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Abstract
Today’s supercomputing capabilities allow ocean scientists to generate simulation data at increasingly higher spatial and
temporal resolutions. However, I/O bandwidth and data storage costs limit the amount of data saved to disk. In situ methods
are one solution to generate reduced data extracts, with the potential to reduce disk storage requirement even for high spatial
and temporal resolutions, a major advantage to storing raw output. Image proxies have become an efficient and accepted
in situ reduced data extract. These extracts require innovative automated techniques to identify and analyze features. We
present a framework of computer vision and image processing techniques to detect and analyze important features from in
situ image proxies of large ocean simulations. We constrain the analysis framework in support of techniques that emulate
ocean-specific tasks as accurately as possible. The framework maximizes feature analysis capabilities while minimizing
computational requirements. We demonstrate its use for image proxies extracted from the ocean component of Model for
Prediction Across Scales (MPAS) simulations to analyze ocean-specific features such as eddies and western boundary
currents. The results obtained for specific data sets are compared to those of traditional methods, documenting the efficacy
and advantages of our framework.
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Introduction

Science is experiencing the era of large data, presenting
numerous benefits and challenges. In the ocean science
community, more advanced computing capabilities allow
scientists to conduct simulations at ever higher resolutions
and for increasingly longer time periods. For example, high-
resolution ocean simulations can now include 3.7 million
cells in two-dimensional layers, with 80 vertical layers
stacked on top of each other (Petersen et al. 2019), consider
thirty variables at 5-day to monthly intervals, and simulate
behavior for decades or even centuries. Data output from
atmosphere, sea ice, and land components in earth system
models are of similar scale (Caldwell et al. 2019).

More powerful computing capabilities also lead to
challenges. Limited I/O bandwidth makes visualization and
analysis of large simulations difficult and often inefficient.
Data storage costs limit the size and number of time
steps that can be stored to only a small percentage of the
simulation (Bauer et al. 2016). Scientists cannot mentally
envision the entirety of such amounts of data and must
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evaluate their simulation outputs by visualizing averages or
subsets of a full data set (Golaz et al. 2019). Researchers
can employ various data reduction techniques, such as
compression, data sampling, in situ methods and statistical
tools, to reduce the size of simulation data to a manageable
size (Li et al. 2018). Compression techniques can drastically
reduce the data saved to disk but are generally not
feature-driven, which can lead to undesirable data and
thus information loss. Data sampling methods can identify
regions of interest and intelligently preserve information
in those regions while aggressively discarding regions not
containing relevant information (Dutta et al. 2019).

Image proxies have emerged recently as an additional
means to preserve important features while reducing data
size. Tikhonova et al. (2010b) introduced proxy images for
reduction of volumetric data. The method captures depth
information for various isovalues, using a volume distortion
camera model, and saves image data in a modified format.
Similarly, techniques such as Cinema (Ahrens et al. 2015;
Kageyama and Yamada 2014) project simulation data to
a viewing plane, effectively compressing the simulation
information via a high-resolution image. Wang et al. (2018,
2019) introduced image proxies combined with statistical
distributions to support high-accuracy re-rendering, apply
transfer functions and extract iso-surfaces from volumetric
data. The effectiveness of each one of these methods to
address concerns with large data analysis are discussed
in the associated papers. However, with the success of
such techniques also arises the need for tools that can
extract features of interest from image proxies, rather than
requiring that a scientist must re-consider and perform a
computationally more expensive simulation for an in-depth
post hoc analysis. These tools must provide methods that
make it possible to precisely and accurately identify, extract
and analyze important, scientifically correct features in
large simulation data sets.

We address these needs via a framework of image
processing and computer vision techniques that allows
one to extract scientific features for analysis using a
compressed proxy format to maximize feature analysis
while minimizing computational requirements. To ensure an
accurate representation of simulation data, the design of our
framework was driven by two requirements: (1) An effective
analysis and visualization of image proxies must replicate
techniques and identify features similar to those used and
identified by a scientist when working with the original
simulation data. Such a design encourages scientists to
regard the proxies as an extension of the original data rather
than completely different entities. (2) Considering the use
of image proxies for simulation studies, the framework must
leverage traditional image processing and computer vision
to provide additional desired capabilities to a scientist. A

framework satisfying this requirements allows a scientist to
take full advantage of 2D representations.

The framework presented here satisfies these require-
ments. We present a visualization framework that uses com-
puter vision feature analysis tools to extract and track scien-
tifically relevant features. Four main elements are included
in the feature analysis toolkit: (1) image filters to reduce
the effects of high-frequency noise, (2) feature detectors
to identify science-specific features, (3) feature matching
methods to gain insight from one image to another, and
(4) feature tracking methods to understand feature evolu-
tion. The results generated by specific methods selected
from these capabilities can be viewed interactively via
the framework’s real-time data exploration interface, which
supports statistical methods and graphing tools for robust
and detailed analysis.

While other ocean simulation analysis systems provide
similar capabilities to the framework presented, we find
that none provide the same integrated combination of
features. Paraview (Ahrens et al. 2005), for example,
provides an excellent UI with numerous feature detection
and visualization methods, but little support for feature
matching and tracking. ImageJ (Schneider et al. 2012)
supports many image processing needs, but none of
the more advanced computer vision algorithms included
here. In addition, the statistical techniques in both these
frameworks do not include those presented. Methods we
include are tailored to and driven by the needs of ocean
scientists. The framework presented also provides scientists
a more direct and interactive control over how algorithms
are applied. For example, our UI allows scientists to
threshold the results of analysis algorithms to emphasize
scientific meaning. Although this is theoretically possible
with the other systems, there is no native support and must
be provided through a scripting interface. In addition, the
small data footprint of image proxies makes the framework
viable. A scientist does not have to wait minutes or hours for
data to be re-rendered as a result of changes to an algorithm
or parameter value; updates are generated in seconds. The
framework directly enables a highly exploratory scientific
analysis process.

We illustrate the use of our framework in two case
studies: (1) the detection and analysis of the Northern
Boundary of the Gulf Stream in an ocean simulation and
(2) the identification and tracking of ocean eddies near the
Agulhas Current in an ocean simulation. We evaluate the
results of each study through a comparison with traditional
analysis methods commonly used by ocean scientists. Our
comparisons demonstrate the utility of our framework as an
alternative to traditional methods.

In summary, our contributions to ocean science simula-
tion data analysis are:
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1. An analysis framework that allows scientists to emulate
techniques used in traditional domain-specific tasks and
extract features typical to their scientific domain.

2. The use of computer vision algorithms to provide
additional capabilities for the use of images as a means
for scientific analysis.

3. The evaluation of domain-specific features and a
comparison to traditional analysis methods to validate
the presented visualization framework.

