
January 17, 2018 0:27 WSPC/Guidelines ijcga-mesheval

International Journal of Computational Geometry & Applications
c� World Scientific Publishing Company

Measuring the Error in Approximating the Sub-level Set Topology of Sampled

Scalar Data

KENES BEKETAYEV
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

National Laboratory Astana, 53 Kabanbay Batyr Ave, Astana, 010000, Kazakhstan

DAMIR YELISSIZOV
Department of Mathematics, University of California, 405 Hilgard Ave, Los Angeles, CA 90095, USA

Kazakh-British Technical University, 59 Tole Bi St, Almaty, 050000, Kazakhstan

DMITRIY MOROZOV
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

GUNTHER H. WEBER
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

BERND HAMANN
Department of Computer Science, University of California, 1 Shields Ave, Davis, California 95616, USA

Received May 10, 2017
Revised Oct 16, 2017

Communicated by Kenes Beketayev (kenes.b@gmail.com)

ABSTRACT

This paper studies the influence of the definition of neighborhoods and methods used for creating point
connectivity on topological analysis of scalar functions. It is assumed that a scalar function is known
only at a finite set of points with associated function values. In order to utilize topological approaches
to analyze the scalar-valued point set, it is necessary to choose point neighborhoods and, usually,
point connectivity to meaningfully determine critical-point behavior for the point set. Two distances
are used to measure the difference in topology when different point neighborhoods and means to
define connectivity are used: (i) the bottleneck distance for persistence diagrams and (ii) the distance
between merge trees. Usually, these distances define how different scalar functions are with respect
to their topology. These measures, when properly adapted to point sets coupled with a definition of
neighborhood and connectivity, make it possible to understand how topological characteristics depend
on connectivity. Noise is another aspect considered. Five types of neighborhoods and connectivity are
discussed: (i) the Delaunay triangulation; (ii) the relative neighborhood graph; (iii) the Gabriel graph;
(iv) the k-nearest-neighbor (kNN) neighborhood; and (v) the Vietoris-Rips complex. It is discussed in
detail how topological characterizations depend on the chosen connectivity.

Keywords: Sub-level set topology; error quantification; topological structures.

1. Introduction

Scalar functions account for a significant portion of the scientific data generated today.
They usually carry information about the behavior of a system, making them a frequent
target of interest in many areas of research (e.g., chemistry, physics, climate simulation).

The topological characterization of a (scalar) function is particularly important for
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Fig. 1: (a) Rotation of the methyl group of the molecule of dimer of formic and acetic
acid produces the potential energy function, i.e., the real function. (b) Although the first
approximated function deviates from the real function, it still preserves the correct number
of minima — three — thus bearing no error on the count of minima. However, the second
approximated function contains only one minimum, leading to an error of 2/3.

structure-driven comparison and simplification of functions. When only point-sampled ver-
sions of functions are known, the definitions used for point connectivity/neighborhood and
distances between topological structures and critical point behavior are crucial. These defi-
nitions determine how close two functions, i.e., their topological structures, are when com-
paring them; or, when simplifying a function’s representation, these definitions determine
in what sequence simplification steps must be performed to minimally destroy a func-
tion’s topology. Thus, we were motivated to obtain a deeper understanding of the effects
of commonly used distance measures/connectivity on topological characterizations of and
algorithms applied to scalar functions in such a discrete setting.

We consider the following scenario to illustrate the problem. In chemistry, a potential
energy function of a molecule is an important analytical tool. For example, in Figure 1,
we rotate the methyl group in the dimer of formic and acetic acid (DFA). The minima
of this function correspond to the stable states of the DFA molecule. Hence, they can be
used to better understand the structure of the molecule and its evolution during chemical
reactions. However, we are only able to measure or to simulate a discrete set of samples of
this function. Figure 1(b) shows two sets of samples and their approximated functions; we
try to extract information about the original minima.

