
A Practical System for Laser Pointer
Interaction on Large Displays

Benjamin A. Ahlborn
IDAV

∗
, Dept. of Comp. Sci.

University of California, Davis
Davis, CA 95616

baahlborn@ucdavis.edu

David Thompson
Sandia National Labs
Livermore, CA 94550

dcthomp@sandia.gov

Oliver Kreylos
IDAV, Dept. of Comp. Sci.

University of California, Davis
Davis, CA 95616

okreylos@ucdavis.edu

Bernd Hamann
IDAV, Dept. of Comp. Sci.

University of California, Davis
Davis, CA 95616

bhamann@ucdavis.edu

Oliver Staadt
IDAV, Dept. of Comp. Sci.

University of California, Davis
Davis, CA 95616

ogstaadt@ucdavis.edu

ABSTRACT
Much work has been done on the development of laser point-
ers as interaction devices. Typically a camera captures im-
ages of a display surface and extracts a laser pointer dot
location. This location is processed and used as a cursor
position. While the current literature well explains such a
system, we feel that some important practical concerns have
gone unaddressed. We discuss the design of such a tracking
system, focusing on key practical implementation details.
In particular we present a robust and efficient dot detection
algorithm that allows us to use our system under a variety
lighting conditions, and allows us to reduce the amount of
image parsing required to find a laser position by an order
of magnitude.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces, Input devices and strategies; I.3.1 [Hardware
Architecture]: Input Devices; I.4.1 [Digitization and
Image Capture]: Camera Calibration, Imaging Geometry

General Terms
Computer Graphics, Large Display Environments, Human-
Computer Interfaces

Keywords
Laser Pointer, Tiled Display, Large Display, Interaction

∗Institute for Data Analysis and Visualization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’05 Monterey, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
Current supercomputer simulations of complex physical

phenomena are generating massive data sets that continue
to grow in size. One approach to harnessing the rich in-
formation content hidden in such data sets is the use of
large-scale display environments including large tiled display
walls and Virtual Reality caves. Sandia and UC Davis use
tiled displays to explore large, complex simulations because
they can show fine detail while keeping the entire model in
view. Currently, Sandia’s input devices are limited to the
mouse and keyboard of a single, small console. Typically,
one person will sit at the console while others direct this
person how to pan, rotate, scale, or otherwise manipulate
items displayed. This is obviously unsatisfactory. Noth-
ing on the market meets all of our needs and all security
requirements, so we have begun developing our own inter-
action device. After an initial consideration of the physical
techniques available, we decided to use cameras to capture
the motion of a laser pointer dot on the display surface. In
development of this system we felt that the implementation
of an efficient and robust laser pointer detection algorithm
was something that is lacking from current literature.

Laser pointers combined with camera arrays for use as in-
teraction devices have become an increasingly active topic
in the field of Human Computer Interfaces (HCI) and Com-
puter Vision (CV). A system for controlling slide show pre-
sentations using a laser pointer is presented by Sukthankar,
Stockton and Mullin [5], including a simple method for gen-
erating homographies between cameras and planar display
surfaces. A single-pointer system for executing more compli-
cated tasks is presented by Olsen and Nielsen [4]. This paper
achieves good results, but is geared at interaction with wid-
get based environments, in particular the XWeb interface.
Additionally, it requires the user to be familiar with a series
of specific interaction techniques. We desire a system that
allows interaction with more general application domains,
in particular, navigation and exploration of large data sets.
Methods for tracking multiple laser pointers are provided
by Oh and Stuerzlinger [3]. While our system does not im-
plement the tracking of multiple laser pointers, this paper
contains a good discussion of laser pointers as input devices

in general. Each of these discuss systems which use a sin-
gle camera on a relatively small display. A system that is
scalable with respect to display size, resolution, and num-
ber of users is presented by Davis and Chen [2]. The setup
which the authors present uses a single processing computer
for each camera. In a situation requiring a large number of
cameras this is unreasonable. Due to bus bandwidth limita-
tions, the use of multiple computers for pointer detection is
unavoidable, however, more than one camera can be utilized
on a single machine.

We present an overview of our system with emphasis on
describing in detail a robust and efficient method for detect-
ing the laser pointer. Our method uses image subtraction to
be able to robustly classify the pixels that compose the laser
pointer in an image. We use a predictive tracking method to
reduce the amount of image processing that must be done
to find the laser pointer.

2. SYSTEM IMPLEMENTATION
Our system uses a group of cameras to detect the position

of a laser pointer dot on a display surface. This location is
transformed to display coordinates using a planar homogra-
phy [5]. This point is interpreted as a cursor position and
used to control mouse based interaction. We handle the
problem of button functionality by using an IR transmitter
from a standard remote control and using an infra-red de-
tector to detect the transmitted button presses. We have
developed a set of tools that provide calibration, detection,
and interaction using these devices.

