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Abstract

We present a segmentation approach to scientific visual-
ization that combines the definition of higher-level data,
the efficient extraction of meaningful derived feature-like
data from defined properties, and the effective visual rep-
resentation of the extracted data. Our framework is aimed
at multi-valued time-varying data sets, where, for exam-
ple, grid vertices might have a multitude of associated
scalar, vector and tensor quantities. This “segmentation”
approach to massive data set exploration allows the user to
focus upon regions, and interactively explore these regions
efficiently. The challenge is to generate this segmented
data from existing multi-valued data sets, store this data
in an efficient scheme, generate the boundaries of each re-
gion, and display these boundaries to the user. We present
an integrated scheme that allows a common representation
for segmentation, allows it to be applied to a number of
data types, and allows derived representations to be cal-
culated. We illustrate this framework with examples from
scalar- and vector-field visualization.

Keywords: visualization, segmentation, derived data,
vector fields

1 Introduction

With the increase in computing power and our ability
to gather more and more data via increasingly powerful
imaging and sensor technology, the size of scientific data
sets continues to grow. Data sets that represent physical
phenomena now contain billions of elements representing
multi-valued, multi-dimensional, time-varying data, and
we are no longer able to fully analyze them. One can con-
sider various paradigms when attempting to provide better
tools for the exploration of these data sets, but the need
is to drive these tools by the realization that the scien-
tist rarely needs to examine an entire data set. Typically,
the interest is in particular regions where certain properties
hold. Tools must be developed that allow the scientist to
identify and specify these properties, and segment the data
set to determine the regions where these properties hold.

We firmly believe in the value of interactive data visu-
alization as a tool for massive data set exploration, and we
realize that it is no longer feasible to interactively explore a

massive data set in its entirety. The approach we propose
combines the definition of higher-level data, the efficient
extraction of meaningful derived data from defined proper-
ties. Our framework is aimed at multi-valued time-varying
data sets, where, for example, grid vertices might have a
multitude of associated scalar, vector and tensor quanti-
ties. Our goal is to devise new algorithms that support the
numerically robust extraction of regions (or boundaries of
these regions) that represent similar qualitative or topolog-
ical behavior. We propose this “segmentation” approach to
massive data set exploration as we believe that it is possi-
ble to determine and interactively explore these focussed
regions efficiently, with respect to both storage and com-
putation requirements.

We are interested in multi-valued time-varying data sets
that are based upon three-dimensional grids. We believe
that these data sets present us with many fundamental un-
solved problems in data exploration. Many researchers
have developed algorithms for two-dimensional data (es-
pecially vector and tensor fields), but these methods do
not scale to the additional dimension(s). Two-dimensional
vector fields, for example, are easily characterized by their
critical points. Classification of these points, and segmen-
tation by separatrices, completely characterize these flow
fields. However, three-dimensional vector fields can be ar-
brarily complex and often do not contain any critical point
(e.g., the NASA delta wing [9]). Exploration techniques
for these fields are still in their infancy.

This research is motivated by the segmentation algo-
rithms developed by Bonnell et al.[3], where a data set
is segmented by utilizing “material fraction” information
stored in each grid cell. In multi-fluid hydrodynamics sim-
ulations, the numerical algorithms produce percentages for
each cell defining the relative amount of a fluid present in
the cell. Of major interest is the extraction and visual-
ization of interfaces between the various fluids, and how
interfaces change over time. Bonnell et al.use the frac-
tion data to construct the fluid interfaces. This approach
is inherently a segmentation approach, where we segment
the domain of the simulated data set into regions of same
material type.

The challenge is to generate this segmented data for
more general types of multi-valued data sets, store this
data efficiently, generate the boundaries of each region,
and display these boundaries. The segmentation approach



will give us a more generally applicable scheme that sup-
ports a common representation for segmentation, that can
be applied to a number of data types, and that enables us
to calculate derived representations. These representations
can be integrated with multiresolution techniques to re-
duce the sizes of the data representations, to support fast
region/segment generation and visualization.

This framework emphasizes the exploration of massive
scientific data through the computation of derived “higher-
level data,” data that will support interactive visual explo-
ration considering regions of similar behavior. Due to in-
creasing data set sizes we are convinced that such a frame-
work is needed in order to create high-level views of data
and to “steer” interactive visualization. Prior to provid-
ing a scientist with visual representations of original field
variables we can generate views that show the various re-
gions in domain space where a certain type of behavior are
observed.

