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A Query-based Framework for 

Searching, Sorting, and         

Exploring Data Ensembles  
 

 

We introduce an innovative ensemble analysis 

framework for organizing, searching and comparing 

results produced by hundreds of physical 

simulations.  Our web-based approach is built on 

standard technologies, utilizes a scalable and 

modular design, and is suitable for displaying the 

results of in-situ analysis and extreme-scale 

simulations. 

 

 
To model real-world systems at a high-degree of accuracy, 
computer simulations must produce massive amounts of 
complex and multivariate data.  When the parameters of 
these simulations are uncertain or non-deterministic behav-

ior occurs, no single simulation result can be used to accurately predict the behavior of a system.  
However, massive increases in computational power have given scientists the ability to run these 
simulations repeatedly. The resulting dataset from each run is referred to as a realization, and the 
collection of these realizations is a data ensemble. Understanding the extent and variability in 
possible outcomes represented by an ensemble is of key importance for predicting the behavior 
of the modeled physical system. Data and visualization scientists apply a variety of analysis 
techniques that transform the simulation results into a format that can be understood by the in-
tended audience. We have developed new tools that are broadly applicable to multiple scientific 
domains, with the goal of simplifying this complex process. Our effort’s key contribution is the 
development of the Database Optimized Relationship Analysis (DORA) framework. 

DORA includes several tools for exploring, searching, and comparing realizations of a data en-
semble.  From a user perspective, DORA is primarily a way to browse, search, and interact with 
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very large sets of analysis data produced by multiple physics-based simulations.  While our main 
contribution is the presented framework, it is important to understand the typical workflow used 
to simulate a physical system.  Figure 1 (A-C) provides an overview of this process.  First, a do-
main expert generates an ensemble by executing a simulation multiple times, producing different 
results due to changing parameters, non-deterministic behavior, different model geometry, or a 
combination of these factors. Determining the number of necessary realizations is difficult, and it 
is often an iterative process, but several hundred simulations may be needed. The simulation re-
sults are often too complex to be easily understood in an unprocessed form. Automated analysis 
is performed, either via post-processing or while the simulation is running (in situ analysis), re-
sulting in a set of “analysis products” for each realization. The algorithms required are domain-
specific, and include visual, feature-based, and statistical methods. Each of these methods gener-
ally has its own parameters and may create many products, such as 2D and 3D renderings, statis-
tical plots, or more abstract types like graphs and diagrams. These analysis products act as a 
proxy for the simulation output while requiring only a fraction of the original storage. To make 
them available to our framework, each analysis product is linked to metadata, including descrip-
tions of the simulation and analysis methods, and the parameters for both. This includes the crea-
tion of relational information obtained by clustering or classification of the realizations. In this 
process, machine learning methods are applied to the metadata of each realization, grouping 
them into similar sets (groups or pre-defined classes); a numerical similarity or distance metric is 
produced for each realization in a set. The specific algorithms used varies for a given application 
domain, but many machine learning algorithms produce the needed type of information. While 

Figure 1 An example workflow for creating and analyzing complex scientific simulations that require 

multiple realizations for predicting real-world behavior.  Ensemble generation and analysis (A-C) 

starts by running a simulation multiple times. The results are analyzed for each simulation to 

produce visualizations, graphs, and plots.  These analysis results are processed, and relational 

analysis is performed to compare each simulation output.  The DORA framework (D-F) then 

combines this analysis into a database and creates an intuitive user interfaces, which allows 

scientists and domain experts to explore the ensemble and find salient results. Finally, the insights 

gained from analyzing an ensemble with DORA may lead to new ideas that can influence how 

future ensembles are created, influence the type of analysis done for these ensembles, or 

determine the methods used to produce relational information between the realizations.  
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we have developed specific tools for each of these three components, they are intentionally kept 
separate from the DORA framework described in this paper. This flexibility allows DORA to be 
integrated into existing applications where analysis methods are already well defined. 