2.1 System Setup
The current implementation of our system is running on a

2.66 [GHz] Pentium IV with 1 [GB] of memory under Linux
kernel 2.4.21. The display system is a 3 × 2 tiled display.
Each tile has a resolution of 1024 × 768 [pixels], providing
a total resolution of 3072× 1536 [pixels]. We are using four
Canon VC-C4 cameras attached to WinTV frame grabbers.
The frame grabber provides 720 × 480 24-bit color images
at 15 [fps]. The laser pointer is a typical class IIIa red laser
pointer. A Linux Infra-Red Controller (LIRC) device is used
for detection of button presses. We are currently using front
mounted cameras that face the tiled display. In general plac-
ing the cameras behind the display is preferable; however,
our display has rear baffles which would occlude the cam-
eras.

2.2 Calibration
The calibration of our system occurs in two stages. The

first stage requires the determination of radial and tangen-
tial distortion coefficients for each camera lens. The second
stage involves the generation of a homography between each
camera’s pixel space coordinates (PSC) and the display nor-
malized device coordinates (NDC).

2.2.1 Lens Distortion Calibration
To correct the lens distortion we use the model described

in the OpenCV documentation [1]:

xu = xd + xd[k1r
2 + k2r

4] + [2p1xdyd + p2(r
2 + 2x2

d)]
yu = yd + yd[k1r

2 + k2r
4] + [2p2xdyd + p1(r

2 + 2y2
d)]

r2 = x2
d + y2

d

(1)
.

The radial and tangential distortion coefficients are rep-
resented in non-linear equations by k1, k2 and p1, p2. These
parameters are found by displaying horizontal and vertical
lines, one at a time, on the display surface. Each camera
captures an image and extracts a set of pixels which com-
pose the line. These lines will appear curved in the camera
image, due to lens distortion. A modified Newton optimiza-
tion calculates the distortion coefficients for each lens by
minimizing the error of a least squares linear fit on each
observed line after correcting it using Equation Set 1.

2.2.2 Homography Generation
The relationship of a point, (x, y) in the display NDC and

a point (X, Y) in a camera’s PSC can be expressed using
a 3 × 3 homography matrix as described by Sukthankar,
Stockton and Mullin [5]. This homography is calculated us-
ing N ≥ 4 point correspondences between the display NDC
and camera PSC. These point correspondences are deter-
mined using the intersections of the horizontal and vertical
calibration lines that were captured for the lens distortion
coefficient calibration. Since the lines are displayed one at
a time there are no issues with determining the orientation
of a camera.

2.3 The Interaction Servers
The Interaction Servers are applications that generate in-

teraction messages and send them to a client application via
network sockets. We have implemented two such servers.
The Button Interaction Server detects button events using
a LIRC device. The Cursor Interaction Server uses a set of
cameras to detect a laser pointer dot on the display surface.
It is in the latter application that we have implemented our
detection algorithm. This algorithm consists of a robust
solution for detecting the laser pointer and a prediction al-
gorithm that allows us to reduce the overhead of searching
for the laser pointer.

2.3.1 Laser Pointer Detection
The detection of the laser dot is an issue that is practi-

cally challenging. Our system needs to work in all manner of
lighting environments. By adjusting the shutter rate, gain,
exposure and various other settings on each camera it is pos-
sible to ensure that the laser pointer is both brighter than
the surrounding area in the camera image and displays a
minimal blurring effect between frames. This; however, is
not enough to ensure that the dot can be accurately de-
tected using a constant brightness threshold. The problems
observed with using a constant threshold are separated into
two groups:

• Spatial intensity variations. With large displays and
cameras that must be placed high at awkward angles to
the display, the reflectance distribution function of the
laser pointer and display wall causes large variations in
the measured intensity of the laser pointer across the
tiled display. This happens because the angle between
the laser beam incidence and the camera’s view vector
varies significantly as a function of where on the tiled
display the laser beam hits. This can cause situations
in which the display at certain parts of the camera
image is brighter than the laser pointer in other parts
of the camera image. A constant threshold value is
unable to accurately classify the laser pointer in this
case.

• Temporal intensity variations. The captured images
may have significant intensity variations from frame to
frame, since they are not synchronized to the refresh
rate of the projectors. This can render any automatic
gain correction useless. A constant threshold bright-
ness used to identify the laser dot must take these vari-
ations into account. Additionally, things such as bright
flashing lights in the background can cause significant
detection problems. One of the tiled display systems
at UC Davis has LED indicators attached to the sonar
detection system that surrounds the display. When us-
ing a simple threshold value these flashing lights will
interfere with the pointer detection.

