let αr denote the reverse of string α.
Definition Given strings S1 and S2, define V r(i, j) as the similarity of the string

consisting of the first i characters of Sr
1, and the string consisting of the first j char-

acters of Sr
2 . Equivalently, V r(i, j) is the similarity of the last i characters of S1 and

the last j characters of S2 (see Figure 1).

2
S

r

S
r
1

S
1

S
2

i

j

n

m

n-i

m-j

n

m

Figure 1: The similarity of the first i characters of Sr
1 and the first j characters of

Sr
2 equals the similarity of the last i characters of S1 and the last j characters of S2.

(The dotted lines denote the substrings being aligned.)

Clearly, the table of V r(i, j) values can be computed in O(nm) time, and any
single preselected row of that table can be computed and stored in O(nm) time using
only O(m) space.

The initial piece of the full alignment is computed in linear space by computing
V (n, m) in two parts. The first part uses the original strings, and the second part
uses the reverse strings. The details of this two part computation are suggested in
the following lemma.

Lemma 1.1 V (n, m) = max0≤k≤m[V (n/2, k) + V r(n/2, m − k)].

2



Proof This is almost obvious, and yet it requires a proof. Recall that S1[1..i] is
the prefix of string S1 consisting of the first i characters, and Sr

1 [1..i] is the reverse of
the suffix of S1 consisting of the last i characters of S1. Similar definitions hold for
S2 and Sr

2.
For any fixed position k′ in S2, there is an alignment of S1 and S2 consisting of an

alignment of S1[1..n/2] and S2[1..k′] followed by a disjoint alignment of S1[n/2 + 1..n]
and S2[k′ + 1..m]. By definition of V and V r, the best alignment of the first type has
value V (n/2, k′) and the best alignment of the second type has value V r(n/2, m−k′),
so the combined alignment has value V (n/2, k′)+V r(n/2, m−k′) ≤ maxk[V (n/2, k)+
V r(n/2, m − k)] ≤ V (n, m).

Conversely, consider an optimal alignment of S1 and S2. Let k′ be the rightmost
position in S2 that is aligned with a character at or before position n/2 in S1. Then
the optimal alignment of S1 and S2 consists of an alignment of S1[1..n/2] and S2[1..k′]
followed by an alignment of S1[n/2 + 1..n] and S2[k′+1..m]. Let the value of the first
alignment be denoted p and the value of the second alignment be denoted q. Then p
must be equal to V (n/2, k′), for if p < V (n/2, k′) we could replace the alignment of
S1[1..n/2] and S2[1..k′] with the alignment of S1[1..n/2] and S2[1..k′] that has value
V (n/2, k′). That would create an alignment of S1 and S2 whose value is larger than the
claimed optimal. Hence p = V (n/2, k′). By similar reasoning, q = V r(n/2, m − k′).
So V (n, m) = V (n/2, k′) + V r(n/2, m − k′) ≤ maxk[V (n/2, k) + V r(n/2, m − k)].

Having shown both sides of the inequality, we conclude thatV (n, m) = maxk[V (n/2, k)+
V r(n/2, m − k)]. !

Definition: Let k∗ be a position k that maximizes [V (n/2, k) + V r(n/2, m− k)].

By Lemma 1.1, there is an optimal alignment whose traceback path in the full
dynamic programming table (if one had filled in the full n by m table) goes through
cell (n/2, k∗). Another way to say this is that there is an optimal (longest) path
L from node (0, 0) to node (n, m) in the alignment graph which goes through node
(n/2, k∗). That is the key feature of k∗.

Definition Let Ln/2 be the subpath of L that starts with the last node of L in
row n/2 − 1, and ends with the first node of L in row n/2 + 1.

Lemma 1.2 A position k∗ in row n/2 can be found in O(nm) time and O(m) space.
Moreover, a subpath Ln/2 can be found and stored in those time and space bounds.

Proof First, execute dynamic programming to compute the optimal alignment
of S1 and S2, but stop after iteration n/2, i.e., after the values in row n/2 have
been computed. Moreover, when filling in row n/2, establish and save the normal
traceback pointers for the cells in that row. At this point, V (n/2, k) is known for
every 0 ≤ k ≤ m. Following the earlier discussion, only O(m) space is needed to
obtain the values and pointers in rows n/2. Second, begin computing the optimal
alignment of Sr

1 and Sr
2 but stop after iteration n/2. Save both the values for cells in

row n/2 along with the traceback pointers for those cells. Again, O(m) space suffices

3



and value V r(n/2, m − k) is known for every k. Now, for each k, add V (n/2, k) to
V r(n/2, m− k), and let k∗ be an index k that gives the largest sum. These additions
and comparisons take O(m) time.

Using the first set of saved pointers, follow any traceback path from cell (n/2, k∗)
to a cell k1 in row n/2 − 1. This identifies a subpath that is on an optimal path
from cell (0, 0) to cell (n/2, k∗). Similarly, using the second set of traceback pointers,
follow any traceback path from cell (n/2, k∗) to a cell k2 in row n/2 + 1. That path
identifies a subpath of an optimal path from (n/2, k∗) to (n, m). These two subpaths
taken together form the subpath Ln/2 that is part of an optimal path L from (0, 0)
to (n, m). Moreover, that optimal path goes through cell (n/2, k∗). Overall, O(nm)
time and O(m) space is used to find k∗, k1, k2 and Ln/2. !

In order to analyze the full method to come, we will express the time needed to fill
in the dynamic programming table of size p by q as cpq, for some unspecified constant
c, rather than as O(pq). In that view, the n/2 row of the first dynamic program
computation is found in cnm/2 time, as is the n/2 row of the second computation.
Thus, a total of cnm time is needed to obtain and store both rows.