RelatedWork

Frameworks for Image Analysis Once data is in image
format, numerous frameworks are available for data
exploration. ImageJ (Schneider et al. 2012) is a popular
toolkit with various image processing capabilities; however,
it does not 4 inherently provide matching and tracking
algorithms to understand a feature’s behavior over time.
Trackmate (Tinevez et al. 2017), a plugin extension to
ImageJ, expands on the latter’s capabilities through feature
detection and tracking. Unfortunately, Trackmate only
detects one type of feature, “blobs,” as defined by four
related 4 algorithms based on the Difference of Gaussians
and the Laplacian of Gaussians. However, a gradient-
based blob detection algorithm can not be applicable
or mathematically rigorous for every feature of interest.
Other techniques will be needed to analyze linear features,
features comprised of multiple components, groups of
features or even blobs better described by closed isovalues
rather than a gradient-based method. A second framework,
the VAICo framework (Schmidt et al. 2013) identifies
regions of differences between pairs of images using
mean squared error (MSE) to identify discrepancies. This
technique assumes that a majority of the image remains
the same, with only smaller regions undergoing change.
This is not an assumption our scientists can guarantee due
to the amount of noise and turbulence generally present
in their data. Such a comparison technique could lead
to the identification of many false features and therefore
is too simple a method for our needs; more complex
feature descriptors are generally required. In addition, the
inclusion of more complex image quality metrics such
as the structural similarity index measure (SSIM) (Wang
et al. 2004) or peak signal-to-noise ratio (PSNR) would
result in a more robust framework. A final image
analysis framework, PorosityAnalyzer (Weissenböck et al.
2016), compares results from various algorithms, e.g.,
different blob detection algorithms, to determine which
is most useful for a particular application. We expect
this sort of comparison to be useful in future work once
scientists are more comfortable with image proxy analysis
techniques.

Feature Detection and Tracking Feature detection and
tracking (Aigner et al. 2011), even when limited to
applications in visualization of simulation data, is a broad
topic. Tracking methods in visualization cover optical flow,
fluid flow studies (Post et al. 2003), feature tracking in
the context of merge trees (Widanagamaachchi et al. 2012)
and Morse-Smale complexes (Lukasczyk et al. 2017), and
others. Early studies by Samtaney et al. (1994) discussed
a method using contours for object detection and tracking
in images. Reinders et al. (2001) explored more deeply the
topic of feature event detection to identify time points of
births, deaths, splits and merges of features. Liu et al. (2013)
and Ozer et al. (2014) developed activity mapping tools to
parse data sets and extract specific time steps of interest,
based on Silver and Wang (1997). Muelder and Ma (2009)
utilized a prediction-correction technique to identify regions
containing features of interest. Our framework focuses on
the contributions detection and tracking algorithms can
make to the field of visualization rather than the reverse.

DataWorkflow

To ensure that data is accurately studied, a visualization
workflow must have several attributes:

1. The framework must be flexible enough to process data
from multiple data sources.

2. The framework must ensure that the accuracy of the
inputs are maintained.

3. The framework must allow for task specific functional-
ity.

We address the first two attributes in this section. The final
attribute is discussed in Section “Analysis Framework” with
examples presented in Section “Case Study Results and
Discussion”.

The framework presented in Section “Analysis Frame-
work” accommodates data from multiple sources through
the use of Cinema (Ahrens et al. 2015; Turton et al. 2020).
Cinema is a database of artifacts, such as images or image
proxies, with an accompanying CSV file that lists data
parameters for each artifact in the database. Processes to
generate Cinema databases are varied and can be dependent
on the scientists’ workflow. For example, we can generate
Cinema databases of simulation results through various
applications and platforms, including Paraview (Ahrens
et al. 2005) and VisIt (Childs and et al. 2012). This can be
performed either in post-processing if the simulation data
has already been computed, or in situ to the simulation
computation on architectures such as ORNL’s Summit and
LLNL’s Sierra (Turton et al. 2020).

Cinema was chosen over other image proxy methods,
such as Tikhonova et al. (2010b) and Wang et al. (2018,
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2019), for multiple reasons, including, for example:
(1) Cinema is an open-source tool and professionally
maintained; (2) Cinema is readily available for various
platforms, applications and architectures; and (3) Cinema
is based on images, thus providing a highly effective and
scientifically acceptable way to store and explore complex
simulation data using a simple image format, see (DSS
Group at LANL 2021) for details.

Simulation Data

In this paper, image proxies of simulation results are
generated using Paraview’s Cinema Export functionality:
Virtual cameras are positioned at theta- and phi-implied
positions, using spherical coordinates, encircling the simu-
lation domain, Fig. 1(a). The simulation is projected onto
a plane at the camera’s location. The data recorded at each
pixel of the plane can be simply rendered with colormap
and lighting information, or the floating-point value of the
simulation saved in the 32 bits provided by the RGBA
memory, Fig. 1(b). This latter representation, referred to
as a floating-point image, maintains the accuracy of the
simulation values in the image proxies.

The 32-bit floating-point representation is critical for
processing simulation data in our analysis toolkit. It allows
users to apply feature evaluation algorithms directly to
the values of the simulated data, creating a robust system
that is not susceptible to distortion due to colormaps or
from lighting effects. All feature evaluation techniques are
computed directly on these data values and results are
colormapped only at the end of the processing pipeline for
visual presentation. This ensures that detected, matched, and
tracked features are a close representation of events in the
simulation. However, the user can opt to apply the same
techniques and evaluation to a simply rendered image if
desired.

The application of the visualization framework to
simulation data is studied here through the use of MPAS-
Ocean, a component of the Model for Prediction Across
Scales (MPAS) (Ringler et al. 2013; Petersen et al. 2015).
MPAS-Ocean is a multi-resolution model of the Earth’s

oceans and part of the Energy Exascale Earth SystemModel
(E3SM), developed by the US Department of Energy (Golaz
et al. 2019). The MPAS-Ocean simulation studied here
is tessellated using Voronoi grids at 15-km resolution
and contains 173 time-dependent outputs, each 5 days
apart. The Cinema database of this data, generated through
Paraview, produces a floating-point image at 15 evenly
spaced locations in each angle phi and theta at each of the
173 temporal outputs. The simulation is also over-sampled
to ensure that each data element is represented by several
image pixels, ensuring high-quality input for analysis. The
Paraview export functionality tags each image derived from
the simulated data set with the corresponding phi, theta,
time, and corresponding simulation parametric values. It
also generates a CSV file to catalog the saved artifacts.
The open-source MPAS-Ocean ocean model that produced
the original data used in this study is available at (COSIM
Group at LANL & NCAR 2019). The raw model output for
high-resolution global simulations is available for download
at https://e3sm.org/data/get-e3sm-data/released-e3sm-data/
v1-025-data-hiresmip/ (E3SM Project 2018).

Analysis Framework

The visualization framework analyzes images ordered into a
Cinema database. The framework allows users to extract and
evaluate features through various techniques. The results of
these evaluations can be visualized by the provided interface
and written back to the Cinema database for further study
or for collaborative efforts. The specific components of the
visualization framework are shown in Fig. 2.