The DORA framework is described in Figure 1 (D-F). It combines several tools that allow users 
to access the analysis data and information produced from a large data ensemble, find specific 
realizations that meet user-defined criteria, and compare simulation results. To create an ensem-
ble database, DORA first converts the analysis products into “render objects” that are compatible 
with the framework. DORA does not directly render large complex data types, like simulation 
meshes or 3D images, due to computational constraints. Instead, real-time interaction is emulated 
for these data types using a pre-rendering technique. Less complex data types, like graphs, plots 
and images, can be rendered directly by the framework. These render objects and their metadata 
are used to populate the analysis database that can be queried directly by a user. However, a user 
must know the query language and have experience with database operations.  Alternatively, 
DORA generates a dynamic web-based interface using sliders, lists, and toggles as appropriate. 
This interface allows users to explore an ensemble by searching for simulation results that meet 
particular requirements to identify simulations that produced similar or dissimilar outputs, and 
aggregate statistical information from a current selection, or the entire ensemble.  This query can 
be done with a database stored locally or accessed remotely on a server. DORA enables scien-
tists to view and search through huge amounts of data in real-time to discover salient and unex-
pected behavior in an ensemble. 

   

 

BACKGROUND 

Scientist have used data ensembles as a way of predicting complex physical systems for decades.  
For example, meteorologists often generate hypotheses for a large storm’s trajectory by analyz-
ing multiple possible paths associated with various probabilities. To generate this set of paths, 
many simulations are performed and similar results are grouped together and averaged (clus-
tered), creating a hierarchy. Each group is represented by a storm’s possible path, usually visual-
ized as a collection of paths overlaid on a map of the storm’s geographic location. While these 
types of ensembles have been generated for years, the accuracy, complexity, and storage size of 
simulations has rapidly increased, requiring new methods for their analysis.3 

Database creation is one of the preferred techniques for dealing with large ensembles. A recent 
example was demonstrated by Li et al.1 who presented a framework for data-intensive climate 
ensembles. Their method optimizes a database to efficiently access the raw simulation grid for 
analysis and visualization. While their system is specialized for a particular domain and applica-
tion, it demonstrates the effectiveness of utilizing database technology for accessing vast 
amounts of scientific data. Slycat5 is a general framework that has been applied to multiple do-
mains outside of climate data. It provides specific analysis methods focusing on finding correla-
tions in parameter space.  DORA is a more flexible framework that leverages a variety of 
analysis methods and is not targeted at a specific domain. This portability comes with a cost: Us-
ers cannot directly interact with the original simulation data; instead, they can only access the 
products of analysis methods applied to that data.   However, these analysis products are typi-
cally orders of magnitude smaller2 than the original data, making DORA extremely scalable re-
garding the number of simulations that can be analyzed at once. 

Our motivation for using the paradigm of relying on analysis results directly is the increased 
prevalence of in situ analysis for extreme-scale simulations. In situ methods perform automated 
analysis during a simulation, essentially combining steps A and B from Figure 1, meaning that 
the raw simulation data does not have to be transferred from system memory to storage4. For ex-
treme-scale simulations, bandwidth to storage devices can become the limiting factor and, in 
many cases, simulations calculate significantly more data than can be practically stored. These 
and other factors have led to the increased necessity of in situ analysis in modern scientific simu-
lation. Data ensembles produced by these extreme-scale simulations continue to increase in size, 
motivating us to design our framework with in situ analysis in mind. 
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We predict that in situ methods will become the standard for dealing with large-scale ensembles.  
DORA can help tackle two of the main issues that arise from this type of analysis. First, all of 
the data analysis methods must be chosen ahead of time, as the simulation data is not stored for 
later analysis. It is therefore preferable to apply many different techniques and produce an abun-
dance of analysis results.  DORA is capable of organizing millions of analysis results and effi-
ciently finding the analysis products that a scientist needs to answer specific hypotheses. Second, 
DORA makes it possible to visually interact with the simulation data in real time.  We identified 
the Paraview Cinema1 standard as an appropriate model for adding visualizations to our data-
base. Cinema uses a set of images from a spherical camera model to effectively emulate 3D visu-
alizations.  Rendering can take place in situ, or as a post processing step.  DORA enables users 
to rotate, zoom, and pan 3D visualizations as well as move forward and backward in time as if 
the data was being rendered in real time. The types of visualizations and the features being ren-
dered must be chosen ahead of time; however, large-scale datasets can be remotely explored at 
interactive rates using this technique. 

   

 

 
Figure 2. Diagram of the DORA framework. A database is generated from the analysis files 

produced from in situ or post processed analysis of simulations.  The visual components of these 

objects are stored as render objects that can be displayed in the Web-based viewer.  The Query 

Cluster Compare (QCC) module uses the database information to generate a user interface.  

Selections made by users are interpreted as queries on the database by the QCC. Results are 

displayed in the viewer.   

