
Measuring the Distance between Merge Trees

Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov, Gunther H. Weber, and
Bernd Hamann

Abstract Merge trees represent the topology of scalar functions. To assess the topo-
logical similarity of functions, one can compare their merge trees. To do so, one
needs a notion of a distance between merge trees, which we define. We provide
examples of using our merge tree distance and compare this new measure to other
ways used to characterize topological similarity (bottleneck distance for persistence
diagrams) and numerical difference (L∞-norm of the difference between functions).

Kenes Beketayev
Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA
Nazarbayev University, 53 Kabanbay Batyr Ave, Astana, Kazakhstan, 010000
e-mail: KBeketayev@lbl.gov

Damir Yeliussizov
Kazakh-British Technical University, 59 Tole Bi St, Almaty, Kazakhstan, 050000
e-mail: yeldamir@gmail.com

Dmitriy Morozov
Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA
e-mail: DMorozov@lbl.gov

Gunther H. Weber
Lawrence Berkeley National Laboratory, One Cyclotron Rd, Berkeley, CA 94720, USA
Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, University
of California, Davis, CA 95616-8562, USA
e-mail: GHWeber@lbl.gov

Bernd Hamann
Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, University
of California, Davis, CA 95616-8562, USA
e-mail: hamann@cs.ucdavis.edu

1

2 Kenes Beketayev et al.

1 Introduction

Many aspects of physical phenomena are described and modeled by scalar func-
tions. Computational and experimental capabilities allow us to approximate scalar
functions at increasing levels of detail and resolution. This fact makes it necessary
to analyze and also compare such function automatically, when possible, and to in-
clude more abstract analysis methods. Topological methods, based on the character-
ization of a scalar function via its critical point behavior, are gaining in importance,
and we were therefore motivated to investigate the feasibility of comparing scalar
functions using their topological similarity. Computational chemistry, physics and
climate sciences are just a few applications where our ideas presented here should
be valuable.

We address the generic problem of comparing the topology of scalar functions.
Fig. 1 demonstrates this problem. The figure shows slightly shifted versions of the
same function, colored red and blue. Commonly used analytical distances (e.g.,
norms of the difference) between these functions would result in a non-zero value,
failing to highlight the fact that they have the same sub-level set topology.

Scalar Functions Persistence Diagrams

Fig. 1 Consider two scalar functions, where one is a slightly shifted version of the
other. Comparing them directly, e.g., via the L∞ norm, results in a large difference.
Their persistence diagrams are the same, thus capturing the topological similarity of
these functions.

One well-established distance that expresses the topological similarity in the
above example is the bottleneck distance between persistence diagrams, introduced
by Cohen-Steiner et al. [8]. Computing the bottleneck distance for the example in
Fig. 1 results in zero. Originally motivated by the shape matching problem, where
the goal is to find how similar shapes are based on similarity of their topology, the
bottleneck distance also has an important property — robustness to noise; see Fig. 2.

However, the bottleneck distance does not incorporate sub-level set nesting in-
formation, often necessary for analysis. Fig. 3 shows two functions that differ by the
nesting of the maximum m. The bottleneck distance between the corresponding per-
sistence diagrams is again zero. Nevertheless, the corresponding merge trees cannot
be matched exactly, hinting at a positive difference.

To resolve this problem, we introduce a new definition of the distance between
merge trees. This distance resembles the bottleneck distance between the persistence
diagrams of sub-level sets of the function, but it also respects the nesting relationship

Measuring the Distance between Merge Trees 3

Fig. 2 Consider two close scalar functions on the left, where one contains additional
noise. If we construct their persistence diagrams and find the bottleneck distance
(which corresponds to the longest black line segment between paired points on the
right), the result is small, correctly reflecting the closeness of the functions. In fact,
the difference is the same as the level of the noise, which in this example is small.