The visualization framework has two main components:
the feature analysis toolkit and the user interface (UI).
The feature analysis toolkit operates on a database of
images (in RGB or floating-point format) and contains
four types of visualization elements: image filters, feature
detectors, feature matching methods, and techniques for
feature tracking. Each is an optional piece of the user’s
pipeline dependent on the final goal. Users select methods
to form a customized pipeline suitable for their analysis

Fig. 1 Cinema floating-point
image databases. (a) Images
from computer simulation, taken
at evenly spaced theta and phi
angle locations on a bounding
sphere. (b) Projection of
simulated data onto an image
plane. For every image pixel, the
corresponding data value is
saved to generate a
floating-point image

https://e3sm.org/data/get-e3sm-data/released-e3sm-data/v1-025-data-hiresmip/
https://e3sm.org/data/get-e3sm-data/released-e3sm-data/v1-025-data-hiresmip/
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Fig. 2 The five elements of the image-based visualization framework:
image filters, feature detection, feature matching, feature tracking, and
interactive exploration with quantitative analysis. Using a database of
images or image proxies, the user can apply a linear (a) or non-linear

(b) filter, select a feature detection algorithm (c-f), select a feature
matching algorithm (g), track the features temporally (h),(i) or spa-
tially (j), and view the results in the interactive user interface with any
extracted quantitative information (k)

from the available options in each element category.
Users can then interact with the results of their selected
algorithms within the associated UI, where parametric
values can be selected to narrow features to those of
scientific interest. Users can also select regions of interest
within the UI to capture a subset of features for statistical
study, numerical feedback and other quantitative analyses.
The feature analysis toolkit uses components from both
the Insight Toolkit (Johnson et al. 2013), to support
floating-point image representations, and OpenCV (Bradski
2000), for computer vision algorithms. This format allows
the visualization framework to be flexible, as scientists
can easily integrate new algorithms from these external
toolkits into the framework should the scientist require such
capabilities.

By separating the image readers and visualization
interface from the feature analysis toolkit, it is possible
to add one’s own custom-built feature analysis pipelines
into the framework. Machine-learning or deep-learning
algorithms could also be incorporated.

To facilitate a real-time interface, we include a data-
tracking component in the framework to record the
chronological history of features when evaluating temporal
data. Once a feature detection algorithm has been selected
and given a set of parametric values for the detection and
image filters, the framework records the features detected
at a time t . Therefore, if we require information from that
time step in the future, the algorithm gathers the information
from the saved data rather than recomputing the features.
Additionally, any jump forward in time from an initial
time t to t + n, where n ≥ 1 results in the computation
of all features for time t to t + n at once. Both these
techniques ensure continuity in the results and support for
robust matching and tracking of features. Furthermore, it is
often the case that scientists scroll forwards and backward

through smaller temporal sections of their data to evaluate
feature changes. Our data-tracking component makes such
an evaluation possible and immediate by improving the
framework’s response time. However, changing the phi-
theta viewing angle or altering the algorithmic parameters
initiates a reset to the data structure. In such a situation, the
framework retroactively computes the results for the new
combination of parameters from time 0 to n. Depending on
the size of the data and parametric combination, this might
result in a small initial delay, but the subsequent analysis is
again instantaneous.

We present the various elements of the feature analysis
toolkit and user interface in the remainder of Section
“Analysis Framework” through their application to MPAS-
Ocean simulation results of sea surface kinetic energy. The
focus is on mesoscale ocean eddies formed by the Agulhas
Retroflection, starting at the coast of Southern Africa and
moving west through the Atlantic Ocean, Fig. 3. Eddies are
vortices in the ocean with high rotational and translational
energy and, therefore, well-defined in the sea surface kinetic
energy parameter (Wu et al. 2007).

Image Filters

The first element the scientist must consider is the type of
image filter to use. Image filters can significantly enhance
visual understanding by, for example, reducing extraneous
noise. The framework supports four smoothing filters: box or
mean,Gaussian,median and bilateral. Box andGaussian are
linear filters, whereas median and bilateral filters are aniso-
tropic. Anisotropic filters are known to detect and preserve
edges in image data better than linear filters (Forsyth and
Ponce 2011). However, the scientific community more com-
monly uses box and Gaussian functions. Users can interac-
tively define a window size at zero (filter has no impact)
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Fig. 3 The Agulhas rings in an
MPAS-ocean simulation.
Colormapped image of the
MPAS-Ocean Simulation (sea
surface kinetic energy). The
region of interest is highlighted
in (a) and expanded in (b).
Circular mesoscale eddies,
major currents and ocean
turbulence are plainly visible

or higher. Filters are especially useful when combined with
other methods of the feature analysis toolkit. Figure 4, for
example, shows the effects of a Gaussian blur filter on
an edge detection algorithm. Adjusting the blur parameter
allows the user to minimize scientifically irrelevant features.
Edges corresponding to eddies and high kinetic energy
currents remain.

Feature Detection

An almost infinite number of feature detectors exist for
evaluation of regions of interest in 2D images. However,
the feature detectors we chose as part of this visualiza-
tion framework were selected due to their similarity to
traditional evaluation methods from scientists’ workflows.
Additionally, we require that features descriptors in the
framework allow features to be defined with a high degree
of invariance for successful matching and tracking. The
features detector techniques included in this framework
are as follows: Canny edge detection, image segmenta-
tion by a user-defined threshold, Scale-Invariant Feature
Transform (SIFT), Speeded-Up Robust Features (SURF),
and Features from Accelerated Segment Test (FAST) local
feature detectors.

The framework uses Canny edge detection to identify
regions of rapid change in adjacent pixel values. This edge
detection algorithm is based on the Sobel operator, with a
low error rate, utilizing non-maximum suppression (Canny
1986). Non-maximum suppression removes an edge’s
extraneous pixels so the edges are represented as thin and
precise as possible. Figure 5(a) shows the results of Canny
edge detection to highlight strong discontinuities in the
Agulhas region that correspond to eddies and currents.

Contour segments in the framework are defined as closed
regions delineated by a poly-line that enclose either a
topological super-level or sublevel set. Contours of interest
are identified by a user-defined threshold value, setting all
pixel values below the threshold to zero and all pixel values
above the threshold to one, or vice versa depending on the
data and features to identify. A border following (Suzuki
et al. 1985) algorithm defines a closed contour that, when
filled in, determines a 2D region bounded by a closed poly-
line. Figure 5(b) uses this segmentation technique to identify
eddies; non-closed features such as currents are generally
missed.

In many circumstances, scientists can not describe
features of interest in simple terms, such as by an isovalue.
The feature definition might be more abstract, where
scientists are looking for regions with certain geometric
shapes or clusters of features. For such circumstances,
we include abstract feature detectors such as SIFT (Lowe
2004), SURF (Bay et al. 2006) and FAST (Rosten and
Drummond 2006) to the framework. The features detected
by these algorithms are regions of pixels with high contrast
to the surrounding image. Such features are advantageous
for tasks that require identification of abstract features
with high degrees of invariance that can be matched or
tracked to other regions of the simulation, either spatially
or temporally. FAST is a corner detection algorithm, while
SIFT and SURF are more generalized methods. SIFT is
invariant to scaling and rotation, but it does not respond well
to noise and is computationally less efficient. SURF is more
efficient but sensitive to viewpoint and illumination settings.
FAST does not support changes of rotation or scale in its
detection (Forsyth and Ponce 2011). We can also view these
features as seed points in a flow model, where only strong

Fig. 4 Impact of the Guassian
filter on feature selection.
Changing the window size of a
Gaussian filter from 0 (a) to 4
(b) significantly affects a
visualization based on edge
detection. High-frequency edges
are filtered, and lower-frequency
edges corresponding to eddies
and currents remain
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Fig. 5 Four local feature detection methods. Four visualization tech-
niques highlighting attributes of currents and eddies in the Agulhas
region (rotated by −17 ◦ to enhance comparison). Canny edge detec-
tion (a) identifies strong discontinuities, such as high-velocity cur-
rents and eddies in the lower-paced ocean. Image segmentation (b)
detects eddies due to their shape and uniform kinetic energy. The

feature points detected with SURF (c) and FAST (d) are colored
with an orange–green colormap. The brighter a point, the stronger
the associated feature. The relatively higher contrast of the eddies
and currents allows SURF (c) to detect features representing most
eddies in the region. FAST (d) only detects features corresponding to
higher-velocity features due to their strongly-defined corners

features of interest are seeded and tracked to understand
movement over time. In Fig. 5(c) and (d), stronger features
tag regions of higher contrast where matching and tracking
algorithms are most likely to be successful.