If we are interested only in the correct number of minima (i.e., stable states), we can
quantify the error as the ratio of the missing to the correct minima. The real function has
three minima. Thus for the first approximated function the error would be measured as
0/3 = 0. However, the second approximated function misses two minima, leading to the
error of 2/3 = 0.67. The latter non-zero error reflects the fact that it missed some of the
topological information we are interested in, in this particular case, the number of minima.
Note that we are considering the error only in terms of the number of minima, not positions
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Fig. 2: (a) Given a set of 9 samples of a two-dimensional function, we can construct various
meshes with potentially different approximation error. For example, following meshes are
generated by (b) Gabriel graph, (c) Delaunay triangulation, (d) K-Nearest-Neighbors, with
K = 2, lowest value for which the mesh becomes connected.

or function values.
If we look at the sources of error in this example, we note that the density and the

distribution of samples have separate effects on the error. Indeed, even with a large number
of samples, a bad distribution can cause a large error. On the other hand, a too small number
of points would not sample the domain well enough, regardless of their distribution. We
limit ourselves to uniformly random distributions of samples, hence, focusing mainly on
the sampling density error.

Another factor that causes the error is how we connect the samples and approximate the
function in between. In the previous, one-dimensional example, we intuitively connected
samples along the only axis and used linear interpolation in between the samples. However,
with functions on multi-dimensional domains, the strategy of how to connect samples be-
comes less clear. Consider a two-dimensional function in Figure 2. Given a set of samples,
we can connect them into different meshes, each of which might lead to a different error.
For the purpose of this work, we fix the interpolation scheme to be linear (1D interpolation
along the edges of the mesh for any dimensionality) and focus on the mesh error.

So far, we considered the minimum as a topological feature of interest. Minima, or,
more generally, extrema, were the focus in an evaluation study by Correa and Lindstrom 1,
where the authors developed an error measure based upon F-measure. However, computing
error in terms of F-measure requires special considerations to enable the exact matching
of extrema, limiting the extend to which it can be used. Takahashi et al. 2 considered more
generally the critical points, and defined a topological error criterion for them. We go be-
yond the discrete points and focus on topological features related to sub-level sets of the
function, quantifying the error in their approximation. This approach leads to more com-
prehensive error measures, which are the main focus of this work.

Given a compact subset X of the Euclidean space Rd and a threshold c, the sub-level set
of a function f : X ! R is the set of all points in the domain of the function whose value
does not exceed c; formally, it is the set f�1(�•,c] = {(x1, ...,xd) 2 X | f (x1, ...,xd) c}.
We consider two topological approaches to describing the evolution of sub-level sets. The
first is based on a merge tree, which tracks the evolution of components of sub-level sets
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by recording their birth and merge events as the threshold value c increases. The second
is a persistence diagram, which records the lifespan of components of sub-level sets. In
particular, it records all pairs (b,d) such that a component born in f�1(�•,b] dies in
f�1(�•,d] by merging with an older component.

To quantify the error for these topological structures, we need a notion of distance
between a measure computed from the real function and the one from the approximation.
In case of persistence diagrams, a natural choice is the bottleneck distance, introduced by
Cohen-Steiner, Edelsbrunner, and Harer 3. We use it as our first error measure. In case of
merge trees, we choose the distance between merge trees, proposed by Beketayev et al. 4,
and use it as the second error measure. Details on the difference between the two selected
measures are discussed in Sections 2.2, 3.3.

The chosen error measures require the real function to be known, thus they cannot be
used if only a set of samples are available. However, they provide a powerful evaluation ca-
pability, given both the real function and its sampling, to compare common approximation
methods. In our case, we evaluate the approximation quality of different types of meshes,
as we vary several parameters, e.g., the density of the sampling. Such evaluation reveals
common types of problems and leads to recommendations of preferred types of meshes
under various conditions.

We emphasize that the key advantage of our work, when compared to F-measure of
Correa and Lindstrom 1, is that our error measures implicitly distinguish the noise in the
data, resulting in robust measurements resilient to perturbations of the input. This prop-
erty is crucial when working with scientific data, where noise is a serious obstacle to any
analysis.

The main contributions of this paper are:

• The use of two error measures, eB and eM , where the former is the bottleneck dis-
tance between persistence diagrams and the latter is the distance between merge
trees, both with implicit ability to distinguish the noise, leading to better under-
standing of error levels in topological structures.