Scalar Functions Merge Trees Persistence Diagrams

m m m m

Fig. 3 Consider two scalar functions on the left. The bottleneck distance between
persistence diagrams on the right equals zero, as points of two diagrams overlap.
However, comparing the corresponding merge trees reveals a difference, since we
cannot match them exactly. This difference highlights existence of additional nest-
ing information in merge trees. Quantifying it is the main goal of this work.

between sub-level sets. Furthermore, the proposed distance implicitly distinguishes
the noise in the data, similar to the bottleneck distance, resulting in robust measure-
ments resilient to perturbations of the input. This property is crucial when working
with scientific data, where noise is a serious problem for any analysis.

The main contributions of this chapter are: a definition and an algorithm for com-
puting the distance between merge trees; computation of the number of branch de-
compositions of the merge tree; an experimental comparison between the proposed
distance, the bottleneck distance, and the L∞ norm on analytical and real-world data
sets.

Sect. 2 presents related work and background in scalar field topology, persistent
homology, graph theory, and shape matching. Sect. 3 provides the definition and
the algorithm for computing the distance between merge trees. Sect. 4 demonstrates
several use cases and presents the results of comparing the distance between merge
trees to the bottleneck distance between persistence diagrams, as well as the L∞
norm. Finally, Sect. 5 summarizes the work and suggests ideas for future work.

4 Kenes Beketayev et al.

2 Related Work

2.1 Scalar Field Topology

Scalar field topology characterizes data by topological changes of its level sets.
Given a smooth, real-valued function without degenerate critical points, level set
topology changes only at isolated critical points [16]. Several structures relate criti-
cal points to each other.

The contour tree [5, 7] and the Reeb graph [21, 20] track the level sets of the
function by recording their births (at minima), merges or splits (at saddles), and
deaths (at maxima). The contour tree is a special case of the Reeb graph, as the
latter permits loops in the graph to handle holes in the domain. Both structures are
used in a variety of high-dimensional scalar field visualization techniques [23, 18].

Alternatively, the Morse–Smale complex [10, 9] segments the function into the
regions of uniform gradient flow and encodes geometric information. It is also used
for analysis of high-dimensional scalar functions [12].

We focus on a structure called merge tree (sometimes called a barrier tree [11,
13]), as it tracks the evolution of sub-/super-level sets, while still being related to
the level-set topology through critical points [16].

2.2 Persistent Homology

The concept of homology in algebraic topology offers an approach to studying the
topology of the sub-level sets. We refer to Munkres [17] for the detailed introduction
to homology. Informally, it describes the cycles in a topological space: the number
of components, loops, voids, and so on. We are only interested in 0–dimensional
cycles, i.e., the connected components.

Persistent homology tracks changes to the connected components in sub-level
sets of a scalar function. We say that a component is born in the sub-level set
f−1(−∞,b] when its homology class does not exist in any sub-level set f−1(−∞,b−
ε]. This class dies in the sub-level set f−1(∞,d] if its homology class merges with
another class that exists in a sub-level set f−1(−∞,b′] with b′ < b. When a com-
ponent is born at b and dies at d, we record a pair (b,d) in the (0–dimensional)
persistence diagram of the function f , denoted D(f). For technical reasons, we add
to D(f) infinitely many copies of every point (a,a) on the diagonal.

Persistence diagrams reflect the importance of topological features of the func-
tion: the larger the difference d−b of any point, the more we would have to change
the function to eliminate the underlying feature. Thus, persistence diagrams let us
distinguish between real features in the data and noise.

In Cohen-Steiner et al. [8], the authors prove the stability of persistence diagrams
with respect to the bottleneck distance, dB(D(f),D(g)). This distance is defined as
the infimum over all bijections, γ : D(f)→ D(g), of the largest distance between the

Measuring the Distance between Merge Trees 5

corresponding points,

dB(D(f),D(g)) = inf
γ

sup
u∈D(f)

||u− γ(u)||∞.

Their result guarantees that the bottleneck distance is bounded by the infinity norm
between functions:

dB(D(f),D(g))≤ ‖ f −g‖∞.

We use the bottleneck distance between persistence diagrams as a comparison
baseline for the distance between merge trees.

2.3 Distance between Graphs

Graph theory offers several approaches for comparing graphs and defining a notion
of a distance between them.