Feature Matching

Gaining more insight from detected features requires
effective matching of features from one image to another.
Feature matching requires (1) feature descriptions to define
feature attributes of interest and (2) a matching algorithm.
Within the framework, we define feature attributes with a
vector. For each reference feature, the matching algorithm
finds the best match by comparing its vector representation
to vectors of features in a paired image. Local feature
detectors such as SIFT or SURF have methods to define
feature descriptions built into the detection algorithm. Other
feature attributes a matching algorithm might use includes
a feature location or center, feature pixel intensities, feature
area, and derived quantities such as Hu moments (1962).

A brute-force matching algorithm compares the descrip-
tion for each reference feature with each feature description
in a paired image. Using a pre-defined vector-distance met-
ric, we find a match when two feature vectors minimally
deviate, when considering all possible pairs. This is an
O(n2) operation, where n is the number of features in
an image. When analyzing large feature sets, one should
consider a specialized data structure to reduce complexity
and ensure real-time system behavior. One such solution

included in the framework is FLANN (Fast Library for
Approximate Nearest Neighbors) (Muja and Lowe 2009): a
library of nearest-neighbor algorithms. Users can specify an
algorithm based on a feature vector, the spatial proximity
of features, k-d trees, and other techniques. Approximate-
optimization algorithms generally have a lower time com-
plexity than brute-force algorithms, and an approximate
optimal matching result is often acceptable.

Feature Tracking

The tracking of matched features is essential to understand-
ing the behavior of a data set. The framework allows the
user to track features through two different methods:

The first tracking approach follows features over time
using a location-based search (Banesh et al. 2017). For each
reference feature detected in time step T1, we search in T2
for all features within a radius r of the reference. We declare
features a match when the pair’s separation is less than r .
For a reference feature in T1, if there is only one match in T2,
we consider the feature to have simply migrated from one
position to another. However, if we find multiple matched
features in T2, we consider the reference feature split into
two or more new features in the latter time step. The reverse
is also true, and is considered a merge of multiple features
into one. If we find no features within the radius r in T2, we
consider the feature to have died. Figure 6 below outlines
some of these cases with further examples in Case Study
II. We generate a bi-directional list of all such relations and
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Fig. 6 Events in a feature tracking graph. Closeup view of a tracking
graph. The first three types of tracking events are highlighted: feature
birth, feature death, and a feature moving from one location to another
with no changes

update the list with each new time step explored by the
user. Any change in parameters other than time will update
the entire list at once. This allows our framework to work
quickly when the user is temporally parsing through their
data as we expect that once the scientist finalizes parameter
settings, the focus will be on the temporal evolution of
features. Figure 7 shows an example of a location-based
search by tracking segments corresponding to the Agulhas
eddies. “Tails” representing the segments’ previous n time
step locations, here n = 3, allows a user to comprehend
feature movement more intuitively. When regions split, as
in Fig. 7(b), the joined tails detail the features’ evolution.

The second tracking method allows users to observe
regions that contain sets of objects, specifically objects or
regions that are abstractly defined by features such as SIFT,
SURF, and FAST. Two tracking scenarios are enabled this
method: temporal tracking and spatial tracking (understood
as tracking through a set of images ordered by a parameter
other than time or not ordered). In both scenarios, we
select a region of interest to track defined by the corners
of a rectangle. Using FLANN-based matching, we match
features from the user-specified region to features in an
image of interest. The rectangle corners are mapped to the
target image using a homography (Forsyth and Ponce 2011),
to ensure that the region in the target image is a properly
transformed version of the region initially specified. If
the algorithm identifies an acceptable homography, this
step of tracking is a success. We define a homography’s
acceptability by various factors such as if the matched
region resides inside the image boundaries, the lines
defining a matched region do not overlap or cross, and if
the homography parameters are reasonably valued. When

Fig. 7 Image segment tracking. Regions tracked from time step T0 (a) to time step T14 (b) to time step T26 (c). Yellow tails indicate each feature’s
prior location. The split lines at the bottom-right of (b) show where a region from a previous step has split into two regions

using this method to track temporally, at every time step,
we segment the region identified by the homography in the
previous time step to use as the reference region for the
subsequent time step. This allows us to incorporate non-
affine deformations into the tracking algorithm and results
in stronger temporal tracking. When tracking spatially, we
add every newly matched region from each image we
inspect to a list of reference regions. We compare future
regions to each entry in the list so that we may account for
minor variations; this results in a more robust algorithm. An
example of temporal tracking is shown in Fig. 8.

Interactive Exploration and Quantitative Analysis

Each algorithm in the toolkit has associated parameters that
define a final visualization. The user interface provided
allows a user to modify these parameter values in real-
time. Different combinations of algorithms and parameter
value choices lead to unique insights depending on the
domain scientist’s objective and data. This aspect of
the visualization framework is a significant benefit to a
scientist’s data processing and analysis workflow because
it allows them to taper the results of the computer vision
pipeline to specific features in the data. As described
in Tikhonova et al. (2010a), interaction with 2D images
provides a sense of realism to 2D image data.

Once the user finalizes the features described by the
computer vision pipeline, various quantitative tools are
available to evaluate the results. The framework supports
the computation of statistical properties for features over
time. Figure 9(a) shows one such example regarding edges
corresponding to eddies from sequential time steps. In
this example, in each time step from T0 to T12, edges
corresponding to the Agulhas eddies are extracted and
overlaid in T12. The eddies’ relational positions from one
time step to another and their overall movement over time
are plainly visible. Users can now select a region of interest
and derive statistical properties: mean, standard deviation,
and minimal and maximal values for features in this region,
Fig. 9(b).

A second tool allows users to visualize relationships and
changes in features over time using count and tracking
graphs. For a set of features from time step T0 to time
step Tn, we combine matching and tracking algorithms to
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Fig. 8 A temporal tracking of the Agulhas rings. In this example,
we track SURF features corresponding to the Agulhas eddies using
FLANN-based matching. The selected region of interest, which was
initially square, is now elongated and more rectangular as the eddies

become more linear with respect to each other due to forces in the
ocean. We vary the saturation to leave a trail of the locations tracked
over the 27 time steps of the data in this example

find relationships between features over time. We map these
relationships using a tracking graph. We can also map the
total number of features found in each time step to a count
graph. As graphs that count such features are traditionally
used in various disciplines to monitor changes to dominant
features over time, this addition supports a scientist’s
traditional analysis environment. We discuss examples of
count and tracking graphs for eddy analysis in Case
Study II, Section “Case Study II: Image Segmentation and
Tracking for Analysis of Eddies in the Agulhas Region”.