• The evaluation study of common mesh constructions using eB and eM .
• Recommendations for each type of mesh based on the evaluation results.
• Detailed analysis of proposed error measures, including their behavior for real-

world data.

Section 2 presents related work in scalar field topology and persistent homology that
provides a background for error measures. It also reviews commonly used types of meshes
that are used later in evaluation. In Section 3, we present the evaluation study of common
mesh constructions using the selected error measures. The study uses three sets of func-
tions as ground truth: parametrically generated functions, objective functions, and real-
world data sets. In Section 3.2, we form recommendations for various settings based on the
evaluation study results. Finally, in Section 4 we summarize our work and provide venues
to explore in the future.
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2. Related Work

In this section we discuss the related work and theoretical background necessary for defin-
ing the new error measures 4. We also discuss common types of mesh construction methods
that are used for the approximation of scalar functions.

2.1. Scalar Field Topology

Scalar field topology characterizes data by topology changes of its level sets. Given a
smooth, real-valued function without degenerate critical points, level set topology changes
only at isolated critical points 5. Several structures relate critical points to each other.

The contour tree 6,7,8 tracks the level sets of the function by recording their births (at
minima), merges or splits (at saddles), and deaths (at maxima) in a tree. It is used in a vari-
ety of high-dimensional scalar field visualization techniques 9,10,11. Contour trees correctly
encode topology of the level sets of functions on simply connected domains. The con-
tour tree is a special case of the Reeb graph 12, which can correctly represent connectivity
of level sets for all functions by allowing loops in the resulting graphs. Another structure,
Morse-Smale complex 13,14, used, for example, to visually explore high-dimensional scalar
fields 15, segments the function into the regions of uniform gradient flow and encodes geo-
metric information.

2.2. Persistent Homology and Merge Trees

The concept of homology in algebraic topology offers an approach to studying the topology
of the sub-level sets. We refer to the textbook by Munkres 16 for the detailed introduction to
homology. Informally, it describes the cycles in a topological space: the number of compo-
nents, loops, voids, and so on. In this work, we are only interested in 0–dimensional cycles,
i.e., the connected components.

Persistent homology tracks changes to the connected components in sub-level sets of
a scalar function. We say that a component is born in the sub-level set f�1(�•,b] if its
homology class does not exist in any sub-level set f�1(�•,b� e]. This class dies in the
sub-level set f�1(•,d] if its homology class merges with another class that exists in a sub-
level set f�1(�•,b0] with b0 < b. When a component is born at b and dies at d, we record
a pair (b,d) in the (0–dimensional) persistence diagram of the function f , denoted D( f ).
For technical reasons, we add to D( f ) infinitely many copies of every point (a,a) on the
diagonal.

Persistence diagrams reflect the importance of topological features of the function: the
larger the difference d � b of any point, the more we would have to change the function
to eliminate the underlying feature. Thus, persistence diagrams let us distinguish between
real features in the data and the noise.

Cohen-Steiner et al. 3 proved the stability of persistence diagrams with respect to the
bottleneck distance, dB(D( f ),D(g)). It is defined as the infimum over all bijections, g :
D( f )! D(g), of the largest distance between the corresponding points,

dB(D( f ),D(g)) = inf
g

sup
u2D( f )

||u� g(u)||•.
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Fig. 3: The bottleneck distance between persistence diagrams fails to capture the differ-
ence in terms of the nesting of connected components of sub-level sets, while the distance
between merge trees is able to quantify it.

We use the bottleneck distance dB between the persistence diagrams of the real and the
approximated functions as a basis for our eB error measure.

While persistence diagrams convey importance of topological features of the function,
it records limited amount of information about connected components of sub-level sets.
A structure called a merge tree is known to track the evolution of connected components
of sub-/super-level sets, as they appear at minima (maxima) and merge with other con-
nected components at merge saddles. We note that the merge tree here is related to a barrier
tree 17,18 (also known as join/split tree) in scalar field topology through critical points 5, as
the former tracks sub-/super-level sets, while the latter tracks level sets.