A common approach for measuring a distance between graphs is based on an
edit distance. It is computed as a number of edit operations (add, delete, and swap
in the case of a labeled graph) required to match two graphs [6], or, in a spe-
cial case, trees [4]. The edit distance focuses on finding an isomorphism between
graphs/subgraphs, while for merge trees we can have two isomorphic trees with a
positive distance (see the example in Fig. 3).

Alternatively, in a specific case of rooted trees, one can consider the generalized
tree alignment distance [15], which, in addition to the edit distance, considers the
minimization of the sum of distances between labeled end-points of any edge in
trees. However, it is not clear how to adapt this distance definition for our purposes.

2.4 Using Topology of Real Functions for Shape Matching

The field of shape matching offers several methods related to our work. Generally,
these methods focus on developing topological descriptors by treating a shape as a
manifold, defining some real function on that manifold, and computing topological
properties of the function. The selection of the particular function usually depends
on which specific topological and shape properties of interest [2].

While the majority of the mentioned descriptors are not directly related to our
work, two topological descriptors use similar approaches in defining a similarity
measure. One is called a multiresultion Reeb graph, proposed by Hilaga et al. [14],
which encodes nesting information into nodes of a Reeb graph for different hierar-
chy resolutions. Here, the hierarchy is defined by the simplification of Reeb graph.
Another descriptor is based on an extended Reeb graph (ERG), proposed by Biasotti
et al. [3]. It starts by computing the ERG of the underlying shape, which is basically
a Reeb graph with encoded quotient spaces in its vertices. It couples various geo-

6 Kenes Beketayev et al.

metric attributes with the ERG, resulting in an informative topological descriptor. In
both cases, similarity of shapes is measured by applying a specialized graph match-
ing (based on embedded/coupled information) to descriptors. However, we focus
only on the sub-level set topology information, and design a matching algorithm,
tailored specifically for this case.

Thomas and Natarajan [22] focus on symmetry discovery in a scalar function
based on its contour tree. The authors develop a similarity measure between sub-
trees of the contour tree, which in some regards is similar to our proposed measure.
However, they consider a single pre-processed branch decomposition, and focus on
discovering symmetry in a sole function.

3 Defining a Distance Between Merge Trees

In this section, we provide a formal definition of the distance between merge trees
and provide an algorithm (with optimizations) for computing it. In short, to com-
pute the distance between two merge trees, we consider all branch decompositions
of both trees and try to find a pair that minimizes the matching cost between them.
Additionally, we provide the details of computing the number of branch decompo-
sitions of a merge tree, used in complexity analysis of our algorithm.

3.1 Definition

Let K be a simplicial complex; let f : K → R be a continuous piecewise-linear
function, defined on the vertices and interpolated in the interior of the simplices.
Furthermore, assume all vertices have unique function values; in practice, we can
simulate this by breaking ties lexicographically.

Let Tf be a merge tree of the function f ; every vertex of K is mapped to a vertex
in the merge tree. Every vertex of the merge tree has a degree of either one, two, or
more, corresponding to a minimum, a regular point, or a merge saddle. Our defini-
tion works for higher-dimensional saddles (degenerate critical points) as well, and
they need explicit consideration only in the complexity analysis of the algorithm
(Sect. 3.4). A merge tree with purged regular vertices is called reduced.

A branch decomposition B [19] of a reduced merge tree T is a pairing of all
minima and saddles such that for each pair there exists at least one descending path
from the saddle to the minimum. We consider a rooted tree representation R of the
branch decomposition B, such that the rooted tree representation R is obtained by
translating each branch b = (m,s) ∈ B into a vertex v ∈ R, where m and s are mini-
mum and saddle that form the branch b. The edges of the rooted tree representation
describe parent–child relationships between branches, see Fig. 4.