Finally, users can save the state of their results back into
the Cinema database for post-processing and repeatability.
One post-processing technique is the change detection
algorithm introduced in Banesh et al. (2018, 2019).
Feature-centric information such as feature count, the
aforementioned statistical values or feature locations can be
saved and used as input to the a change detection algorithm
to identify important points in a sequence of paramtric
values or through time.

Case Study Results and Discussion

The case studies presented highlight the robustness of the
feature analysis toolkit, user interface, and quantitative
techniques for various ocean science tasks. The studies
were conducted in collaboration with ocean scientists to
ensure applicability to a range of analysis problems. The
Gulf Stream Case Study in Section “Case Study I: Edge
Detection Supporting Analysis of the Gulf Stream” and the
MPAS eddy analyses of Section “Case Study II: Image
Segmentation and Tracking for Analysis of Eddies in the
Agulhas Region” show the capability of the system for
proxy images from MPAS-Ocean simulation results.

Case Study I: Edge Detection Supporting Analysis of
the Gulf Stream

Subtropical ocean boundary currents, delineated by a
coastline, transport water between the poles and the

Fig. 9 A statistical analysis of image features. Edges in multiple
time steps mapped to one image to visualize feature evolution (a).
Edges are mapped with a yellow–brown colormap, with dark-to-light

indicating older-to-newer edges. A user can select a region of inter-
est (a) and compute statistical information (b) - mean (black), standard
deviation (orange) and minimal/maximal values (green)
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equator. Subtropical western boundary currents dominate
the equator-to-pole heat transport and impact many aspects
of ocean science. Western boundary currents and their
associated temperature fronts correspond to regions of
intensified atmosphere-ocean heat exchange (Kelly et al.
2010) and guide atmospheric storms (Hoskins and Hodges
2002). Scientists study the latitude at which these currents
diverge from the shore and their subsequent pathways.
These locations exhibit high gradients in temperature, with
colder temperatures pole-ward and warmer temperatures
equator-ward of the current.

The Gulf Stream, one such subtropical western boundary
current, starts at the Gulf of Mexico, travels northward
along the shoreline of the U.S. East Coast, and diverges
from the coast at Cape Hatteras, NC. At this divergence,
the warm water south of the Gulf Stream contrasts with
the colder water to the north. The intersection of these
waters is referred to as the Northern Boundary of the
Gulf Stream and is a significant feature in ocean study.
Ocean scientists employ various techniques to identify the
Northern Boundary. One conventional method is to identify
the 15◦ C isotherm of the temperature field at 200 m
depth (Seidov et al. 2019). A second method uses the 25-
cm contour of sea surface height (Andres 2016). Analysis
of sea surface height is appropriate because in the Earth’s
oceans, the geostrophic balance, a balance between the
pressure gradients and the Coriolis forces, correlates the sea
surface height contours to streamlines of barotropic flow.
Therefore, regions with the strongest currents, as at the
Northern Boundary of the Gulf Stream, can be identified
and measured through specific sea surface height contours.
Other methods for identifying the Northern Boundary
include finding regions of high gradients in both sea surface
height and temperature (Seidov et al. 2019). The locations
of largest gradients in sea surface height are where the jet of
the Gulf Stream moves the fastest; this typically correlates
to the Northern Boundary. Similarly, the locations with
the largest gradient in temperature indicate the intersection
of the cold and warm waters at the Northern Boundary.
In this case study, we consider three tasks for identifying

and evaluating the Gulf Stream’s Northern Boundary. We
choose to conduct these evaluations on a Cinema image
proxy database of the temperature field by identifying
regions with the largest gradients. We highlight the region
of interest in Fig. 10. We subsequently evaluate the results
provided by the framework as compared to traditional Gulf
Stream analysis methods to discuss the advantages and
disadvantages of the various techniques.

Task 1: Finding the Gulf Stream Northern Boundary

Identifying the Northern Boundary of the Gulf Stream is
an essential task in ocean science for many reasons. In
addition to the broader scientific implications, verifying
the Gulf Stream location is critical to validating an ocean
model’s accuracy. Talandier et al. (2014) note that in an
ocean model when the Gulf Stream’s divergence point at
Cape Hatteras is not correctly reproduced, it can invalidate
many aspects of the simulation for the entire North Atlantic
Ocean region. Such discrepancies can lead to errors or bias
in the scientists’ conclusions.

Edge detection, implemented via the Canny operator
in our feature analysis toolkit, is an efficient method for
identifying regions with large gradients. Since the Northern
Boundary can be defined as a region with large gradients
in temperature, edge detection is an appropriate technique
to identify the current’s divergence point and subsequent
pathway. We use a Cinema database of the temperature
parameter of MPAS-Ocean with a Mercator projection and
focus on the North Atlantic Ocean region. We combine a
Gaussian blur filter (Section “Image Filters”) with Canny
edge detection (Section “Feature Detection”) to determine
the locations of large gradients in temperature and extract
the Northern Boundary. This is accomplished by first
smoothing the data with a Gaussian filter of a small
window size of 3 × 3; we keep the window size small to
prevent displacement of edges. We then apply Canny edge
detection and narrow the results to the intersection of the
cold (blue) and warm (red) waters. Figure 11 shows the
results of this process at time t = 0 of the simulation.

Fig. 10 MPAS-Ocean temperature field. (a) An image proxy of the Mercator projection of temperature in MPAS-Ocean using a muted red-blue
colormap (cool/warm). (b) A close-up view of the yellow–boxed region shown in (a) highlights the Gulf Stream Northern Boundary
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Fig. 11 Edge detection to
identify the gulf stream. We
apply a Gaussian blur filter with
Canny edge detection, adjusting
the parameters to extract the
edges (black polylines)
indicating large temperature
gradient changes between hot
and cold water along the Gulf
Stream. Water temperature along
this front ranges from 5 to 15 ◦C

The black polylines identify the locations of the largest
gradients in the region. We see that these boundaries start
almost exactly at the point of divergence, Cape Hatteras,
and follow the Gulf Stream northeast towards Europe.
Our collaborators confirmed that “The captured edges are
related to the Gulf Stream ‘North Wall’ or Gulf Stream
Landward Edge, which is typically derived from satellite
data. By highly automating the extraction of the position
of this edge from model data, we are able to provide rapid
comparison to observations to assess a climate model’s
validity.”

Task 2: Mapping the Gulf Stream Northern Boundary over
Time

Temporal variations in the Gulf Stream’s location can lead
to an extensive impact on coastal cities. A recent study
discusses how coastal cities located close to a western
boundary current’s temperature front experience drastic
changes in regional climate due to minimal changes to
the ocean current’s position (Saba et al. 2016). Therefore,
a system’s ability to efficiently map regional variations
in ocean current positions enhances the user’s ability to
assess regional climate changes due to changes in ocean
circulation.