Since the goal is to quantify the topological difference between the real and the ap-
proximated functions, one can express such difference in terms of merge trees. We adopt
a recently proposed distance definition between merge trees 4 as dM , where the authors
define the distance as a minimal cost of obtaining order-preserving isomorphism between
merge trees with an additional consideration of the function value matching between criti-
cal points. The main idea behind such definition is that it allows to quantify the difference
not only in terms of the persistence of connected components of sub-level sets, in which
case persistence diagrams can be used, but also allows to take into account a difference in
terms of the nesting of sub-level sets, resulting in a more precise difference quantification,
see Figure 3.

We adopt the distance between merge trees as our second error measureeM , assuming
that the merge tree of the real function is the ground truth, and the merge tree of an approx-
imated function has topological error, thus the distance between the two yields a measure
of topological error.

Several other publications address the problem of quantifying topological difference.
For example, Biasotti et al. 19 proposed a version of the Reeb graph that additionally en-
codes various geometric attributes, for which a similarity measure is defined using a graph
matching algorithm. However, such measures do not explicitly reflect persistence, while
both the bottleneck distance between persistence diagrams and the distance between merge
trees do. Doraiswamy et al. 20 with a proposition of a saliency plot that summarizes relative
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importance of all topological features, and Bubenik 21 proposed the bottleneck distance for
persistence landscapes, a topological descriptor that extends persistence diagrams.

Recently, the e-interleaving distance was introduced by Chazal et al. 22 as yet another
means to compare topological structures. Adaptions were proposed for specific structures,
including merge trees 23, the Reeb graph 24, and extremum graphs and cluster trees 25,26.
However, no practically viable algorithms are known for approaches using this distance
measure as its naive implementation leads to exponential complexity, which is the reason
why we did not consider this distance measure in our effort.

2.3. Sampling and Mesh Types

Two well-known sampling strategies, regular and random, are often used to generate real-
world data sets. Most of the random sampling methods were developed in statistics 27,28 as
a response to the need for rigorous representative selection of the subsets from the full set.
In case of scalar functions, this translates into the selection of discrete points in the domain
of the function. Regular sampling is a selection of points in the domain of the function
with a fixed step in each dimension. Random sampling is a probabilistic selection of points
within the domain, usually with requirements such as uniform density or variability. In this
work, we use random sampling of scalar data without any constraints.

Since we deal with sampled scalar data that can lie in higher dimensions, we skip
approximation schemes that try to interpolate (using polynomials or splines) inside the
whole domain by decomposing it into cells. We rather focus on a simple approximation
scheme that connects the samples via a mesh and linearly interpolates the function along
the edges of the mesh. In some cases, we will use cell decomposition methods, but only for
the mesh generation purposes.

There are a number of methods that work with non-regular sampling. One example is
the Delaunay triangulation. It connects all the sample points into simplices of the same
dimensionality as the underlying domain and, for each, guarantees that there are no sam-
ple points inside its circumsphere. It is frequently used because it produces average sized
simplices. We use a mesh, generated by this method, in our evaluation.

Computing triangulated meshes can be expensive. So it is common to use sparser
meshes. One example are meshes generated by empty region graphs 29. As the name sug-
gests, these meshes are constructed by connecting any two sample points whenever their
“region” is empty, i.e., free of other sample points. Depending on the definition of “re-
gion”, they assume different names; for example, Gabriel graph or relative neighborhood
graph meshes, see Figure 4. The former was used in the work by Oesterling et al. 11. The
latter was suggested as a primary choice for data with prohibitive dimensionality or size by
Correa and Lindstrom 1. We include these two types of meshes into our evaluation.