Measuring the Distance between Merge Trees 7

Given two merge trees, Tf and Tg, consider all their possible branch decompo-
sitions, BTf = {R f

1 , ...,R
f
k} and BTg = {Rg

1, ...,R
g
k}, respectively; see Fig. 4.We need

two auxiliary definitions to describe the matching of rooted branch decompositions.

f

a

b
c

d

e

a a a

e e e

d d d

c c c
b b b

g

a

b

d

e

c

a a a

e e e

d d d

c c c
b b b

(a, e)

(b, e) (c, d)

(c, e)

(a, d) (b, e)

(b, e)

(a, e)

(c, d)

(a, e)

(b, e)

(c, d)

(c, e)

(a, e) (b, d)

(b, e)

(a, e) (c, d)

Fig. 4 Merge trees Tf (top) and Tg (bottom), all their possible branch decomposi-
tions, and corresponding rooted tree representations. Root branches are colored red,
demonstrating the mapping of branches to vertices.

Definition 1 (Matching cost). The cost of matching two vertices u = (mu,su) ∈ R f
i

and v = (mv,sv) ∈ Rg
j is the maximum of the absolute function value difference of

their corresponding elements,

mc(u,v) = max(|mu −mv|, |su − sv|).

Definition 2 (Removal cost). The cost of removing a vertex u = (mu,su) ∈ R f ,g is

rc(u) = |mu − su|/2.

We say that a partition (M f ,E f) of the vertices of a rooted branch decomposition
R f is valid, if the subgraph induced by the vertices M f is a tree. Here, the vertices
M f are mapped vertices, while the vertices E f are reduced vertices. We say that an
isomorphism of two rooted trees preserves order when it maps children of a vertex
in one tree to the children of its image in the other tree.

Definition 3 (ε-Similarity). Two rooted branch decompositions R f ,Rg are ε-similar,
if we can find two valid decompositions (M f ,E f) and (Mg,Eg) of their vertices, to-
gether with an order-preserving isomorphism γ between the trees induced by the
vertices M f and Mg, such that the distance between each matched pair of vertices
and the maximum cost for reduced vertices does not exceed ε:

max
u∈M f

mc(u,γ(u)) ≤ ε (1)

max
u∈E f ∪Eg

rc(u) ≤ ε (2)

The smallest epsilon, for which the above two inequalities hold, denoted εmin(R
f
i ,R

g
j).

8 Kenes Beketayev et al.

Definition 4 (Distance between merge trees). The distance between two merge
trees Tf ,Tg is:

dM(Tf ,Tg) = minR f
i ∈BTf ,R

g
j∈BTg

(εmin(R
f
i ,R

g
j)).

3.2 Distance Computation

To compute the distance dM , we design an algorithm that is based on Definition 4.
In particular, our algorithm constructs all possible pairs of branch decompositions,
computes εmin for each pair, and selects the minimum among them.

We use a recursive construction of the branch decompositions of a merge tree.
The main operation is to pair a given saddle, one by one, with each minimum in its
subtree. We start by pairing the highest saddle sr with all minima in a tree. Each
pair acts as a root branch (sr,mi) in the recursive operation. For each child saddle s j
on the root branch, we recursively repeat the pairing until all the saddle–minimum
pairs are fixed, producing a unique branch decomposition bi.

To compute εmin(R
f
i ,R

g
j), we design a function ISEPSSIMILAR(ε,R f

i ,R
g
j) that,

for a predefined ε , determines whether two branch decompositions match. We start
by setting ε to a high value — for example, the maximum of the amplitudes of the
two functions — and perform a binary search to determine εmin.

The function ISEPSSIMILAR is the core of the algorithm. It works by matching
the vertices and the edges at each level of the tree. We recall that each vertex u =
(mu,su)∈ ri,v = (mv,sv)∈ r j is a minimum-saddle pair. There are only two vertices
at the root levels of R f

i and Rg
j , so we determine whether their endpoints can be

matched, i.e., max(|mu −mv|, |su − sv|) ≤ ε . If not, ISEPSSIMILAR returns false.
Otherwise, we consider all the child vertices (see Fig. 4). Since there are several
potential matches, we compute a bipartite graph between the child vertices such that
the edge between a pair of children u ∈ R f

i ,v ∈ Rg
j exists if and only if they can be

matched within given ε , and ISEPSSIMILAR returns true for their subtrees. We also
add ghost vertices for each vertex in the rooted branch decomposition when it can
be reduced within ε . When there exists a perfect matching in the bipartite graph,
the function returns true; otherwise, it returns false. If one or both of the current
pair of children has children of their own, we recursively call ISEPSSIMILAR. The
matching is perfect when there exists an edge cover such that its edges are incident
to all the non-ghost vertices and do not share any of them.