In Section 2 we discuss the motivation behind our
framework, how it relates to previous work in the field,
and how to adapt current algorithms to segment scalar
fields. Section 3 and Section 4 discusses the segmen-
tation of three-dimensional vector fields. Section 5 dis-
cusses the implementation issues in vector field segmen-
tation and Section 6 shows the results of segmenting a
complex three-dimensional vector field.

2 Segmenting Scalar Fields

Suppose we are given a data set and an associated set of
properties c1, c2, ..., cm. For each vertex v in the data set,
we associate an m-tuple (α1, α2, ..., αm), where αi is the
fraction of ci present (or “valid”) at v. We assume that
0 ≤ αi ≤ 1, for i = 1, ...,m, and

∑m
i=1 αi = 1. We

will call data sets of this kind segmented. Thus, we con-
sider a segmented data set to be one where each vertex of
the data set has an associated barycentric coordinate. The
challenge is to generate this segmented data from given
multi-valued data sets, store this segmented data in an ef-
ficient scheme, generate the boundaries of each segment,
and display these boundaries. Many problems in data ex-
ploration can be formulated using segmented data. These
are a few examples:

• In a scalar field, an isosurface is determined by a sin-
gle scalar value s. Here, each vertex v can be as-
signed a 2-tuple (α1, α2), where α1 = 0 if the scalar
value associated with v is less than s, and where
α1 = 1 if the scalar value is greater or equal to s,
and α2 = 1 − α1. The isosurface is then the bound-
ary of the region where α1 = 1

2 .

• In a scalar field, the region between two isosurfaces
can be isolated. Given two scalar values s1 < s2,
each vertex v is assigned a 3-tuple (α1, α2, α3),
where α1 = 1 if the scalar value s associated with
v is less than s1, where α2 = 1 if s1 ≤ s ≤ s2, and

α3 = 1 if s > s2. Points on the two boundaries of
the region are characterized by α1 = α2 = 1

2 and
α2 = α3 = 1

2 .

• Considering vector fields, a streamsurface can be de-
termined in a similar way. Here, each vertex v can
be assigned a 2-tuple (α1, α2), where αi = 0 or 1 de-
pending on whether a streamline emantating from v
is on the ”left” or ”right” side of the streamsurface.

• Using slicing techniques, researchers have developed
data sets that consist of a number of high-resolution
slices, where each vertex v is assigned a set of proba-
bilities that determine whether certain properties hold
at the vertex. In this case, each data point is assigned
an m-tuple (α1, α2, ..., αm), where αi represents the
probability that property i is satisfied at the vertex.
We can use segmentation techniques to determine the
boundary of regions that have certain probabilities,
and therefore satisfy certain property characteristics.

Those problems where the α values are real numbers
are the most interesting and have the greatest application in
data exploration. Generated surfaces will be smoother, and
they will more accurately represent the segment boundary.
We will extensively investigate the cases where the α val-
ues are real.

Müller [11] and Nielson and Franke [5] have defined
methods to find the separating surface in an unstructured
tetrahedral data set when each vertex is associated with
a particular “type” (i.e., exactly one of the αi = 1 for
each vertex). Their methods follow the principle of the
marching-cubes algorithm of Lorensen and Cline [10],
generating a separating surface for each tetrahedron in the
data set.

Bonnell et al.[3] have solved a more general problem
for a specific case: In multi-fluid Eulerian hydrodynam-
ics calculations, geometric approximations of fluid inter-
faces are used to form the equations of motion to advance
these interfaces correctly over time. In this application,
grid cells of the data set contain fractional volumetric in-
formation for each of the fluids. Thus, each cell C of a
grid S has an associated m-tuple (α1, α2, ..., αm) that rep-
resents the portions of each of m fluids in the cell. By
considering a “dual grid,” Bonnell et al.associate the m-
tuples with vertices of the dual grid and develop a method
that finds a (crack-free) piecewise two-manifold separat-
ing surface approximating the boundary surfaces between
the various fluids. Figure 1 illustrates the basic mapping
used in the two-dimensional case when three materials are
considered (m = 3). Given a triangle, where each ver-
tex has an associated barycentric coordinate, this trian-
gle is mapped into a 2-simplex in 3D barycentric space.
This barycentric-space simplex has the values (1, 0, 0),
(0, 1, 0), and (0, 0, 1) at the vertices. Given a Voronoi de-
composition of the 2-simplex, using the points (1, 0, 0),
(0, 1, 0), and (0, 0, 1) as the centers of the Voronoi cells,
we can map the barycentric coordinates of the vertices of
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Figure 1: Given a triangle (shaded) in a two-dimensional
grid, where each vertex vi of the triangle contains a
barycentric coordinate αi, these barycentric coordinates
are mapped a triangle contained in a 2-simplex in barycen-
tric space. The intersections (dark lines) are calculated in
barycentric space, and mapped back to the original trian-
gle.