 

ENSEMBLE EXPLORATION AND ANALYSIS 

FRAMEWORK 

Figure 2 illustrates the DORA framework and how the database is created from analysis objects 
for exploring an ensemble of simulation results.  Each solid block represents a module of the 
framework and arrows indicate communication between modules.  To analyze a data ensemble, 
the set of analysis objects, indicated by dashed lines, is sent to the Database module. We use a 
JavaScript implementation of the Apache CouchDB® standard, PouchDB®, which enables both 
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local and remote database access. The Database module creates an entry for each analysis object 
with associated parameters, statistics, and clustering information.  Every entry is sent to the Ren-
der Objects module, where the analysis objects are converted into extendable JavaScript based 
render objects for displaying and interacting with the analysis results. The Database module 
compiles the extents for statistics, parameters, and relational information, which are sent to the 
Query Cluster Compare (QCC) module.  The QCC passes this information to the User Interface 
(UI) module, which dynamically creates the interface on the viewer.  Interactions made by the 
user are sent from the UI back to the QCC that translates these interactions into database queries 
and displays the results on the viewer.  

The ability to query analysis objects using a dynamically created user interfaces is what makes 
DORA a powerful tool for exploring large data ensembles.  Each object in the database has in-
formation about the simulation that created it including: simulation parameters used in that simu-
lation, both global and feature-specific statistical information, relational information, feature 
types, and analysis parameters. The combination of this metadata makes it possible to quickly 
search, organize and compare the results generated by different simulations or analysis processes 
using an intuitive interface.  Users search the Database by choosing keywords and selecting ei-
ther a specific or range of numerical values from sliders, strings from list of options, or a toggle 
to indicate that a specific keyword is linked to all analysis objects returned.  These selections are 
converted into queries on the database, which returns the set of render objects which meet the 
selected criteria.  Users can interact with each render object directly or as a linked group.  They 
can also choose to explore all related objects which belong to the same group, and search within 
a current selection. 

 
Figure 3. Example of cluster-based exploration of the MNIST handwritten digit database.  A) The 

database can be viewed with the standard web interface.  B) The user selects “3” and images 

belonging to the same cluster are shown.  C) The most representative image, i.e., the one closest 

to the center of the cluster, is displayed.  D) The 25 images most similar to (C) can be selected or 

E) the 25 least similar to (C) can be generatd. These can be interperated as outliers for that cluster.   

 

We describe how users interact with DORA by discussing an example dataset consisting of im-
ages from a commonly used machine learning training set. The MNIST6 handwritten digits are 
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images of the digits zero through nine, as shown in Figure 3(A) within the DORA interface. 
Each image in the database contains the correct label and machine learning id. To compute rela-
tional information for each image, we use a standard implementation of a support vector machine 
(SVM).7  SVM is a method that compares images that are unknown to pre-labeled groups or 
classes, and predicts which class they should belong to. This approach accurately groups an im-
age of a handwritten digits with the correct labels (i.e. a handwritten “8” will be classified as an 
8) 97% of the time. To create an ensemble database, each image is added as an analysis object.  
The metadata for each image includes the correct label, a predicted class from the SVM, and dif-
ferent distance metrics.  The predicted classification information is used by DORA as relational 
information, so that users can find related images in the database.  

To explore the ensemble of handwritten digits, a user manipulates sliders to select all images 
classified by the SVM as a “3,” see Figure 3(B).  By selecting any one of these images, the user 
can perform a query for the representative image in that group; in this case, the image closest to 
the respective support vector, shown in Figure 3(C). Being able to directly compare to a repre-
sentative object, allows the user to better understand the variability that can occur within a group.  
In a scientific setting, this type of operation is useful for discovering outliers, and comparing 
them to an average or typical case.  The system allows the user to easily query for the objects 
most similar to the representative object. In this case the 25 most similar images are shown in 
Figure 3(D).  Alternately, the user can select the least similar images to a representative object 
(E) in the cluster, which is a useful tool for discovering outliers.  In this case, several poorly 
written digits are returned as well as several mislabeled images.  In a more general setting, a sci-
entist could further explore and investigate related analysis objects to improve their algorithm 
and gain better understanding of why outliers occur. 