3.3 Optimized Algorithm with Memoization

The naive algorithm described above has exponential complexity. Indeed, there ex-
ist O(2N−1) branch decompositions for a tree with N extrema (see Sect. 3.4 for
details). Consequently, comparing all branch decompositions of two trees to each

Measuring the Distance between Merge Trees 9

m1 m2

m3

m4

m5

m6

m7

m8

m9

m10
s1

s2 s3

s4

s5
s6

s7

s8

0

12

0

m1 m2

m3

m4

m5

m6

m7
m8

m9

m10s1

s2 s3

s4

s5

s6

s7

s8

4

8

12

Ss4 Ss8

Fig. 5 Left: For the merge trees Tf ,Tg, the smallest manually identifiable difference
is shown as red segments. Right: The first iteration of the ISEPSSIMILAR function
chooses (s4,m1) and (s8,m6) as root branches (depicted in green).

other would require a total of O(2N+M−2) operations, where N,M are the numbers
of extrema in each tree. This computational cost makes it infeasible to compare
even small trees using this method. To alleviate this problem, we have designed an
optimization, which reduces the number of explicitly considered branch decompo-
sitions, thus improving the complexity of the function ISEPSSIMILAR from expo-
nential to polynomial. (Details are given at the end of this section.)

We demonstrate the optimized version of the function ISEPSSIMILAR using the
example in Figure 5. The function starts by iterating over all possible root branches
(s4,mi), i ∈ 1 . . .5, and (s8,m j), j ∈ 6 . . .10. Once the pair of root branches is fixed
as (s4,m1) and (s8,m6), the function is called recursively for every possible pairing
of child subtrees in each tree. Fixing the root branches leads to two sets of child sub-
trees, {Ss4−s3 ,Ss2−m3 ,Ss1−m2} and {Ss8−m10 ,Ss7−m9 ,Ss5−s6}. A subtree (e.g., Ss4−s3)
needs two vertices to be uniquely identified, a child saddle (e.g., s4), and the imme-
diate child vertex (e.g., s3) that can be either a saddle or minimum.

A key observation allowing us to reduce cost is that each pair of subtrees, for
which the function is called recursively, also appears in subsequent iterations over
other root branches. For example, the pair (Ss4−s3 ,Ss8−s10) that appears in the first
iteration that chooses (s4,m1) and (s8,m6) as root branches, also reappears in 11
subsequent iterations, e.g., in the iteration that chooses (s4,m2) and (s8,m7) as root
branches. Therefore, it is sufficient to compute the matching for subtrees Ss4 ,Ss8
once, and reuse the result in subsequent iterations. More generally, for any subtree
pair Ssi−schildo f i ∈ Tf and Ss j−schildo f j ∈ Tg, one of the three possibilities is recorded
in the array match[Ssi−schildo f i][Ss j−schildo f j]: not yet compared – (0), comparison re-
turned false – (1), or true – (2).

Furthermore, the same pair of subtrees also reappears in other binary search it-
erations as well, i.e., when the function ISEPSSIMILAR is called with other values
of ε . However, the reuse of previous results in this case is selective. If two subtrees
were matched for some ε , they would stay matched only if the value of ε stayed the
same or gets larger. If it gets smaller, we will have to recompute the matching result.
And correspondingly, if two subtrees were unmatchable for some ε , they would stay

10 Kenes Beketayev et al.

unmatchable, only if the value of ε was the same or lower. However, if the value gets
higher, we will have to recompute the matching result.