Figure 2: A brain segmentation obtained with Bonnell’s
algorithm.

the triangle into this simplex. Calculating the intersection
of this mapped triangle with the Voronoi cells yields the
corresponding segmentation of the triangle.

Bonnell’s algorithm generalizes the work of a num-
ber of researchers [6, 14, 15, 24] who developed two-
dimensional non-C0 methods for calculating fluid inter-
faces. This method calculates a C0, potentially non-
manifold surface for a finite number of materials over a
three-dimensional tetrahedral grid. Given m fluids, the
method can potentially calculate m−1 separating surfaces
for each cell. Figure 2 illustrates a brain data set. Here,
each cell of the data set contains a 3-tuple, where the re-
spective components of the tuple indicate the presence of
gray matter, white matter, and other matter.

2.1 The General Case

In the case of four materials, it is sufficient to assume that
each vertex of T has an associated barycentric coordinate

tuple α = (α1, α2, α3, α4), where α1 +α2 +α3 +α4 = 1,
and αi ≥ 0. By considering the 3-simplex having vertices
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) in ma-
terial space, a partition of this simplex into Voronoi cells
can be defined. The boundaries of these cells are bounded
by the faces of the 3-simplex and six hyperplanes, defined
by the set of α such that (i) α1 = α2, (ii) α1 = α3, (iii)
α1 = α4, (iv) α2 = α3, (v) α2 = α4, and (vi) α3 = α4.
The resulting Voronoi partition is shown in Figure 3a.

If T is a triangle in a two-dimensional unstructured grid,
the barycentric coordinate tuples associated with the ver-
tices of T are mapped into a triangle Tα in the material
space 3-simplex. A clipping algorithm is applied to Tα to
generate intersections with the boundaries of the Voronoi
cells, by clipping against each of the six hyperplanes defin-
ing the Voronoi-cell boundaries.

Intersections can be found by a simple procedure. Sup-
pose that an edge of Tα with endpoints α(1) and α(2)

crosses the hyperplane defined by α1 = α2. If α is the
intersection point, we can compute r such that

α = (1 − r)α(1) + rα(2).

If the first two coordinates of α are equal, then

(1 − r)α(1)
1 + rα

(2)
1 = (1 − r)α(1)

2 + rα
(2)
2 ,

which allows us to calculate r directly. (See Hanson [7]
for similar methods.) Once the intersections are deter-
mined by the clipping algorithm, the polygons in Tα are
used to determine polygons in the Euclidean coordinates
of T , which represent the material boundary.

In the k-material case, a tetrahedron (triangle) T has an
associated k-simplex Tα in material space. The k-simplex
is partitioned into Voronoi cells whose boundaries consist
of the faces of the k-simplex and the

(
k
2

)
hyperplanes de-

fined by the equations αi = αj , where 1 ≤ i < j ≤ k.
The intersections of Tα with the boundaries of the Voronoi
cells are calculated performing clipping. The polygons of
Tα, determined by the clipping algorithm, are then used to
determine polygons in the Euclidean coordinates of T in
physical space, which represent the material boundary in
T .

3 Vector Field Segmentation

Segmentation of the domains of trivariate vector fields is
equally important and even more challenging than scalar
field segmentation. Classical approaches used for bivari-
ate vector field segmentation are based on constructing
the separatrix structure of a field – a set of curves in the
plane – defining regions that behave qualitatively similarly
[8, 12, 17]. For example, all points in the domain of a bi-
variate vector field that, when used as seeds for the com-
putation of streamlines, end at the same attracting focus
define a region of same topological behavior. Separatrices
are classically generated by computing the critical points



(a) (b)

Figure 3: Voronoi cell decomposition for the four-material case. The figure illustrates a three-dimensional projection of
the 3-simplex. The 3-simplex is segmented into four Voronoi cells in (a). A 3-simplex Tα, mapped from a tetrahedron T ,
is shown inside the 3-simplex in (b).

in the domain of the vector field, determining the types
of these critical points, and using numerical methods to
trace streamlines originating from so-called “originators”
[8]. Due to the need to use numerical methods [2, 13]
for streamline/separatrix approximation, results are usu-
ally subject to error, or are even wrong.