Filtering the analysis objects generated and extracted from a data ensemble allows the user to 
select simulation results meeting specific criteria. Our system generates potential selection crite-
ria by accumulating statistical and parameter information for a current DB selection, and it repre-
sents the accumulated information as plots created dynamically.  Users can create histograms for 
a single variable, scatter plots for two variables, or line plots for two variables where one is a 
function of the other. This functionality supports the process of identifying outliers, selecting 
query bounds, or identifying trends among previously selected data objects. Direct comparisons 
can also be made for groups of data objects. For example, plots of the same type, representing 
the same variables, can be combined and overlaid. Users can highlight lines, points or bars to 
emphasize specific details. Cinema-style image data can be linked so that views and temporal 
values are associated. For more advanced comparisons, our framework can be extended by in-
cluding JavaScript plugins, making it possible to compare more abstract data/data representa-
tions such as graphs.   

 

ENSEMBLE OF SIMULATED FLOW IN FRACTURED 

ROCK AND EXTRACTION OF NETWORK 

BACKBONES 

In low permeability rocks, e.g., granite and shale, fractures are the principal pathway for flow 
and the associated transport of dissolved chemicals. Characterizing fluid flow in these formations 
is important to many civilian, government, and industry applications including: aquifer manage-
ment, hydrocarbon extraction, and long-term storage of spent nuclear fuel.11 One tool that geo-
scientists use to model these phenomena are discrete fracture network (DFN), where intersecting 
polygons represent the cracks in subsurface rock in which fluid and gas are transported. Due to 
inherent uncertainty associated with the subsurface, ensembles of DFN models are stochastically 
generated with the same statistical properties, but different network geometry. 
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Figure 4 To automate flow and transport analysis for discrete fracture networks (A), we use a graph 

representation (B) from which we extract statistical properties, paths of concentrated flow and 

clustered particle traces (C). This method allows us to automate analysis of large numbers of flow 

simulations and store them in a database for use with DORA.  (Image courtesy of Aldrich et al.12) 

 

To demonstrate the utility of DORA in these simulations, we examine particle transport behavior 
in an ensemble of 100 flow simulations within independent identically distributed DFNs. Coales-
cence of particle path lines indicates the occurrence of flow channeling within the network and 
the existence of backbones, a subnetwork where most of the flow occurs. A key question is how 
do these channelized paths influence transport behavior, and, in particular, how long it takes for 
a particle to exit the domain (breakthrough time). We use an automated graph-based method for 
flow network analysis to extract these backbones.  Figure 4 depicts the workflow for the analysis 
system that is described in detail in Aldrich et al.12 A key component of the analysis is generat-
ing a flow topology graph (FTG), where each fracture is represented by a vertex in the graph, 
and edges represent flow from one fracture to another.  Analysis of the FTG produces the follow-
ing: a hierarchy of channelized paths, ordered by the amount of flow over each set of fractures; 
several statistical properties about the rate of flow, breakthrough times, etc; and particle cluster-
ing information.    
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Figure 5. Ensemble of 100 discrete fracture network (DFN) simulations, each one presented with 

several analysis results, viewed with the viewer for DORA. Top: A gallery-style view allows the user 

to quickly browse through the entire ensemble, here the set of fractures forming channelized paths, 

shown for each network. Each path is rendered in a unique color.  Bottom: For more detail, users 

can select a grid view presenting analysis results for each simulation, enabling direct comparison of 

selected simulations.  A user can access over 4000 database entries, containing over 500,000 

images.   
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For the DFN ensemble, automated analysis is applied to each of the 100 members and used to 
generate the ensemble database. Figure 5 shows two examples of how this database can be 
viewed using the DORA framework. In the top view, each simulation result is represented by a 
single analysis object and renderings of the channelized path hierarchy, where each path is inde-
pendently colored.  This relatively small subset of the total network carries the majority of flow 
and is generally more useful than viewing the entire network. The bottom view in Figure 5 uses a 
grid layout, which is better for comparing the results between multiple simulations. In this case 
the user has chosen to display a dynamic rendering of the flow topology graph for each simula-
tion, a statistical plot, a rendering of the entire network, and renderings of each individual chan-
nelized path. The user can compare several simulation runs at once, however it is difficult to see 
details about the ensemble as a whole. 

 

 

 

 

DORA can also be used to compare results across an ensemble and identify outliers by accumu-
lating plots and statistical values from the database. Figure 6 shows how these results can be 
overlaid to give an indication of the variability present in an ensemble and reveal trends in the 
data. In Figure 6(A) the cumulative breakthrough times are shown for all 100 simulations.  An 
average line is calculated (red), and users can select individual curves (purple). The selected 
curve(s) can be used to query the database for those simulations. Figure 6(B) shows a histogram 
first breakthrough times, which appears to have some outliers at the upper end. 