Returning to the example in Figure 5, consider the case where ε = 5. The first pair
of root branches (s4,m1) and (s8,m6) (depicted in green in Figure 5) do match, as
| f (s4)− g(s8)| = 0 < 5 and | f (m1)− g(m6)| = 2 < 5, hence the function proceeds
to their child subtrees. The first pair Ss4−s3 ,Ss8−m10 is matchable, thus there is an
edge in the bipartite graph (similar to the naive algorithm) between the nodes that
correspond to these subtrees. In fact, from nine pairs, only pairs Ss2−m3 ,Ss8−m10 and
Ss4−s3 ,Ss7−m9 are unmatchable, thus there exists a perfect matching in the bipartite
graph, and two merge trees are ε-similar for ε = 5. Consequently, we continue the
search with decreasing value of ε , until it converges to ε = 2, in which case for
the root branches (s4,m1) and (s8,m6), the only pairs of subtrees that match are
(Ss4 ,Ss8), (Ss2 ,Ss7), (Ss1 ,Ss5). No lower value of ε would lead to the ε-similarity of
the merge trees, making the value εmin = 2 the distance between merge trees.

Such optimization reduces the run time complexity from exponential to polyno-
mial. Indeed, the function ISEPSSIMILAR performs N ·M iterations over the root
branches, multiplied by the sum of processing nc f ·ncg explicit pairs of subtrees, and
the complexity of a maximal matching algorithm (nc f + ncg) · nc f · ncg . The latter
complexity dominates the former term. Hence, assuming that a look-up operation of
previous results is done in a constant time via memoization, the resulting run time
complexity of the function ISEPSSIMILAR is O(N2M2(N +M)). This complexity
is multiplied by the number of iterations of the binary search algorithm, which we
found to be moderate, given a reasonable selection of the search range and the pre-
cision. The worst-case memory complexity of the optimized algorithm is O(N ·M),
which is computationally less prohibitive than its run time complexity.

3.4 The Number of Branch Decompositions of a Merge Tree

We provide the details of computing the number of branch decompositions of the
merge tree, used for the naive algorithm complexity analysis in the beginning of
Sect. 3.3. We calculate the number of branch decompositions P(N) for a merge tree
with N minima in two steps. First, we compute the number P(N) for the case when
the merge tree is binary, in which case the tree has maximum possible number of
saddles. Second, we show that for fewer saddles the number P(N) decreases, leading
to the worst case P(N) = 2N−1 branch decompositions for any merge tree.

Theorem 1. The number of branch decompositions of the binary merge tree with N
minima equals P(N) = 2N−1.

Proof. For any saddle s, the number of branch decompositions in its subtree is Ps =
2 ·Pc1 ·Pc2 , where c1 and c2 are the children of the saddle s. Indeed, if the saddle s is
paired with a minimum in a subtree of child c1, then for each such pairing we have
all the possible branch decompositions of a subtree of child c2, resulting in Pc1 ·Pc2
possibilities. Symmetrically, for the child c2 we have Pc2 ·Pc1 possibilities.

Measuring the Distance between Merge Trees 11

Using this fact we construct a proof by induction:

• For the base case of N = 1, the number of branch decompositions is one. On the
other hand, P(1) = 21−1 = 1. Hence, the formula holds.

• We assume that for all N = 1, . . . ,k the formula P(N) = 2N−1 holds true.
• Now let’s consider the case with N = k + 1, for which we have to prove that

P(k+1) = 2k. For the root saddle r of the tree with k+1 minima, we remember
that Pr = 2 ·Pc1 ·Pc2 . If to denote the number of minima in the subtree of the child
c1 as i ∈ [1,k], with k− i+1 denoting the number of minima in the subtree of the
child c2, we can expand P(k+1) = 2 ·P(i) ·P(k− i+1). Since both i and k− i+1
are not greater than k, we can substitute P(i) and P(k− i+1) in accordance with
assumptions for N = 1, . . . ,k:

P(k+1) = 2 ·P(i) ·P(k− i+1)
= 2 ·2i−1 ·2k−i+1−1

= 2 ·2i−1+k−i+1−1 = 2k.
()

Fig. 6 Splitting the higher-
degree saddle (with degree
> 2) always creates more
branch decompositions. The
saddle s has three branch
decompositions, while after
splitting it into two saddles
s1 and s2, we get four branch
decompositions.

s

m1 m2 m3 m1 m2 m3

s1

s2

We consider the case with a number of saddles less than N − 1, i.e., the merge
tree has saddles with degree higher than two. The number of minima N remains
the same, while some of the saddles have more than two children. Any saddle of
degree d > 2, can be split into d − 1 saddles of degree two, such that the structure
of the tree changes only around the selected saddle, see Fig. 6. Such split leads
to 2d−1 possible branch decompositions instead of the d for the selected saddle.
Since d > 2, the inequality 2d−1 > d holds true, which means having degree-two
saddles always leads to more branch decompositions. At the extreme, if all saddles
become degree-two saddles, we obtain the binary merge tree, for which we already
computed number of branch decompositions as 2N−1.