Finally, we consider meshes that are generated by parameterized neighborhood graphs.
The first one is a k–nearest neighbors graph that constructs the mesh by connecting each
point with its k nearest points. This type of mesh is used in number of studies in scalar field
topology 8,10. Since there is no fixed way of selecting the value of k, in the evaluation we
use the mesh generated by the minimum value of k such that the mesh is connected, unless
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p q

(a)

p q
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Fig. 4: In an empty region graph, an edge between any two points p and q exists, if their
“region” is empty, i.e., free of other points. (a) For the Gabriel graph, the “region” is a circle
with an edge (p,q) as a diameter. (b) For the relative neighborhood graph, the “region” is
an intersection of two half-circles, with centers at p and q, and a radius (p,q).

stated otherwise. Second, we consider a mesh, generated by Vietoris–Rips complex 30,
as a comparison alternative for k–nearest neighbors mesh. This complex is constructed
by placing a simplex for every set of points within pairwise distance r from each other.
When the underlying data lies on some sub-manifold of the ambient space, a Vietoris–Rips
complex serves as an approximation of this manifold. Similar to the k–nearest neighbors
mesh, we use the minimum value of r that makes its mesh connected as a default.

2.4. Evaluation of Mesh Types

Although different combinations of sampling strategies and meshes are often used, the
question of how far the approximated topology diverges from the original is rarely ad-
dressed. Usually, it is just assumed that the selected combination of sampling and mesh
construction sufficiently approximates the original function.

An explicit attempt to address this question appears in the work of Correa and Lind-
strom 1, who evaluated different mesh types in terms of the correct extrema discovery.
They quantified the number of false positive and true negative cases of extrema classifi-
cation and computed normalized harmonic mean, which they called the F-measure. They
also proposed improved relaxed mesh types, given the results of evaluation based on the
F-measure and additional observations. Such mesh types are obtained by relaxing the con-
tainment requirement for different empty region graphs 1. Maljovec et al. 31 further eval-
uated mesh types and how they affect approximation of Morse complexes. We follow the
general idea of evaluating mesh types, however we propose different measures to capture
the error that are based on quantifying sub-level set topology.

Indeed, small perturbations of the data can generate an arbitrarily large number of false
extrema. On the other hand, it is easy to recognize most of them as noise precisely because
they result from a small perturbation, and, therefore, their persistence is low. Moreover, they
can be explicitly eliminated with a small change of the function 32. By focusing only on the
number of extrema, the F-measure overlook this crucial distinction: not all false extrema
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are created equal. In contrast, our work considers the persistence of the extrema. By doing
so, we automatically de-emphasize the noise in our evaluation, in effect, measuring how
well an approximation preserves important topological features of the function.

It should be noted that somewhat similar importance measures for critical points 33, and
extremal lines and surfaces 34, were previously proposed. However, unlike those, our mea-
sures specifically target the topological error introduced by approximation for evaluation
purposes.

3. Evaluation

In this section, we evaluate different types of meshes, used to approximate a function from
a set of samples, based on how small the error is between the approximated and ground
truth functions.

We note that both dB and dM , introduced in Section 2, are computed in function value
units and, thus, can vary greatly for different functions. To eliminate this dependency, we
normalize the distances based on their value range.

For the distance between merge trees, the smallest possible value is zero. To find the
largest possible value, we consider the difference between the global extremum m and the
root saddle r of a merge tree T . The difference equals dTg = |mg � rg| for the merge tree Tg

of the ground truth function g, and dTa = |ma�ra| for the merge tree Ta of the approximated
function a. The inequality dTg � dTa always holds, since the function a is only a sampling
of the function g. Further, the distance between merge trees is computed based only on
function value differences between vertices of merge trees, thus it cannot exceed dTg . We
use this difference to normalize distances, resulting in error measures eB and eM that we
use further in our evaluation.

3.1. Sampling Density and Dimensionality

As discussed in Section 2, we consider five types of meshes in our evaluation: Delaunay
mesh (DEL); relative neighborhood mesh (RNG); Gabriel mesh (GAB); k-nearest-neighbor
(KNN) mesh; and Vietoris-Rips mesh (VR).

We start with a simple function to explain our evaluation. We consider a two-
dimensional SinCos function, defined for (x,y) defined on {[0,4 ⇤p]⇥ [0,4 ⇤p]}, slightly
tilted in order to resolve ambiguities between extrema values. We take a gradually increas-
ing set of random samples within the domain, and compute an approximate version of the
SinCos function for each set size. For each approximate function, we compute error mea-
sures. While both error measures were computed, considering the error measure eB was
sufficient to demonstrate our observations, as the error measure eM showed similar behav-
ior. Hence, we use the eB throughout the evaluation, and present a detailed analysis of the
observed differences between eB and eM separately in Section 3.3.

