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Abstract

Sampling and analysis of subsurface contaminants
comprise the first steps toward environmental remedi-
ation of hazardous spills. We have developed software
tools to support the analysis phase, using three differ-
ent schemes for interpolating scattered 3D soil-quality
data onto a grid suitable for viewing in an interactive
visualization system. A good interpolation scheme is
one that respects the distribution of the original data.
We find that the original data can be decimated by up
to seventy percent while ezhibiting graceful degradation
in quality. A prototype software system is being de-
ployed to allow technicians to visually determine, while
in the field with their monitoring equipment, where the
highest concentrations of contaminants lie. The sys-
tem is now in use by the U. S. Army Corps of Engi-
neers.

1 Introduction

Remediating environmental damage begins with
collecting data from a disturbed region and then an-
alyzing it. Remediation is very expensive. Analysis
of subsoil contaminants permits the remediation to be
applied only where it is needed.

To sample subsurface contaminants, technicians
drill holes (a.k.a. “pushes”) into the soil and mea-
sure contamination values along the trajectory of these
pushes. The Site Characterization and Analysis Pen-
etrometer System (SCAPS) is one such measurement
device. It reports soil type and contamination value.
The SCAPS sensor uses laser-induced flourescence to
measure concentrations of petroleum, oil, and lubri-
cants in the soil. Other types of sensors can measure
concentrations of volatile organic compounds or ex-
plosives.

At a given site under investigation, many locations
are chosen at the surface level (parametrized by lon-
gitude and latitude) to initiate a push (in the vertical
direction). A single push takes up to an hour to initi-
ate and to complete, so SCAPS measures data along
only about half a dozen pushes per day at a field site.
The push locations are typically several meters apart,
spread across a site that may cover 20,000 square me-
ters. Each push, however, may generate hundreds of
samples along its path, spaced as closely as 2.5 inches
in the vertical direction. :

Sublayers under the ground are folded and faulted,
so the soil type sometimes changes suddenly along a
push. A contaminant may form a pool at the interface
between porous and nonporous layers. The contami-
nation values are then discontinuous across the inter-
face, which requires that SCAPS measure them at a
very high spatial resolution in the vertical direction.

Typically there are more samples collected in the
vertical direction than are actually needed for resam-
pling. The contamination value may be nearly con-
stant over large intervals of the push. We therefore
would like to reduce the data in the vertical direc-
tion. Section 2 discusses this decimation step. After
decimating the data, we resample the set of scattered
samples onto a rectilinear grid, to be used by an isosur-
face and volumetric display system. It is notoriously
hard to establish which among various interpolation
schemes is the best choice. Section 3 describes the
three resampling techniques we applied and identifies
the one that appears to be the best performer.

2 Data Reduction

The subsurface contaminant data is finely sampled
in the vertical direction in order to capture disconti-
nuities in the concentration that occur along bound-
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Figure 1: Original samples along a push. Horizontal
aris measures depth of the push. Vertical azis mea-
sures concentration of soil contaminant.

414.90

27.08

Figure 2: Data reduced by 70%, based on curvature
measured in original graph.

aries of geological layers. The large number of sam-
ples makes the process of resampling to a 3D grid very
slow. Since the data values are nearly constant over
subintervals of the pushes, we would like to reduce the
number of samples while preserving the discontinuities
that indicate feature boundaries. Unfortunately, the
acquired data is generally very noisy. Filtering out the
noise can inadvertently remove the significant discon-
tinuities in the data.

One-dimensional data reduction can be accom-
plished by selecting a subset of the original points
so that curvature is evenly distributed along the se-
lected data [Hamann]. This technique requires that
the data is sufficiently smooth in the beginning. For
noisy and discontinuous data, we must first smooth
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Figure 3: Data reduced by 70%, based on curvature
measured in filtered data.

the data before we calculate its curvature. We apply
an approximate Gaussian filter (having compact sup-
port) to smooth the given data. We then select points
from the smoothed data set so that the integrated cur-
vature of a curve passing through the data is nearly
uniformly distributed. The technique allows us to re-
tain the significant qualitative features (like spikes in
concentration) even when retaining only thirty percent
of the samples.

Figure 1 shows original data values for samples
along a vertical push. Figure 2 shows the result of
reducing the data values by seventy percent (based
on curvature) without filtering. Note that significant
features of the original data are absent from the deci-
mated data.

The unwanted noise is reduced (but the significant
spike is also diminished) when smoothing the data
with a Gaussian filter. Therefore the filtered data is
only consulted to evaluate the curvature function for
decimating the original data, not the smoothed data.
Figure 3 shows the result of reducing the original data
by 70% according to the curvature of the filtered data.

3 Resampling to a 3D grid

The data values from all pushes are resampled on
a 3D rectilinear grid in order to view isosurfaces of
contamination. We first construct a tetrahedral mesh
from the scattered data along the pushes, then inter-
polate the samples onto a grid. We have implemented
three interpolation schemes used for resampling scat-
tered data: the global Shepard method, a local Shep-
ard method, and a local Hardy multiquadric method.