4 Results

In this section we demonstrate the use of the proposed distance dM . First, we apply
it to simple data sets, observing its difference from the bottleneck distance and the
L∞ norm, as it captures additional information. We consider performance data sets
obtained for a ray tracing program, and demonstrate how the proposed distance
correctly captures the similarity of data sets.

12 Kenes Beketayev et al.

4.1 Analytical Functions

We consider a set of simple functions that have a fixed number of maxima. Each
function is constructed by creating a random set of maxima generators. For each
maximum generator, function values decrease as the distance from the source grows,
which results in a corresponding peak. The upper envelope of such peaks results in
the required function.

Fig. 7 Analytical functions. Rendering with embedded merge tree of three 2D func-
tions f1, f2, f3 (first row), and three 3D functions f4, f5, f6 (second row).

We generate three bivariate (or 2D) functions f1, f2, f3, and three trivariate (or
3D) functions f4, f5, f6. We set the number of maxima to five, to keep them simple
for visual exploration; see Fig. 7. The resulting distances, presented in Table 1, lead
to two interesting observations.

For the 2D functions, the bottleneck distance dB for functions f1, f2 is about two
times lower than for functions f1, f3 and f2, f3, suggesting relative closeness of the
first pair. However, the distance between merge trees dM suggests that all three func-
tions are equally different. Closer investigation confirms this hypothesis. In Fig. 8,
we see simplified depictions of merge trees having equally different nesting.

For the 3D functions, visually the function f5 seems different from the other two.
This fact is again captured by the distance between merge trees, as the resulting dis-
tance dM is almost two times lower for functions f4, f6, than from them to function
f5. The bottleneck distance again fails to capture this distinction.

Measuring the Distance between Merge Trees 13
Table 1 Resulting distances from Fig. 7.

Metric f 2D
1 f 2D

2 f 2D
3 f 3D

4 f 3D
5 f 3D

6

dB 4.525 8.647 7 3.011 2.598 4.031
dM 8.398 8.664 7 5.031 2.604 4.833
L∞ 67.561 43.015 65.956 29.586 20.495 22.632

Fig. 8 Simplified view of
nesting of merge trees for
functions f1, f2, f3. Unmatch-
able red edges cause the
non-zero distance. Tf1 Tf2 Tf3

4.2 Tuning a Ray Tracing Algorithm

We consider the problem of tuning a ray tracing algorithm on a multicore shared-
memory system from the study by Bethel and Howison [1]. The authors explored
various tuning parameters and their effect on the performance of the algorithm,
with a focus on three parameters: the work block width {1,2, . . . ,512} and height
{1,2, . . . ,512}, and the concurrency level {1,2,4,8}.

We generated two data sets with the same parameter space, but slightly different
algorithm, based on the selection of a ray sampling method, which is either based
on nearest neighbor or trilinear approximation. For each option, the performance of
the algorithm (in terms of running time) was recorded.

In this example, one is interested in studying optimal run configurations that
correspond to low run times of the algorithm. Fig. 9 shows two data sets using
isosurfaces, such that isovalues are the same for both data sets. The similarity of
data sets, implying that the selection of the chosen ray sampling method does not
significantly influence the performance of the algorithm. This fact is confirmed by
the resulting distance. The measured distances allow us to capture the similarity,
regardless of shifted optimal configurations (minima) and the noise.

Fig. 9 Performance data. dB = 0.027,dM = 0.027,L∞ = 0.13. The difference is small
relative to the value range of functions (about 2.7%), implying little influence of the
ray sampling option on the overall performance of the algorithm.