The key point to note is that with a cnm-time and O(m)-space computation, the
algorithm learns k∗, k1, k2 and Ln/2. This specifies part of an optimal alignment of
S1 and S2, and not just the value V (n, m). By Lemma 1.1 it learns that there is an
optimal alignment of S1 and S2 consisting of an optimal alignment of the first n/2
characters of S1 with the first k∗ characters of S2, followed by an optimal alignment
of the last n/2 characters of S1 with the last m−k∗ characters of S2. In fact, since the
algorithm has also learned the subpath (subalignment) Ln/2, the problem of aligning
S1 and S2 reduces to two smaller alignment problems, one for the strings S1[1..n/2−1]
and S2[1..k1], and one for the strings S1[n/2 + 1..n] and S2[k2..m]. We call the first
of the two problems the top problem and the second the bottom problem. Note that
the top problem is an alignment problem on strings of lengths at most n/2 and k∗,
while the bottom problem is on strings of lengths at most n/2 and m − k∗.

In terms of the dynamic programming table, the top problem is computed in
section A of the original n by m table shown in Figure 2, and the bottom problem is
computed in section B of the table. The rest of the table can be ignored. Again, we
can determine the values in the middle row of A (or B) in time proportional to the
total size of A (or B). Hence the middle row of the top problem can be determined
at most ck∗n/2 time, and the middle row in the bottom problem can be determined
in at most c(m− k∗)n/2 time. These two times add to cnm/2. This leads to the full
idea for computing the optimal alignment of S1 and S2.

1.3 The full idea: Use recursion

Having reduced the original n by m alignment problem (for S1 and S2) to two smaller
alignment problems (the top and bottom problems) using O(nm) time and O(m)
space, we now solve the top and bottom problems by a recursive application of this

4



n

m

n/2
n/2 +1

-1n/2

k1

k2

*k

A

B

Figure 2: After finding k∗, the alignment problem reduces to finding an optimal
alignment in section A of the table, and another optimal alignment in section B of
the table. The total area of subtables A and B is at most cnm/2. The subpath Ln/2

through cell (n/2, k∗) is represented by a dashed path.

reduction. (For now, we ignore the space needed to save the subpaths of L). Applying
exactly the same idea as was used to find k∗ in the n by m problem, the algorithm
uses O(m) space to find the best column in row n/4 to break up the top n/2 by k1

alignment problem. Then it reuses O(m) space to find the best column to break up
the bottom n/2 by m − k2 alignment problem. Stated another way, we have two
alignment problems, one on a table of size at most n/2 by k∗ and another on a table
of size at most n/2 by m − k∗. We can therefore find the best column in the middle
row of each of the two subproblems in at most cnk∗/2+ cn(m−k∗)/2 = cnm/2 time,
and recurse from there with four subproblems.

Continuing in this recursive way, we can find an optimal alignment of the two
original strings with log2 n levels of recursion, and at no time do we ever use more
than O(m) space. For convenience, assume that n is a power of two so that each
successive halving gives a whole number. At each recursive call, we also find and
store a subpath of an optimal path L, but these subpaths are edge disjoint, and so
their total length is O(n + m). In summary, the recursive algorithm we need is:

Hirschberg’s Linear space optimal alignment algorithm

Procedure OPTA(l, l′, r, r′);
begin
h := (l′ − l)/2;
In O(l′ − l) = O(m) space, find an index k∗ between l and l′, inclusively, such

that there is an optimal alignment of S1[l..l′] and S2[r..r′] consisting of an optimal
alignment of S1[l..h] and S2[r..k∗] followed by an optimal alignment of S1[h+1..l′] and

5



S2[k∗ + 1..r′]. Also find and store the subpath Lh that is part of an optimal (longest)
path L′ from cell (l, r) to cell (l′, r′), and that begins with the the last cell k1 on L′ in
row h− 1 and ends with the first cell k2 on L′ in row h+1. This is done as described
earlier.

Call OPTA(l, h − 1, r, k1); {new top problem}
Output subpath Lh;
Call OPTA(h + 1, l′, k2, r′); {new bottom problem }
end.

The call that begins the computation is to OPTA(1,n,1,m). Note that the subpath
Lh is output between the two OPTA calls, and that the top problem is called before
the bottom problem. The effect is that the subpaths are output in order of increasing
h value, so that their concatenation describes an optimal path L from (0, 0) to (n, m),
and hence an optimal alignment of S1 and S2.

1.4 Time analysis

We have seen that the first level of recursion uses cnm time and the second level uses
at most cnm/2 time. At the i’th level of recursion, we have 2i−1 subproblems, each
of which has n/2i−1 rows but a variable number of columns. However, the columns
in these subproblems are distinct so the total size of all the problems is at most the
total number of columns, m, times n/2i−1. Hence the total time used at the i’th level
of recursion is at most cnm/2i−1. The final dynamic programming pass to describe
the optimal alignment takes cnm time. Therefore,

Theorem 1.1 Using Hirschberg’s procedure OPTA, an optimal alignment of two
strings of length n and m can be found in

∑log n
i=1 cnm/2i−1 ≤ 2cnm time and O(m)

space.

For comparison, recall that cnm time is used by the original method of filling in
the full n by m dynamic programming table. Hirschberg’s method reduces the space
use from Θ(nm) to Θ(m) while only doubling the worst case time needed for the
computation.

References

[1] K. M. Chao, R. Hardison, and W. Miller. Recent developments in linear-space
alignment methods: a mini survey. J. of Comp. Biology, 1:271–291, 1994.

[2] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem.
J. ACM, 24:664–675, 1977.

[3] Eugene W. Myers and Webb Miller. Optimal alignments in linear space. Comp.
Apps. in the BioSciences, 4:11–17, 1988.

6