The solution we have come up with is the use of a back-
ground removal process. Prior to starting the system each
camera captures a series of images of the display while it
is set to show a completely white screen. A threshold im-
age for each camera is generated using spatial and temporal
data over this series of images. Each pixel in the threshold
image is assigned a value that is the maximum intensity of
a defined region around that pixel over all images in the
sequence. When performing detection the laser pointer is
classified by finding pixels that are a set brightness above
this threshold image.

The use of the threshold image as reference allows us to
handle the described spatial intensity variations. The use of
temporal data handles the problems with temporal intensity
variation. As long as enough frames are captured to ensure
that each pixel has been captured at its brightest point,
these situations will not produce artifacts in the detection.
The spatial portion of the sampling region is used to pre-
vent problems from slight vibrations of the camera. If the
cameras slightly vibrate from outside sources and no spatial
domain is used for the threshold image then potentially large
amounts of pixels will be misidentified as the laser pointer
due to misalignment between the actual camera image and
the threshold image. This technique has the advantage of
allowing semi-dynamic backgrounds and being flexible in a
variety of lighting conditions. It has the downside that it
requires generation and storage of an image for each camera
and that drastic changes in lighting condition as it runs can
throw it off.

The laser pointer detection algorithm is similar to that
used by Oh and Stuerzlinger [3]. An image is grabbed from
each camera. Pixels are classified as part of the laser pointer
using the threshold image. The average location of all identi-
fied pixels, weighted by their intensity minus the intensity of
the threshold image at that position, is calculated and used
as the dot location in the camera image. The pixel space
location is then mapped to the NDC of the display. Once
the NDC location for a single camera image is determined,
it is used as the cursor position. This position is then sent
over a network socket and the entire process is repeated.

2.3.2 Speedups
The image processing stage of the detection cycle can be-

come a bottleneck in systems requiring large number of cam-
eras. Searching the entire camera image to find a laser dot
which covers a very small portion of the image can cause
unnecessarily high memory and CPU load. Also, it is very
likely that the laser dot will be visible by only one of the
cameras at a time. Checking camera images in which the
dot is not visible consumes a lot of processing time with

no added advantage. We implement an acceleration scheme
that uses a prediction of the next laser pointer position. By
predicting the laser pointer position we are able to determine
which cameras are most likely to view the laser pointer and
then search only a small sub-image around the predicted
location.

The prediction of the next laser pointer position is based
on its previous positions. When ever the laser pointer is
found, its position in NDC is recorded. The prediction cal-
culation varies on the number of positions that have been
previously recorded1. Let [x0, y0] be the position being pre-
dicted. Let [xi, yi] be the position captured i frames ago.
Then [x0, y0] is calculated depending on the number of pre-
vious positions as follows:

• 0 positions: brute-force search of all camera images

• 1 position : [x0, y0] = [x1, y1]

• 2 positions: [x0, y0] = 2[x1, y1] + [x2, y2]

• 3 positions: [x0, y0] = 2.5[x1, y1]+2[x2, y2]+0.5[x3, y3]

Once the predicted location is calculated it is possible
to eliminate some cameras from being searched. This is
accomplished by transforming the predicted location into
the pixel coordinates of each camera using the display to
camera homography. This can be calculated as the inverse
of the camera to display homography or at calibration-time
directly. If the pixel space position lies outside the camera
image then this camera image does not need to be searched.

The next step involves prioritizing which of the remaining
cameras images should be searched first. This is accom-
plished by projecting the center of each of the remaining
camera’s images onto the display using the camera to dis-
play homography. Cameras whose center point is closer to
the predicted point are given priority. This calculation is
done in NDC because it would not be consistent to use pixel
distances with cameras that have different resolutions.

Now that we have a prioritized search list, we can search a
sub-image region around the predicted location in each cam-
era’s image. If the laser pointer is found in any image, the
search is ended and the detection history is updated. If the
pointer is not found in any of the sub-image searches, then
the previously recorded points are discarded and the system
defaults to a brute-force search of all camera images. The
priority from the sub-image search is still used in the brute
force search. Those images that were initially discarded be-
cause the predicted location was outside their image plane
are given lowest priority. Again, if the laser pointer is found
in any image, the search is ended and the detection history
is updated.