As expected, and shown in Figure 5 we can see that an increase of the number of
samples leads to a decrease of the error. The error converges towards zero, but becomes
zero only when randomly selected samples sufficiently cover the function and all the critical
points of the original function are sampled. However, depending on the type of mesh used to
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Fig. 5: As we increase the number of samples taken from SinCos function, the error de-
creases, with mesh type (DEL).

m1

m2 m3

m4

s3,4

s2,4

Fig. 6: The generated function is indicated by the bold black line, a supremum of mountain
peaks created by maxima generators. Red nodes are peaks/maxima and blue nodes are pos-
sible saddles at intersections of each pair of mountains. Among those, saddle s3,4 belongs
to the given function (as it lies on the surface), while s2,4 does not (as it lies under the
surface). A function value and coordinates of any saddle can be explicitly computed, as we
are given coordinates of each maxima (see dotted lines).

approximate the function from the set of samples, the behavior of the error can be different.
We see that all three types of meshes (DEL, GAB, RNG) behave similarly in a sense of
leading to smaller error and fast convergence towards zero.

To determine whether an observed behavior also is evident in other relatively simple
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Fig. 7: The error measure eB for MoC functions with varying numbers of maxima (3, 20,
50). As expected, more maxima slow the error decrease rate, as it takes more samples to
discover all maxima. For the max3 function, the error drops below 0.1 around 400 samples,
for the max20 function around 1000 samples, for the max50 function around 3000 samples.
We also note an irregular increase of the error for the DEL mesh, between 2100 and 6900
samples.

functions (moderate-dimensional functions with few critical points and no complex degen-
eracies), we generate a set of Mixture of Caps (MoC) functions as follows: we choose a
parametric function that is an upper-envelope of cones, with a fixed slope coefficient k,
with apexes at a set M of randomly generated maxima with given values val(m):

fgt(p) = sup
m2M

(val(m)� k ⇤d(m, p)),

where d(m, p) is the Euclidean distance between two points, see Figure 6. The reason
for choosing functions of this form is the fact that they make it possible to analytically
compute (and control) exact coordinates and values of all the critical points of the ground
truth function, allowing exact computation of its merge tree.

Our comparative experiments, where each uses a MoC function with various param-
eters, generally confirmed the behavior observed for the SinCos function, see Figure 7.
Moreover, the observed behavior persisted when we used additional randomly sampled



January 17, 2018 0:27 WSPC/Guidelines ijcga-mesheval

12 Beketayev, Yeliussizov, Morozov, Weber, Hamann

(a) DEL before the error drop (b) DEL after the error drop

(c) RNG before the error drop

Fig. 8: An irregular increase of the error in Figure 7. We construct the DEL mesh before and
after the error drop around 6900 samples. The DEL mesh before the error drop has many
long edges along the boundaries of the domain, which increases the likelihood of over-
connecting the maxima (which leads to reduction of the persistence of some maxima). The
error decreases when the newly inserted samples reduce some of the long edges. We also
show the RNG mesh before the error drop for comparison, and note that it is not affected
by the problem of over-connecting boundary edges.

data sets, sets of the same cardinality for each function, thus accounting for the random
nature of our approach especially when dealing with small sparse sets. We discovered a
problem with the DEL mesh, which led to a sudden error increase for some functions, as
shown in Figure 7(c). A more detailed analysis of this sudden error increase shows that in
case of random sampling, the DEL mesh might have long edges along domain borders that
can cause sudden spikes of error, see Figure 8.

Another parameter to evaluate is dimensionality. It is one of the main concerns in anal-
ysis of real-world data. Hence, we extend our evaluation to functions in higher dimensions
to determine whether previously observed error behavior holds. The evaluation results for
MoC functions with varying dimensionality are shown in Figure 9. While we see previ-
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Fig. 9: With increase of dimension we still observe the expected decrease of error, although
the rate of decrease becomes less steep, which is expected due to sparser density of samples.
We note that the performance of the DEL mesh is relatively worse as it starts to over-
connect the domain.

ously observed behavior, the decrease rate of error becomes slow due to sparser sample
coverage of the domain in higher dimensions. A more detailed analysis of error decrease
rates is provided in Section 3.3.

