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Basic Definitions: A code C'is just a finite set of finite length strings, called
codewords. A message M is a string created by concatenating codewords
from C', with repetitions allowed. So there is no bound on the length of a
message. A message M is called uniquely decipherable (UD) if there is only
one way to write M as the concatenation of strings in C. Writing M as
the concatenation of codewords in C' is called a parse of M. For example,
if C' = {aba, a,abb,ab,ba} then the message abbab is UD, while the message
aba is not UD. A code C'is called UD if and only if every message that can
be created from C'is UD. So, the code C' in the example is not UD, but if we
remove the strings ba and ab from C| the resulting code would be UD. Note
that the definition of a code being UD is over an infinite set of messages.

The UD problem: Given a code C', determine if C' is UD.

At first, it may seem that the UD problem would be undecidable (it seems
similar to the famous undecidable Post Correspondence Problem). But, in
fact it has a polynomial-time solution, and it is even conjectured to have a
linear-time solution. There are several algorithms for the UD problem (and
variants of it), but they are all similar and can be thought of as a path
problem on a graph.

1 A graph-based solution

Given C', we build a graph G' with one node for each string that occurs as
a suffix of any codeword in C including a node for each complete codeword
(the trivial suffix). Note that the same string might occur as a suffix of more
than one codeword, but it is only represented by a single node in G. We label
each node by the suffix (string) it represents. In graph G, there is a directed
edge from node u to node v if there is a codeword ¢ such that ¢ = uwv (this is
an L1, or Type 1, edge), or if u = cv (this is an L2, or Type 2, edge).

Theorem: C' is not UD if and only if there is a directed path in G with
at least one edge, starting at a node representing a codeword, and ending at
a node representing a codeword. The start and end nodes can be the same,
but don’t have to be.



Proof: First we will prove that if the code is not UD, then there is such
a directed path in G. Assuming C' is not UD, there must be a message M
that can be parsed in two different ways. Over all such M, choose one that
is shortest. Let ¢; and ¢| denote the first codewords in the two parses of M.
Note that those two codewords cannot have the same length, or else they
would be identical, and if we removed that codeword from the head of M,
we would have shorter message that is also not UD, a contradiction.

We will show the existence of the claimed directed path P in G by building
it constructively while examining the two different parses of M, going left
to right in M, adding one additional codeword at a time. We examine the
parses starting with the empty parse (no codewords added yet) and then
add in the longer of the two codewords, say ;. At that point, one parse has
length |¢}| > 0 and the other has length 0. Naturally, one parse is called the
“longer” parse, and the other is called the “shorter” parse. The substring
consisting of the part of M contained in the longer parse, but not contained
in the shorter parse, is called the “overhang”. So, at this point, the overhang
consists of ¢].

In general, we extend the examination of the two parses by adding in
the next codeword, call it cc, of the (currently) shorter parse (see Figure 1).
There are three cases to consider: either the length of cc is strictly greater
than the length of the current overhang; or the length of cc is strictly less
than the length of the current overhang; or cc and the current overhang have
the same length. See Figure 1. In the first case, the addition of cc extends
the currently shorter parse to the right of the end of the currently longer
parse (in which case the extended parse becomes the longer parse); in the
second case, it only extends the shorter parse to a point strictly to the left
of the currently longer parse (in which case the extended parse remains the
shorter parse); or it extends the parse exactly to the end of the longer parse.
In the third case, the two parses each spell out the same complete string with
two different parses, and so that string must be M. Otherwise, M was not
a shortest string with two different parses. Hence, this third case can only
happen once in the examination of the two parses. In either of the first two
cases, the overhang changes. The overhangs before and after the addition of
cc will be called the “old” and “new” overhangs. It is easy to see (established
more formally by induction, below) that each overhang generated in this way
is a suffix of a codeword, possibly an entire codeword.

Now we want to describe how the desired path P is built up as the two



parses of M are being examined. Codeword ¢] is the first codeword added
into the parses, so the first overhang is just ¢} itself. Note, trivially, that ¢}
is a suffix of a codeword. Next, codeword c; is added into the parses, since
it is the first codeword of the shorter parse (which has length zero before ¢;
is added in). Now |c}| > |e1], so ¢; is a prefix of ¢; let v denote the suffiz of
¢} starting at position |ci| + 1 of ¢}. Therefore ¢; = ¢;v. But ¢ is a suffix of
a codeword (namely, itself), and ¢ is a codeword, so ¢} and ¢; demonstrate
the existence of a Type 1 edge in G from the node representing c¢; to the
node representing suffix v. So path P begins with an edge from the node for
codeword ¢ to the node for suffix v, which is the new overhang at this point.
Note that the new overhang, v, is the suffix of a codeword.

At the general step, codeword cc is added into the shorter parse, changing
the overhang. We use u to denote the current overhang before cc is added.
We assert, inductively, that u is the suffix of a codeword, and that there is
a directed path in G from the node for ¢| to the node for u. We will see
that the new overhang, call it v, is also a suffix of a codeword, and that it
demonstrates the existence in G of an edge from the node for suffix u to the
node for suffix v. There are three cases, depending on the lengths of cc and
u.

Case 1: If |ce| > |u|, then cc = wuw, establishing the existence of the
directed, Type 1, edge (u,v) in G. Note that again the new overhang, v, is a
suffix of a codeword, e.g. cc. This also establishes the existence of a directed
path from the node for ¢| to the node for v.

Case 2: If |ce| < |u|, then u = ccv, establishing the existence of the
directed, Type 2, edge (u,v) in G. It also establishes that the new overhang,
v, is a suffix of a codeword, because inductively u is a suffix of a codeword.
This also establishes the existence of a directed path from the node for ¢} to
the node for v.

Case 3: If |cc| = |ul|, then the two parses of M are complete, and this
case can happen only once. So up to this point, all of the other additions are
instances of Case 1 or Case 2, and since u is the current overhang (before cc
is added), inductively, there is a directed path from the node for ¢| to the
node for u. But |ec| = |u| and both are suffices of M, so cc = u, and hence
u is a codeword. Therefore the path from ¢} to u is the path P, claimed to
exist in the statement of the theorem.

This proves one direction of the theorem. The proof of the other direction



is very similar. We assume the existence of a directed path P, of length at
least one, that goes from a node for a codeword to a node for a codeword,
and use P to form a message M and two different parses of M. We leave the
details as an exercise.
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Figure 1: Examining the two parses of M, and adding in the new codeword
cc to the shorter parse. The first two cases. Each horizontal line segment
represents a codeword. There is some garbage in this figure that I couldn’t
remove, and I was too lazy to redo the figure.