2.4 Client Applications
The Client Applications are applications which receive in-

teraction messages from the Interaction Servers and trans-
late them into application interaction. We have implemented
two client applications that allow use of unmodified appli-
cations with our system. One works with the DMX desktop
environment. It receives interaction events from the interac-
tion servers and translates them into synthetic X events that
allow interaction with the desktop. The other allows use of
OpenGL applications via Chromium. In this case the client

1Only the last 3 positions are actually saved

application receives interaction events from the interaction
servers, scales them to the extents of the OpenGL window,
and sends synthetic X events to this window.

3. RESULTS
The current implementation of this system uses 4 cameras,

each with a resolution of 720 × 480. The maximum frame
rate we are able to get from the frame grabbers attached to
these cameras is 15 [fps]. This total pixel area at this rate is
not enough to make image searching a bottle neck and we
are able to achieve throughput near the frame rate of the
cameras. This, however, is not the case with faster, higher
resolution cameras. In order to test the effectiveness of our
approach we measured the amount of time spent reading
images and the amount of time spent doing the rest of the
detection loop. We then evaluate the percentage of that
time reading the images vs performing the rest of the loop.
A shorter period of time in the loop and more time reading
means that the detection was performed quickly, so more
time was spend waiting for images from the frame grabber.
These measurements were made using the Linux gettimeof-
day system call. We took these measurements using 1, 2, 3
and 4 cameras at a time. The system tracked a simulated
laser position that moved over a set path at a constant 75
[pix/s]. The layout of these configurations is illustrated in
Figure 1. Three trials were run for both the optimized and
brute-force algorithms. The averages of the trials are shown
in Table 1. It can be seen that in our implementation the
percent of time spent updating the history and searching
the camera images is an order of magnitude less than that
of the image searching in the brute-force approach. Addi-
tionally, as the number of cameras increases, this percent
increases far more slowly than it does in the brute-force al-
gorithm. This will allow us to maintain higher frame rates
when using faster, higher resolution cameras, where as the
brute-force method would be come a limiting factor.

Figure 1: The camera layouts (color) over lay the
display outline (solid black) and the laser path is
(dashed black).

4. CONCLUSIONS AND FUTURE WORK
We have described a system for using cameras and a laser

pointer for mouse-based interaction. We have presented in
depth details on how to implement a robust and efficient
algorithm for detecting the laser pointer. In particular, our

Number Of Cameras 1 2 3 4

Brute-force Read 93.38 90.60 87.80 85.90
Brute-force Detect 6.34 9.28 12.42 14.69

Targeted search Read 99.89 99.88 99.86 99.86
Targeted search Detect 0.09 0.11 0.12 0.13

Table 1: Percent of total time spend reading from
cameras and in the rest of the detection cycle for
target and brute-force searches. The values are av-
erages from three separate trials.

algorithm focuses on being able to work in a variety of light-
ing conditions and with a semi-dynamic background. Addi-
tionally, our algorithm presents a method for reducing the
overhead involved in searching for the laser pointer by using
a predictive searching. These issues have not been the focus
of previous work in this area.

In addition to this work, we would like to develop cali-
bration tools that would allow our system to work on non-
planar and faceted displays. We would also like to extend
our implementation to handle cursor tracking from multiple
computers running camera detection. Bandwidth will even-
tually become the bottleneck in the system and limit the
number of cameras that can effectively be used on a single
machine. Integration of the ideas presented by Davis and
Chen [2] would allow for this.

5. ACKNOWLEDGEMENTS
Authors affiliated with Sandia were supported by the United

States Department of Energy, Office of Defense Programs.
Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under contract DE-AC04-94-
AL85000. This work is also supported by the National Sci-
ence Foundation under contract ACI 9624034 (CAREER
Award) We gratefully acknowledge the support of the W.M.
Keck Foundation provided to the UC Davis Center for Ac-
tive Visualization in the Earth Sciences (CAVES), and thank
the members of the Visualization and Computer Graphics
Research Group at the Institute for Data Analysis and Vi-
sualization (IDAV) at the University of California, Davis.

6. REFERENCES
[1] I. Corporation. Open source computer vision library

reference manual, December 2000.
http://sourceforge.net/projects/opencvlibrary/.

[2] J. Davis and X. Chen. Lumipoint: Multi-user
laser-based interaction on large tiled displays. Displays,
23(5), 2002.

[3] J. Oh and W. Stuerzlinger. Laser pointers as
collaborative pointing devices. In Proceedings of
Graphics Interface 2002, pages 141–149, 2002.
http://citeseer.ist.psu.edu/oh02laser.html.

[4] D. R. Olsen, Jr. and T. Nielsen. Laser pointer
interaction. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 17–22.
ACM Press, 2001.

[5] R. Sukthankar, R. Stockton, and M. Mullin. Smarter
presentations: Exploiting homography in
camera-projector systems. In Proceedings of the
International Conference on Computer Vision, 2001.