 

Figure 6 Breakthrough time is the amount of time required by each simulated particle to traverse the 

flow network and exit the system. The CDF of breakthrough times (breakthrough curve) can be 

accumulated into a single plot (left) where the average is shown as a red line.  The user can perform 

queries to find the simulation results that produced a specific curve by selecting it in the plot (purple 

line). Users can display statistical values, e.g. distributions of intial breakthrough, the minimum time 

required by  a particle to traverse the system (right). The ability to automatically generate these plots 

from a current selection allows users to understand the variability of possible outcomes and identify 

outliers for further investigation. 
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Figure 7 Fracture networks with fastest (top row) and slowest (bottom row) initial breakthrough 

times can be selected from the 100 network ensemble.  The generated visualizations allow us to 

evaluate the top three backbone paths for each network, i.e., the paths carrying the most flow in the 

network. The paths are shown in the flow topology graph for each simulation and in the geometric 

representation of each path. Feature-based analysis is necessary as detailed structures can be 

occluded in the network when rendering a DFN representation of each fracture network.  

 

DORA can also be used to investigate the disparity between the two extremes of initial break-
through. Fig. 7 (top) shows backbone information in a network with one of the fastest break-
throughs and Fig. 7 (bottom) shows the same information for a network with very slow travel 
times.  In the fast network, the backbone consists of larger fractures oriented in primary direction 
of flow (from left to right). In the slow network, the backbone is composed of relatively small 
fractures with variable orientations, resulting in slower breakout times. The differences between 
these two networks highlight how the random topological configuration of fracture networks, 
even when using the same underlying statistical properties, can drastically influence simulation 
results.   

Flow in fractured rock is one of the many examples where inherent uncertainty requires and en-
semble of models to capture the full range of possible results.  Analyzing DFN simulations is 
computationally expensive, and interactively visualizing the results can be difficult due to their 
complexity and size.  DORA enables scientists to efficiently discover outlier behavior within an 
ensemble and interactively explore and compare results in real time for up to tens of thousands 
of fractures.  
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Figure 8. A finite particle simulation of salt water being injected into a can of water. (A) Blue 

indicates low consentration of salt, and red indicates high concentration. We estimate the density 

function of salt as a function of volume and compute a graph of the highly concentrated areas (B) to 

extract the viscous finger structures from the salt base (C) and separate them into components (D).   

Each component is assigned a random color that remains the same over time, so that the user can 

see these fingers evolve. These structures are important to scientists for understanding the 

complex mixing behavior of fluids arising in numerous engineering (drug delivery) and natural 

systems (carbon sequestration and hydrocarbon extraction). (Image courtesy of Lukasczyk et al.10) 

ENSEMBLE STUDY OF VISCOUS FINGER 

EXTRACTION IN MIXING OF FLUIDS 

 

DORA’s main purpose is a tool for domain experts to aid in evaluating their scientific work, however it is 
also a beneficial tool for data and visualization scientists in rapid algorithm development.  Recently DORA 
was used to develop feature extraction and analysis algorithms for the 2016 IEEE Science Visualization Con-
test.  The goal of this contest was to analyze an ensemble of 50 finite particle method (FPM) simulations in 
which salt water solution is suspended over a water solution, as shown in Figure 8(A).  As the two fluids mix, 
the dense salt water forms finger like clumps that penetrate the boundary between the two liquids.8 Under-
standing this phenomenon is critical for multiple applications including determining how much oil (high vis-
cosity) can be recovered from a reservoir partially saturated with water (low viscosity)9. 

DORA allowed us to test multiple algorithms, apply them to the entire simulation ensemble, and evaluate the 
results in a meaningful way.  The feature extraction method, which earned 2nd place in the contest, is de-
scribed in Figure 8(B-D).  First, a concentration function is estimated over the domain’s volume (can of wa-
ter) and a graph is constructed of the regions with greatest density.  This graph allows us to extract the 
viscous fingers as structures representing a subset of the volume where salt is concentrated beyond a given 
threshold.  These regions are assigned a color and then tracked over time so that scientists can see how they 
nucleate, evolve, and disperse. During the analysis, several statistical values are also calculated and stored, 
for example, the total salt concentration, volume, depth and center of mass for each viscous finger. For a de-
tailed description of the algorithm see Lukasczyk et al.10  