Our Cinema database of MPAS-Ocean temperature
consists of 173 time steps in five-day intervals spanning
2.3 years. We extract the edges of the Northern Boundary

for each time step through the process discussed in Task 1
and map all extracted edges to image T172 (starting from
T0). We render earlier time steps first and later time steps
last. We use a yellow-to-brown colormap, where edges
corresponding to the latest time steps are shown in bright-
yellow tones and the earliest time steps in dark-brown
tones.

Domain experts confirmed that in the results shown by
the framework, the temperature front in areas closer to the
coast shows less change over time and further away from
the coast, exhibits significantly more temporal variability.
The region of more compact flow is known as the Robust
Zone, from Cape Hatteras to just east of the Grand Banks of
Newfoundland, 75◦ West to 50◦ West longitude. Further out
east is known as the Extension Zone, 50◦ West to 40◦ West
longitude (Seidov et al. 2019). This breakpoint at 50◦ West
longitude is precisely where the framework results start to
show more temporal variability.

Furthermore, regions with a gradation from brown to
yellow, as shown in Fig. 12(b), indicate that the Northern
Boundary does not move sporadically in the Robust Zone
but more gradually over time. This trend might correspond
to the sinusoidal fluctuations of seasonal movement that
has previously been observed of the Northern Boundary. In
addition to seasonal variability, variations on shorter time
scales might indicate eddy activity, while those over more
extended periods may indicate changes in global ocean
circulation.

Fig. 12 A temporal analysis of the Gulf Stream. Mapping all 173
time steps of the MPAS simulation (a) allows scientists to view shifts
in the temperature front of the Gulf Stream over time. For example,

focusing on the region boxed in yellow, and enlarged in (b), the left-
most region of the temperature front of the Gulf Stream shows a
gradual shift northward (as indicated by the arrow)
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Fig. 13 A statistical analysis of the Gulf Stream. Using the tempera-
ture data set, we overlay edges from time step 0 to the current time step
(a). Once edges have been derived, the user selects a region of interest
(b) to derive statistical properties (c) based on the selected edges. For

each longitudinal x-value in the selected region, we extract the mean
(in black), the standard deviation (in orange) and the extreme values
(in green)

Task 3: Quantitative Changes in the Gulf Stream Northern
Boundary

Ocean scientists also derive statistical information from
time-dependent data as observations and results from
models can be noisy. Such time-averaged data is useful
for comparisons or to highlight trends. We accomplish this
analysis by selecting a subset of the edges extracted in Task
2 through a “click-and-drag” to select a rectangular region
of interest, Fig. 13(b). For each longitudinal point within
this selected region, we examine each edge pixel detected
to compute mean, standard deviation, and extremal values.
The results of these computations are overlaid on the edges,
as shown in Fig. 13(c). Deriving such statistics is a standard
method for Gulf Stream analysis within the ocean science
community (Fig. 8 in Bryan et al. (2007), Fig. 2 in Talandier
et al. (2014), and Figs. 3, 4, and 6 in Auer (1987)). The
availability of such a technique allows ocean scientists to
replication traditional ocean science analyses.

Evaluation

Traditional studies of the Gulf Stream examine both the
temperature and sea surface height parameters to identify
the Northern Boundary of the Gulf Stream. To evaluate the
validity of image proxies for analysis of the Gulf Stream,
we compare results from the image analysis framework to
features from the original simulation data visualized using
Paraview (Ahrens et al. 2005). We arrange the comparisons
in the format shown in Fig. 14: The top row examines
features extracted from the simulation in Paraview and the
bottom row features from our presented framework. The
left column examines the temperature parameter and the
right column examines sea surface height. We establish
colormaps for the temperature fields using a divergent
hot/cold colormap and sea surface height data using a
blue-toned gradient colormap. In all cases, we extract the
features from the underlying floating-point data, not the
colormapped information.

Fig. 14 A visual validation of proxy images. Temperature (left column) and sea surface height (right column) derived from the simulation and
visualized in Paraview (top row) and by the image-based analysis framework (bottom row) show very similar features of the Gulf Stream
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First, we examine the image proxies themselves to
examine if they capture the features as represented in
the simulation results, Fig. 14. We see that in the image
proxies, despite converting the data from a Voronoi mesh
grid to an image, the features of the Northern Boundary are
captured clearly. Therefore, we expect future evaluations of
these images to be a faithful representation of the original
simulation data.

A Comparison of Gradient-based methods for Temperature
and Sea Surface Height Our first study identifies locations
of large gradients in both sea surface height and tempera-
ture. We know this is a method traditionally used to identify
the location of the Northern Boundary. To extract these fea-
tures from the original simulation data, we compute the
gradient magnitude directly on the Voronoi grid by deter-
mining the derivatives in the latitudinal and longitudinal
directions. These results are shown in the top row of Fig. 15.
The gradient magnitude is colormapped with a grayscale
mapping where regions with high magnitude are white
and those with low magnitude are black. We extract simi-
lar features with the image-based framework using Canny
edge detection and mark high-gradient regions with black
poly-lines. These results are shown in the bottom row of
Fig. 15.

An evaluation shows several differences in the results
captured by the two techniques: In the simulation results, for
both temperature and sea surface height, the high gradient
regions are in sharp contrast to the background. However,
the locations of the Northern Boundary are not defined by a
single gradient magnitude but a range of values. Therefore,

to extract the feature of interest, the scientist must threshold
the results using a threshold range wide enough to capture
the entire Northern Boundary but small enough to minimize
the observed region. This uncertainty will result in wider
regions identified rather than a sharp line. In contrast, the
non-maximum suppression and hysteresis thresholding in
the Canny detection algorithm defines sharp, continuous
lines that properly link the region’s largest gradients. This
difference is especially apparent in the sea surface height
field as large gradients of the Northern Boundary cover
larger areas of the region. Additionally, the turbulence,
eddies, and other noisy features in the sea surface height
also have high-gradient magnitudes and might obfuscate
the Northern Boundary’s precise location. This feature is
much more clearly defined by the image-based analysis
framework, due to the addition of the Gaussian filter
to remove this extraneous noise. Therefore, we observe
that though the Canny algorithm uses the same gradient-
based technique as the traditional approach, the refinements
included in the former lead to a more effective identification
of the specific features.

A Comparison of Gradient-Based Analysis to Other Methods
We conduct a similar evaluation to compare the Canny
gradient-based results to other typical ocean science
techniques to analyze the Northern Boundary. As mentioned
before, the integration of traditional ocean science analysis
tools within the framework makes such comparisons
straightforward and effortless. In Fig. 16, we compare the
results from Canny edge detection to isovalue-based results
from the simulation data. For temperature, we compare the

Fig. 15 Comparing gradient-based methods for Gulf Stream identification. We compare gradient-based methods, visualized using
Paraview (Kitware 2012) (top row) and the image analysis framework (bottom row) to extract features related to the Gulf Stream
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Fig. 16 Comparing edge detection to other techniques. We compare
contours of temperature and sea surface height with edges defined by
Canny edge detection within the framework. The algorithms identify

similar locations for the Northern Boundary in the Robust Zone but
results different in the Extension Zone

15◦C isotherm of the simulation, mapped in Paraview with
black poly-lines, to Canny edge detection results. For sea
surface height, we compare the contours at −0.25 m, the
corresponding value to 25 cm from observational data, to
the results of Canny edge detection. For both parameters,
the techniques’ results are well correlated within the Robust
Zone and less so in the Extension Zone. Within the Robust
Zone, the poly-lines for each of the parameters of the
two techniques overlap in multiple locations. However, in
the Extension Zone, we see the isotherm contour shift
southward while the corresponding Canny edge follows
a northward trend. Similarly, in sea surface height, the
isovalue contour becomes disorderly while the Canny edge

results follow a strong northerly path. One additional
difference is that both isovalue-based results identify many
additional small, enclosed poly-lines that are unlikely to
correspond to the Northern Boundary. In contrast, our
gradient-based method provides a cleaner response.