Shepard’s method computes an approximative
function value f at a (varying) location x = (z,y, 2)
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Figure 4: Local Shepard isosurfaces using 100%
(above) and 30% (below) of the original push data.
The pushes are indicated by the dark vertical bars.
Note that the small, flat, pancake-shaped concentra-

tions of contaminants (lower right) remain visible even
in the decimated data.

on a rectilinear grid, based on a finite number of sam-
ples in a certain neighborhood. If the neighborhood
is finite, the method is called local; otherwise it is
called global. A sample’s influence on the value of f
depends on its distance to x: its influence is inversely
proportional to the square of its distance to x [Franke].
Eventually, convex combinations of sample values in
a certain neighborhood around x are used to define
the value of f. When applying the local method, we
use the underlying tetrahedrization of the (potentially
decimated) samples to localize the approximation.

Hardy’s multiquadric method [Franke] requires the
computation of coefficients for the basis functions
defining the approximation. A linear system of n
equations must be solved when considering n samples.
Again, we use the tetrahedrization of the samples to
identify samples in a local neighborhood. The number
n should be kept very small in order to compute an
approximation efficiently.

In general, it is difficult to determine which inter-
polation scheme is most applicable for resampling en-
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Figure 5: Comparison of running times for global
Shepard, local Shepard, and local Hardy methods. The
local methods are based on a 5-point neighborhood.
The horizontal azis indicates the percentage of orig-
1nal push samples that were used in the interpolation.
The vertical azis indicates ezecution time (reported by
the Uniz “time” command) for interpolation to a 3D
grid.

vironmental data [Berry]. A good scheme should be
a reliable predictor for additional samples that may
be acquired from the site. Verifying an interpolation
scheme may require prohibitively many samples to be
collected. When a commercial analysis product is dis-
cussed in the scientific press [Vasilopoulos] [Mahoney],
the capabilities of the product are more likely to be
featured than are the details of the interpolation being
used.

Figure 4 shows the isosurfaces from original samples
of soil-quality data (taken from 22 pushes) and from
decimated samples. The local Shepard technique pro-
duces isosurfaces that respect the discontinuities in the
vertical direction: they look like a “stack of pancakes.”
The global Shepard technique, by comparison, tends
to smooth the data too much in the vertical direction.

Figure 5 shows the computation time required to
resample a particular data set (at various levels of dec-
imation) using each of the three interpolation schemes.
The dataset contains approximately 10,000 samples.
The local methods were timed using five neighbors.

It is our experience that as much as 70% of the sam-
ples along a push may be discarded while still captur-
ing the essential features and respecting the disconti-
nuities in the data.
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Figure 6: Average relative error for the three interpo-
lation methods. For each method, the relative error on
the decimated data is measured against its evaluation
(onto the same 3D grid) of the complete dataset.

It is our experience that, due to the discontinuous
nature of the soil data, the local methods (with ap-
propriate neighborhood sizes) perform better than the
global method. The local Hardy method is faster than
the local Shepard method for a fixed number of neigh-
bors being interpolated. On the other hand, the Shep-
ard method can, with only 5 nearest neighbors, pro-
duce 3D interpolations that the Hardy doesn’t match
with fewer than 50 neighbors. The undecimated data
is so dense in the vertical direction that the Hardy
approximant needs to be allowed to consider many
neighbors simply in order to find a nearby sample
from a different push. We could compensate for the
effect by scaling the data in the vertical direction, but
this is a somewhat ad-hoc technique without genuine
knowledge of the soil types at the site. We note that
the same system for interpolating and visualizing soil-
quality data can also be used for site characterization:
determining and visualizing the soil types at different
layers.

The Hardy method is more sensitive to the reduc-
tion of data along the pushes. The graph in figure
6 shows how the relative error of each method de-
grades as the original data is decimated. For each
method, we interpolated the original data onto a 3D
grid and considered that to be the “ideal” result for
that method. Then we decimated the data and ap-
plied the method again, calculating the relative error
against the “ideal.” While the global Shepard tech-

nique did not produce satisfying results (based on the
push data we tested), its results were fairly insensitive
to data reduction than. The results of the local Shep-
ard interpolation were considered (by an expert at the
Army Corps of Engineers Waterway Experiment Sta-
tion) to be the best; they also are less sensitive to data
reduction than the local Hardy method is. The local
Hardy method produces dramatically different inter-
polated values, with average relative errors of about
1.0 (100 percent) when the amount of push data is
reduced by only 30 percent.

4 Conclusion

Visualization is being used to analyze environmen-
tal data and guide remediation efforts at hazardous
sites. Fast and accurate conversion of scattered sam-
ple data into 3D images will allow technicians in the
field to collect additional samples more efficiently. In
our experience, as much as 70% of the soil data can
be discarded while retaining significant features. This
decimation allows faster resampling onto a 3D grid.
We have found that local interpolation schemes are
more effective than global ones for analyzing soil qual-
ity data, and that the local Shepard method is less sen-
sitive to decimation the local Hardy method. While
visualization does not eliminate the need for continued
monitoring (the Environmental Protection Agency re-
quires the presence of monitoring wells at impacted
sites), it can serve to guide in the placement of mon-
itors and in the choice of the number of monitors
needed.
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