5 Conclusions

We presented a novel distance between merge trees, including the definition and the
algorithm. We demonstrated the use of the proposed distance for several data sets.

We plan to perform a theoretical investigation of the proposed distance, including
the concerns about its stability. We also plan to explore the use of the proposed
distance for error analysis in the context of approximated scalar functions.

14 Kenes Beketayev et al.

Acknowledgements The authors thank Aidos Abzhanov. This work was supported by the Direc-
tor, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. DOE under
Contract No. DE-AC02-05CH11231 (Berkeley Lab), and the Program 055 of the Ministry of Edu.
and Sci. of the Rep. of Kazakhstan under the contract with the CER, Nazarbayev University.

References

1. Bethel, E.W., Howison, M.: Multi-core and many-core shared-memory parallel raycasting vol-
ume rendering optimization and tuning. Int. Journal of High Perf. Comput. Appl. (2012)

2. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L.,
Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions.
ACM Computing Surveys 40, 12:1–12:87 (2008)

3. Biasotti, S., Marini, M., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural
descriptors of 3D shapes. Computer Aided Design 38(9), 1002–1019 (2006)

4. Bille, P.: A survey on tree edit distance and related problems. Journal of Theor. Comp. Sci.
337, 217–239 (2005)

5. Boyell, R.L., Ruston, H.: Hybrid techniques for real-time radar simulation. In: Proc. of the
Fall Joint Comput. Conf., pp. 445–458. IEEE (1963)

6. Bunke, H., Riesen, K.: Graph Edit Distance: Optimal and Suboptimal Algorithms with Appli-
cations, pp. 113–143. Wiley-VCH Verlag GmbH & Co. KGaA (2009)

7. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comp. Geom. –
Theory and Appl. 24(2), 75–94 (2003)

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proc. of
21st Annual Symp. on Comp. Geom., pp. 263–271. ACM (2005)

9. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise
linear 3-manifolds. In: Proc. of the 19th Symp. on Comp. Geom., pp. 361–370 (2003)

10. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piece-
wise linear 2-manifold. Disc. & Comp. Geom. 30, 87–107 (2003)

11. Flamm, C., Hofacker, I.L., Stadler, P., Wolfinger, M.: Barrier trees of degenerate landscapes.
Physical Chemistry 216, 155–173 (2002)

12. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high dimensional
scalar functions. IEEE Trans. Vis. Comput. Graph. 16(6) (2010)

13. Heine, C., Scheuermann, G., Flamm, C., Hofacker, I.L., Stadler, P.F.: Visualization of barrier
tree sequences. IEEE Trans. Vis. Comp. Graph. 12(5), 781–788 (2006)

14. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic
similarity estimation of 3d shapes. In: SIGGRAPH’01, pp. 203–212. ACM (2001)

15. Jiang, T., Lawler, E., Wang, L.: Aligning sequences via an evolutionary tree: complexity and
approximation. In: Symp. on Theory of Computing, pp. 760–769 (1994)

16. Milnor, J.W.: Morse Theory. Princeton University Press, Princeton, New Jersey (1963)
17. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Redwood City, CA (1984)
18. Oesterling, P., Heine, C., Janicke, H., Scheuermann, G., Heyer, G.: Visualization of high-

dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput.
Graph. 17, 1547–1559 (2011)

19. Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: Multi-resolution computation and presenta-
tion of contour trees. Tech. Rep. UCRL-PROC-208680, LLNL (2005)

20. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of
Reeb graphs: Simplicity and speed. ACM Trans. on Graph. 26(3), 58.1–58.9 (2007)

21. Reeb, G.: Sur les points singuliers d’une forme de pfaff complement intergrable ou d’une
fonction numerique. Comptes Rendus Acad. Science Paris 222, 847–849 (1946)

22. Thomas, D.M., Natarajan, V.: Symmetry in scalar field topology. IEEE Trans. Vis. Comput.
Graph. 17(12), 2035–2044 (2011)

23. Weber, G.H., Bremer, P.T., Pascucci, V.: Topological landscapes: A terrain metaphor for sci-
entific data. IEEE Trans. Vis. Comput. Graph. 13(6), 1416–1423 (2007)