So far, we evaluated mesh errors based on sampling density and dimensionality. How-
ever, for simplicity we considered only DEL, GAB, and RNG meshes, because the KNN
and VR meshes are parametric meshes, and they require additional evaluation that takes
into account parameters used in their construction process (the number of nearest neigh-
bors k for a KNN mesh, and the radius r for a VR mesh). We discuss experimental results
for KNN and VR meshes, while using the RNG mesh for comparison purposes.

Since no optimal strategy is known for selecting the parameter k for a KNN mesh, we
evaluate a minimally connected version of the KNN mesh. This version is based on using
the lowest value of the parameter k, for which the mesh is connected. We note that k differs
for every set of samples. Comparison of the minimally connected KNN mesh to the RNG
mesh is shown in Figure 10. We see that the performance of the minimally connected KNN
mesh is highly unstable, mainly due to the small number of considered neighbors k for each
sample.

In comparison, the average number of neighbors for the minimally connected VR mesh
is significantly higher. Hence, as expected, a similar evaluation of the minimally connected
VR mesh shows more stable behavior and lower error, see Figure 10(left). Indeed, when
fixing the number of neighbors for the KNN mesh to the average number of neighbors of
the minimally connected VR mesh, we see a significant improvement, see Figure 10(right).

To evaluate the KNN mesh further, we performed an additional sweep of the param-
eter k. The resulting error function is given in Figure 11 as a surface, where we can see
the valley that corresponds to the higher value(s) of the parameter k, for which the KNN
mesh performs better. While these results do not provide definitive means to calculate the
optimal value of the parameter k, we see that often choosing moderately high values of the
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Fig. 10: (Left) The minimally connected KNN and VR meshes compared to the RNG mesh.
The minimally connected VR mesh performs better as it approximates the function better.
(Right) The average number of neighbors for the minimally connected VR mesh for the
case on left equals 11. When setting the number of neighbors for the KNN mesh to 11
(hence called 11NN mesh), and comparing it to the minimally connected KNN and VR
meshes, we see significantly more stable performance.

parameter k reduces the error. We note that the latter observation agrees with the similar
results of the evaluation using F-measure, mentioned earlier.
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Fig. 11: The sweep of the parameter k versus the number of samples. The deep blue area
on the right side corresponds to the values of k, for which the mesh is disconnected, thus
no results are available. In nearly all cases we see the increase and then a decrease of the
error, with growing k value.

3.2. Mesh Evaluation Summary

We summarize the results of the mesh evaluation: (1) the GAB and RNG meshes show
stable good performance, with the RNG mesh being slightly better in cases with lower
number of samples; (2) the relaxed RNG and GAB meshes perform similarly when com-
pared to the original versions; (3) the performance of the minimally connected KNN mesh
is highly unstable, while the minimally connected VR mesh performs significantly better;
(4) for a small number of samples, the minimally connected KNN and VR meshes perform
similarly when compared with the GAB and RNG meshes, thus their use can be justified
for such cases.

We note that these results are applicable to functions that are similar to the types of
functions we have used as ground truth, i.e., a function must have relatively slowly chang-
ing slopes (no spikes) and no complex topology (e.g., loops).

3.3. Analysis of Error Measures

We now present an analysis of the error measures. In particular, we first conduct a compar-
ative analysis of eB and eM , and then of their relationship to the F-measure. We also provide
experimental results of applying the measures to real-world data.

In Figure 12 we see how the error measures eB and eM compare. The evaluation results
suggest that eM leads to a more precise error approximation, since it is consistently higher
than or equal to eB, while both are lower than the infinity norm between the functions. The
difference between the two measures reflects that merge trees are a finer representation
of topology of the sub-level sets. Thus, eM not only captures the persistence, but also the
structural error in the mesh. Figure 12 shows that as we increase the size of the sampling,
the structural error for DEL, GAB, RNG meshes dissipates, while it stays high for KNN
and VR meshes. Furthermore, the GAB mesh leads to the smallest error due to the structure
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Fig. 12: Difference between the error measures show additional structural error that meshes
impose.