We extend this comparison by extracting the statistics
for these poly-line results over the 172 time steps of
the simulation. Figure 17 shows the results of extracting
the mean (in black), standard deviation (in orange) and
maximum/minimum (in green) of each data set. A direct
one-to-one comparison of these results does not necessarily
match as we saw in the previous example that the results
might vary. Regardless, it is important to note that scientists

Fig. 17 A statistical comparison of the Northern boundary. For each
Northern Boundary identification technique, we extract statistical
information about the variations in locations over the 172 time steps of

the simulation. The mean is shown in black, the standard deviation in
orange and the minimum and maximum extremes in green
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can indeed conduct such comparisons if needed. We see
that, overall, the statistical trends do follow similar paths
between the two analysis techniques. However, there is
slightly more variability in the edge detection results than
the isovalue-based results, so the minima and maxima
encompass a broader range of latitudes.

Discussion

Our climate science collaborators value the intuitive
usability, accuracy and speed of the presented tool compared
to traditional statistical analysis techniques. The tool’s
flexibility in assessing the data, especially temporal data,
from the underlying MPAS simulation allows the scientist
to extract precise information for the northern Gulf Stream
temperature front in much less time than when working
with the high-dimensional data. One collaborator remarked
that “The edge detection method is a high-quality method
to quantify the location of the Gulf Stream.” Another noted
that “The resultant analysis visualizations were easy to
compare and contrast with images from other publications,
simulations and experimental data to assess simulation
accuracy.” Ocean scientists also noted that determining a
current’s boundary generally requires tedious and time-
consuming aggregation and organization of experimental,
satellite, or simulation data. For example, on average,
loading each time step of MPAS-Ocean on a personal laptop
in Paraview takes about 15 s. Loading the same information
in the image-based framework is instantaneous due to the
smaller data footprint. Additionally, as Cinema and the
framework are not simulation-specific, the techniques are
easily applied to other ocean models and data sets. It is clear
from this case study that the presented framework makes
it possible to quickly and effectively accomplish analysis
tasks for the ocean sciences.

Case Study II: Image Segmentation and Tracking for
Analysis of Eddies in the Agulhas Region

Mesoscale eddies are large vortices in the oceans, typically
10 to 150 km in diameter (Woodring et al. 2015), with
widespread impact. They influence the ocean’s biological
network (Chelton et al. 2011), can contribute to heat
transport over hundreds of miles (Volkov et al. 2008), affect
weather conditions in the ocean and impact various other
aspects of ocean dynamics (McWilliams 2008). Eddies can
also play a significant role in transporting pollutants from
human-related disasters, for example, during the Fukushima
Nuclear Power Plant accident (Budyansky et al. 2015) and
the Deep Water Horizon oil spill (Walker et al. 2011).
These large rotating bodies of water play a role in ocean
processes on a broad range of space and time scales, and are
significant to various aspects of ocean science.

Ocean scientists utilize a wide range of methods for eddy
detection. One common technique is to extract threshold-
based segments of the Okubo-Weiss metric (Williams et al.
2011a; Williams et al. 2011b; Petersen et al. 2013). Okubo-
Weiss measures rotational behavior in a turbulent fluid
and identifies features such as eddies with high rotational
energy. A second geometric approach for eddy detection
identifies threshold-based segments of the sea surface height
parameter (Chelton et al. 2011). Wavelet analysis has also
been an efficient approach for identifying these localized
coherent structures (Doglioli et al. 2007). In this case study,
we consider two main tasks for the study of mesoscale
ocean eddies that form at the southern tip of Africa. The
Agulhas Current, an ocean current that follows the eastern
boundary of Africa, pinches off eddies near Cape Town and
inverts eastward as the Agulhas Return Current. Eddies that
pinch off at this retroflection move westward across the
Atlantic Ocean towards South America. We perform these
eddy-related tasks using the feature analysis framework
by identifying regions defined by a threshold value and
tracking them using a location-based search. We evaluate
the results provided by the framework through a comparison
with conventional eddy detection techniques.

Task 1: Identifying the Agulhas Eddies

Image segmentation, a feature identification method in
the image analysis framework, is an appropriate tool for
detecting ocean eddies. We use a Cinema database of
sea surface height of the MPAS-Ocean simulation and
focus on the South Atlantic Ocean. We detect eddies in
each image using a combination of image segmentation
and image moment computation to constrain the size of
features detected to those corresponding to eddies. We
define image segments as regions of the image with values
at or above a particular threshold. This culls out the
background ocean and retains only salient features such as
eddies, high-velocity currents and some ocean turbulence.
We then refine the search further to extract eddies of interest
using moments. Moments are weighted averages of the
region’s pixel intensities that describe various properties
such as shape, size, location, and orientation (Flusser et al.
2016). We are particularly interested in the size of the
segment, the 0th order element (M00) of the moment
matrix. We use this information, along with the minimum
and maximum size thresholds to remove shapes that are
too small (ocean turbulence) or too large (high-velocity
currents). The location of the eddies, determined by its
center of mass, is identified by the 0th (M00) and 1st (M01,
M10) order elements of the moment matrix:

x = M10/M00

y = M01/M00
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Fig. 18 Eddy detection using
sea surface height. Using the sea
surface height field, left, we can
identify eddies in the South
Atlantic Ocean using image
segmentation, right

Features identified using this method are shown in Fig. 18
(right). Each new eddy segment is assigned a new random
color, and the region filled with the corresponding color.

Task 2: A Temporal Analysis of the Agulhas Eddies

Mesoscale eddies, such as the Agulhas Eddies, also
transport temperature and salinity (Beal et al. 2011; Hogg
et al. 2011) across large distances and affect marine
biology (Gaube et al. 2013) as they travel for weeks to over a
year. We can track this temporal eddy movement through the
image analysis framework. Here, we track eddies over the
173 time steps of this particular MPAS-Ocean simulation
using a location-based search and setting the search radius
to 25 pixels, a value deemed appropriate by our ocean
scientist collaborators. As eddies move through the image
sequence, we capture this migration in our framework by
a ‘tail’ connecting their last five locations, Fig. 19. By
studying the trail behavior, we can see how fast eddies
are moving across the ocean, the merging and splitting of
eddies, and the general progression of sets of eddies. As
eddies die, their tails linger for a few more time steps, to
inform users where past eddies were in relation to new
eddies that might be approaching the same region. This
visualization is especially important for eddies such as those
from the Agulhas as they cross the Atlantic Ocean, losing
kinetic energy on the way. Understanding regions where

eddies are more likely to die helps ocean scientists better
explain the region’s oceanic events.