However, more interesting problems arise with three-
dimensional vector fields. Two-dimensional vector fields,
for example, are easily characterized by their critical
points. Classification of these points, and segmentation
by separatrices completely characterizes the flow of these
fields. However, three-dimensional vector fields can be ar-
bitrarily complex and might not contain any critical points.

Current three-dimensional vector field visualization
techniques are based mainly upon streamline and stream-
surface generation[8, 12]. These techniques use the defini-
tion of the vector field to trace massless particles through
the field, tracking their progress by linking them in lines
(streamlines) or surfaces (streamsurfaces). Level sets have
been used [21] to enhance streamline generation. How-
ever, the most important segmentation method for vec-
tor fields is the generation of separatrices. Separatrices
are streamsurfaces that separate the flow. Scheuermann et
al.and others [18, 22, 19, 20, 17] have done research for
separatrices in two dimensional fields, but little has been
done for three-dimensional fields [16].

Three-dimensional vector fields are tremendously com-
plex. They frequently have no critical points, and the char-
acteristic features of these fields (vortices, sheer walls,
etc.) are difficult to detect[9]. Extracting meaningful
structural information for three-dimensional vector fields
is the important problem, and we are a long way from solv-
ing it.

Classical approaches for bivariate vector field segmen-

tation are based on constructing the separatrix structure of
a field – a set of curves in the plane – defining regions
that behave qualitatively similarly [8, 12, 17]. Separatri-
ces are usually generated by computing the critical points
in the domain of the vector field, determining the types of
these critical points, and using numerical methods to trace
streamlines originating from so-called “originators” in the
field, see [8]. These streamlines form separatrices that seg-
ment the field into regions of similar topological behavior.

Unfortunately, similar techniques have not been devel-
oped for three-dimensional vector fields. Most visual-
ization techniques for three-dimensional flow fields con-
centrate on streamline and streamsurface representations,
however these techniques do not give a clear illustration of
the field’s topological behavior. More sophisticated tech-
niques use streamline analysis to extract features of the
field , such as attachment and separation lines on a bound-
ary surface. However, separatrix methods have been un-
available for the analysis of three-dimensional fields. Two
basic problems have prevented these studies: First, there
are few critical points in three-dimensional fields, and sec-
ond, the numerical marching methods to trace characteris-
tic stream surfaces are difficult to implement and can cre-
ate substantial numerical errors. In general, visualization
and classification of three-dimensional fields continues to
be an open problem.

The method presented in this paper is similar to those
that generate separatrix structures in two-dimensional
vector-fields: focusing on segmentation of the data set
based on topological structure. The algorithm is a two-
step process that partitions a vector field into regions of
topologically similar flow. First, we sample the vector
field using streamlines, and replace the original data by
a “segmented” data set. Second, a segmentation algorithm



generates separating surfaces in the field. We utilize a
“local separatrix” concept introduced by Scheuermann et
al.[18], which augments the separatrices generated from
critical points with “local separatrices” originating from
the boundary region of the data set. By segmenting the
boundary region into “inflow” and “outflow” regions, a lo-
cal separatrix is the streamline generated from a point on
the boundary where the flow is tangential. In this way,
the algorithm generates a complete separation of the field
into regions of similar flow. For visualization of massive
data sets, this algorithm can be used to determine similar
flow regions within a small region, avoiding the problem
of analyzing the complete data set.

We utilize this concept to define a segmentation of a
three-dimensional vector field into regions bounded by lo-
cal separatrices. By manipulation of a “boundary box” in
the field, we can create separating surfaces that define re-
gions of similar flow depending on inflow/outflow regions
on the boundary of the box. This allows us to place a box
in the field and generate separatrices throughout the field,
which can be visualized to determine characteristic fea-
tures of the field.