Fig. 13: Relaxed versions of RNG and GAB meshes perform very close to default ver-
sions in terms of proposed error measures, while according to the original study 1, relaxed
versions significantly decrease the F-measure error.

of the mesh.
This observation is consistent with the earlier findings 4 that the bottleneck distance

(the basis of the eB measure) fails to account for the structural difference captured by the
distance between merge trees (the basis of the eM measure), see Figure 3.

Another question is how the proposed error measures compare to the F-measure 1. We
note that the F-measure is based on finding “false positive” (recall) and missed (precision)
extrema, which requires the sampling set to include all the extrema of the ground truth func-
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Fig. 14: Two types of porous zeolite materials (CHA, LTL) were selected. While for the
first material (top) the GAB mesh performs slightly better, for the second material (bottom),
the RNG mesh performs better. The DEL mesh performs consistently worse than the other
two meshes.

tion. However, both the eB,eM measures are based on persistence-based distances, making
them independent of the information about the extrema, and, as a consequence, indepen-
dent of the F-measure. Experimental results of comparing default and “relaxed” versions of
RNG and GAB meshes in terms of the eB,eM measures and the F-measure support this ob-
servation. Indeed, the original study 1 demonstrated that the “relaxed” versions of meshes
significantly decrease the F-measure, i.e, decrease the error with regard to extrema. How-
ever, the “relaxed” versions of RNG and GAB meshes performed very close to the default
versions in all our experiments with the eB and eM measures, see Figure 13.

3.3.1. Error Analysis for Real-world Data

Finally, we consider real-world data. We focus on simulated data set of porous zeolite ma-
terials (see Keffer et al. 35 for simulation details), in particular we select two types of zeolite
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materials (CHA, LTL), each presented as a 3D scalar function, sampled regularly within a
domain. The sample sizes of each data set are 69⇥69⇥74 and 91⇥91⇥38 correspond-
ingly. Since no ground truth is known, we assume that the triangulated highest resolution
sampling represents the ground truth, and evaluate DEL, GAB, and RNG meshes by taking
the random subsets of given samples, and computing error measures for them. Figure 14
shows that most of the observations we made previously hold, namely the gradual decrease
of the error as a number of samples increase, and the problem with long edges in the DEL
mesh when the number of samples is low. This result is important, as it demonstrates that
proposed measures can be applied to functions, even if they do not satisfy Lipschitz conti-
nuity condition, which is the case for majority of experimental and simulated data.

One additional observation can be made in the Figure 14. As the number of samples
approach the original, we can see that DEL mesh becomes more precise. This is consistent
with an expected behavior, as the ground truth is computed using a simplicial mesh.

4. Conclusions

We have presented a new approach to studying the approximation error in scalar field topol-
ogy. In particular, we consider the loss of topological information, related to the sub-level
sets of a function. For that purpose, we used the distance between merge trees and the bot-
tleneck distance for persistence diagrams to define error measures for topological informa-
tion loss. We offered an evaluation of the different types of meshes using the proposed error
measures, and based on the results, discussed performances of selected types of meshes,
leading to several recommendations.

We note that the produced recommendations are applicable to functions similar to the
selected class of functions. Two features of the selected class of functions that distinguishes
it are: functions are relatively slow changing; functions have no complex topology. We
leave an evaluation of meshes for various other classes of functions to future work.

To address possible concerns about the proposed measures, we presented a detailed
analysis of proposed measures. Namely, we investigated how they compare to each other
and to the F-measure, as well as how proposed measures perform, when applied to real-
world data. An important application of the presented work would be to use its results
towards development of a topology-aware mesh, i.e., type of mesh that reduces the error in
approximating the topological information.

Finally, an interesting venue to explore is the evaluation of the adaptive topological
sampling methods, proposed by Maljovec et al. 36
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