This algorithm is effective for identifying viscous fingering in the volume, extracting the structure of these 
fingers, and tracking their evolution over time. However, several analysis parameters needed to be adjusted to 
produce the desired results. For example, there are several threshold values that can be used to separate the 
concentrated salt regions that represent viscous fingers from the rest of the liquid (Figure 8B). The analysis 
algorithm is also scale-dependent, and different parameters produce differently sized features. Figure 9(A) 
shows how different parameter values can produce remarkably different results from the same realization.  
Furthermore, different simulation parameters used to generate the ensemble required different analysis pa-
rameters to properly extract features at a reasonable scale. A final complication is the fact that the algorithms 
we developed were both time- and space-intensive: 15-20 minutes was the required run time, and 20GB of 
storage space was required per analysis run.   
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Figure 9 We use DORA to rapidly develop a novel analysis method for extracting viscous fingers 

from a finite point method fluid simulation. DORA enabled us to evaluate different analysis 

parameters and their effectiveness for extracting the desired structures (A).  Each structure is 

rendered in a unique color remaining the same during the simulation.  Once proper analysis 

parameters are identified, the user can display every member of the ensemble with these 

parameters (B).  Multiple ensemble members can be linked so that they share the same view and 

time settings (C), supporting effective visual comparison between simulations.   

 

 

The tools of the DORA framework allowed us to overcome these issues. First, we automated the feature ex-
traction algorithm so that it could be applied multiple times with different parameters.  We applied 64 itera-
tions of the analysis on each of the 50 ensemble realizations, which resulted in 320 analysis products, each of 
which includes 3D time-dependent visualizations and the statistical information for each.  Figure 9 gives an 
example of these analysis products and how they are evaluated in the DORA framework.  Figure 9(A) shows 
that some of the results produced structures that were not useful for scientific evaluation, as they were inva-
lid.  However, examination of the statistical properties in cases where the analysis did produce good results 
allowed us to search the database using these properties.  Queries based on these properties returned a set of 
analysis products that properly represented the viscous finger structures, figure 9(B).  Using DORA, we eval-
uated these results individually and compared multiple simulations at the same time, both spatially and tem-
porally, cf. figure 9(C).   

 

This example highlights how DORA provides can be used to evaluate analysis techniques for 
ensemble datasets. Multiple methods and analysis parameters can be evaluated for each member 
of the ensemble, which is especially useful in cases where different groups are analyzing the 
same simulation results, or where multiple hypotheses need to be tested and each may need a dif-
ferent type of analysis. DORA users can visually evaluate the results and query the ensemble 
metadata to select simulation results with particular properties.  While analysis methods may be 
computationally expensive, only the rendered images and statistical properties are stored long 
term. Once the database has been created, users are able to visualize, query, and interact with the 
results in real time, both locally and remotely. DORA enables domain and data scientists to rap-
idly develop, test, and compare multiple analysis methods across large ensembles. 

 

CONCLUSION 

For large ensembles produced from multiple simulation runs, automated analysis is often neces-
sary to produce images, extract features, transform the data into abstract types, and/or produce 
statistical descriptions of the data.  One issue is that the best features for a specific domain, the 
number of images needed, or the type of statistics that could be useful are unknown when 
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implementing the automated analysis.  Our solution is to run many different analysis methods, 
either in situ or in post processing, from which the most useful results are then included in a da-
tabase for ensemble analysis. For a large ensemble, this can easily produce more results than is 
possible to effectively evaluate.   

We developed the DORA framework to allow users to search, sort and compare these analysis 
results and probe specific scientific hypothesis about the system being modeled.  Increases in 
computational ability and simulation complexity have drastically increased the number of data 
ensembles and the need for analysis tools.  We leveraged recent advances in web-technologies to 
address this need in the development of DORA. The ensemble database stores the simulation pa-
rameters, analysis parameters, metrics, derived statistics, and clustering information alongside 
each analysis objects.  This design allows the user to search for specific simulation results, fea-
tures, or metrics by querying the database.  We designed an interface that lets the user build que-
ries in a natural way by combining the selections of particular values, ranges of values, or the 
existence of keywords in the database. DORA was designed from the bottom up, to be a collabo-
rative tool that runs in a web-based environment and can be deployed both locally or using a 
server-client model. 

We demonstrated the utility of DORA using two case studies from vastly different domains. In 
each case study, we highlighted an important capability of our system including the ability to 
evaluate automated analysis and identify analysis parameters which provide the most insight into 
a particular dataset, using clustering information to identify outliers and compare analysis re-
sults, and using statistical information to search for simulation results with features that exhibit 
particular properties of interest.  The combination of these analysis methods makes DORA a 
powerful tool for providing insight in the complex behavior of data-intensive simulations.   
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