Scientists can further analyze feature tracking through
the associated tracking graph. The tracking graph shows
the births, lives, and deaths of eddies from time step
zero to the current time step. We perform tracking
using a location-based technique, as described in Section
“Analysis Framework”.

Figure 20 bottom shows the particulars of the Tracking
Graph. Each unit along the x-axis represents a time step,
and each row shows the life of a particular eddy. At any
particular time step, there are five cases to consider: the birth
of an eddy, the death of an eddy, one eddy moving to another
location, one eddy splitting into multiple pieces with each
of those pieces moving, and multiple eddies converging into
one eddy. When an eddy is born and assigned a random
color, we place a dot of the same color on the Eddy Tracking
Graph at the current time step and on a new row of the
graph. If the eddy is only alive for that one time step, the
dot will remain, but there will be no connecting lines. If the
eddy lives for more than one time step, there will be lines
connecting the dot of its birth to the last dot of its death.

The two unusual cases arise when one eddy splits into
many eddies or when many eddies merge into a few.
Figure 21 illustrates one of these cases, when one eddy splits
into two. This action is represented in the tracking graph by
a branching of the tracking line to form two tracks of the

Fig. 19 Eddy tails in temporal
tracking. Visualizing eddy tails
as these features move across
the Atlantic Ocean shows their
temporal progression. This
figure shows time step 9 of the
MPAS-Ocean simulation
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Fig. 20 Eddy Tracking Graph.
Image segments that correspond
to eddies can be tracked through
life events such as births, deaths,
splits and merges using a
tracking graph

same color moving forward in time. In cases where many
eddies merge into one, lines are drawn from the last point
of the individual eddies to an entirely new eddy path on the
graph. When many eddies merge to form one, the new eddy
is not interpreted as the continuation of any old eddy but
viewed it as an entirely new one. The particular pink eddy
of interest in Fig. 21 starts to split around time t = 9, splits
completely into two eddies at t = 10 and is seen moving
across the Atlantic Ocean at later time steps. Eddies that
split from their parents are given the same colors to denote
their lineage. These eddies’ tails also connect, showing the
user that they both originate from the same parent.

Evaluation

Standard eddy detection methods use either sea surface
height or the Okubo-Weiss parameter to identify eddy
features. We compare the results for eddy analysis
in sea surface height identified by the framework to
corresponding results from the simulation data visualized
in Paraview (Ahrens et al. 2005). To extract features
corresponding to eddies in Paraview, we set a threshold
on sea surface height from 0.3 to 2 to closely identify
the corresponding regions. Collaborating climate scientists
identified these values as appropriate to how this data
would traditionally be analyzed. Figure 22 middle shows
the results of this thresholding. A comparison of these
segments to those from the image-based framework, Fig. 22

right, shows that both methods identically segment a large
number of eddies, specifically the 11 major segments that
correspond to the trans-Atlantic eddies. In addition, both
methods also identify the single eddy segment near the
southern tip of South America. However, in the simulation
data, because we place no size restrictions on the results,
larger portions of sea surface height are also selected
through they do not correspond to eddies. In contrast, our
image-based framework results do not suffer from this issue
due to size constraints on the results. This also allows the
framework to extract one more eddy, notably the bright red
eddy close to South America, which was lost in large masses
extracted from the simulation data.

A Comparison of Sea Surface Height to Okubo-Weiss We
also compare features identified by sea surface height to
those identified by the Okubo-Weiss parameter to determine
which parameter might be better suited for eddy detection.
Figure 23 middle and right show the two thresholds
that must be used to identify eddies in the Agulhas
region using sea surface height, to capture the entirety
of the eddies that exist on both the left and right side
of Cape Town, South Africa. This is also true of the
results produced by our image-based analysis framework,
Fig. 24, though our results are more accurate than those
derived through the traditional Paraview method. However,
identifying the eddies using Okubo-Weiss requires only
need a single threshold. Adversely, Okubo-Weiss also

Fig. 21 Eddy splits. We track
the pink eddy of interest as an
example of how eddy splits are
handled within the framework.
The tracking graph shows the
addition of a new line when the
new eddy is formed. The eddy
tails are connected to show
lineage
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Fig. 22 Eddy detection using sea surface height. For sea surface
height, left, we evaluate two methods for eddy detection. The first,
shown in the middle, uses a threshold range to identify eddies from
the simulation data using Paraview. The results are shown in bright

yellow. The second, shown on the right, uses the image-based frame-
work to identify segments and refine these segments by size. The extra
refinement results in a more accurate eddy detection

Fig. 23 Simulation-derived features for Eddy detection. To identify eddies in Agulhas region using sea surface height in Paraview, two sets of
thresholds must be selected to capture the entirety of the eddies. However, only a single threshold range is needed when evaluating Okubo-Weiss

Fig. 24 Image segmentation for Eddy detection in sea surface height.
Comparing the image-based results to the simulation results for sea
surface height shows similar results. The simulation still identifies

large, unrelated segments that are not present in our image-based
results, but the smaller, eddy regions correlate between the two
methods
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identifies a substantial number of smaller features that
correspond to turbulence in the ocean rather than eddy
features. We will need to remove these smaller segments in
post-processing. Nevertheless, it is much easier to remove
extraneous features that correspond to noise than merging
multiple sets of results. Therefore, scientists might find
better results in conducting future evaluations of eddies
using the Okubo-Weiss criterion rather than sea surface
height when possible. This conclusion is not a fault of the
image framework but a limitation of the sea surface height
field as a means to identify eddies.

Discussion

As numerical simulations of the global ocean are using
increasingly higher resolutions in space and time, they
produce ever-larger amounts of data, ranging from several
gigabytes to terabytes (Woodring et al. 2015). Producing
information, such as Okubo-Weiss, from such simulated
data sets can require additional hours of data processing
time when using traditional approaches. Many commonly
used eddy analysis tools (Chelton et al. 2011; Williams et al.
2011a; Williams et al. 2011b) are labor- or time-intensive
and often limit the number of time steps, or the extent of the
simulation domain studied, due to the size of the simulated
data. There is a need for robust and efficient tools to
obtain the desired and valuable information captured in such
simulations. The use of Cinema to minimize the data size
and the application of image-based techniques help improve
on traditional methods for eddy detection. One ocean
scientist collaborator commented that “This eddy detection
and tracking software is a practical and computationally
efficient tool for extracting important details of ocean eddy
statistics. The graphical display of results is both intuitive
and incredibly informative.”

Conclusion and FutureWork

We have presented an exploratory visualization framework
with a feature analysis toolkit and an interactive user
interface. As demonstrated through science-relevant case
studies, the framework’s flexible component design makes
it possible to answer important scientific questions for
simulation and experimental data efficiently. It is planned
to expand the framework by incorporating machine-learning
methods, in support of additional analysis tasks. The
presented case studies document that our framework allows
users to gain scientifically relevant insights into their data
through 2D image proxies that users can analyze with a
laptop.
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