Given a three-dimensional vector field and a rectangular
boundary box B, we define a local separatrix as a stream
surface within B that is tangent to the boundary of B. The
algorithm generates these local separatrices by creating a
derived “segmented” data set by sampling the original vec-
tor field with streamlines. These streamlines terminate ei-
ther on the boundary or at a critical point. The general
idea is to assign a different characteristic marker (or prop-
erty) to each critical point in the field, and to each con-
tiguous inflow or outflow region of the boundary of B –
i.e., regions bounded by lines where the flow is tangential
on the boundary of B. Streamlines are initiated at points
throughout the data set and traced until they either reach
the boundary of B or come arbitrarily close to a critical
point. Each of the streamlines is then marked appropri-
ately. We apply the marker information to a vertex of
the data set by considering streamlines that lie close to
the vertex and assigning markers from these streamlines
to the vertex. For example, given a point p on streamline
S that has marker k, if p lies in tetrahedron T , then we
can examine the vertices of the tetrahedron to see which
is closest to p. If the closest vertex contains an m-tuple
(m1,m2, ...,mm), then we increment mk. Most vertices
will have only one non-zero marker incremented, as most
of them will not have local separatrices passing near them.
However, some will have multiple markers present.

The m-tuple of markers for each grid vertex is “normal-
ized” to generate a m-dimensional barycentric coordinate
tuple at each vertex. This resulting field where each point
is associated with a barycentric coordinate tuple is called a
segmented data set. We utilize “material interface” meth-
ods to calculate the boundaries between the regions, using
a clipping procedure in barycentric space. The result is
a set of local separatrices in the field, separating the flow
field according to the inflow and outflow regions of the

Figure 4: The inflow/outflow areas of the boundary box in
a tornado data set. The terminating tetrahedra with inflow
faces are colored red, and the ones with outflow faces are
colored blue. The terminating tetrahedra that have regions
of tangential flow are colored green. Note the circles on
the top and bottom of the box boundary. These outline the
center vortex of the tornado on the boundary of the box.

boundary.
The separating surfaces generated by this method are

local separatrices (much like those drawn by Dallmann
[4]) of the field defined by the critical points and the field
boundary. The user can use a slicing tool (or other tech-
nique) to browse through the separatrices, locating vor-
tices and other features.

4 Segmenting Vector Fields

Given a vector field defined over a three-dimensional sim-
plicial grid, we use streamlines to sample the vector field
to create a segmentation of the field. The segment bound-
aries of this field will be approximations of the local sep-
aratrices. We first mark all critical points with a unique
value (property), and identify and mark all connected in-
flow regions of the boundary. These marks are the prop-
erty values of the field. We then sample the field using
streamlines, tracing each streamline backward (see [21])
until it reaches either a critical point, or a boundary. Each
streamline is associated with a unique marker considering
its origin. Next, we transfer the marker information to the
vertices, creating barycentric coordinate tuples at the ver-
tices. By applying the segmentation algorithm presented
previously, we generate the local separatrices of the field.

4.1 Marking Boundary Cells

Streamlines terminate at the boundary of the data set, or
at a critical point. Tetrahedra lying on the boundary or
tetrahedra that contain critical points are called terminat-
ing tetrahedra. When streamlines encounter a terminating
tetrahedron, a marker is assigned to the streamline. Two
types of terminating tetrahedra exist: internal and exter-
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Figure 5: Streamline and Triangle. The points s1 and s2

cause the markers associated with p1 and p3, respectively,
to be incremented.

nal. Internal terminating tetrahedra contain critical points
[18]. External terminating tetrahedra have one or more tri-
angular faces on the domain boundary. There exist three
classifications of boundary triangles on an external termi-
nating tetrahedron: A boundary triangle is either an inflow
triangle, an outflow triangle, or it has a area of tangential
flow. A boundary triangle is an inflow triangle if each vec-
tor �v1, �v2, and �v3 associated with the vertices of the trian-
gle satisfy

�vi · �n > 0

where �n is the inward face normal of the boundary trian-
gle. Similarly, a boundary triangle is an outflow triangle
if

�vi · �n < 0.

If neither property holds, then the face contains points that
have tangential flow.

Terminating tetrahedra are marked using two methods:
Internal terminating tetrahedra are detected and marked in-
dividually while boundary external terminating tetrahedra
are marked using an area-growing approach. An unmarked
boundary terminating tetrahedron T is identified and its
type is determined. A unique mark is then generated and
assigned to T . The boundary neighbors of T are identified
and inherit the same mark if they have the same boundary
flow characteristic as T . The algorithm progresses with
the neighbor boundary tetrahedra until all boundary tetra-
hedra have been marked. Figure 4 illustrates the marking
process for terminating tetrahedra on a tornado data set.

4.2 Segmentation

We sample the flow field using streamlines. As streamlines
encounter a terminating tetrahedron T , they are assigned
the marker kT associated with T . We then retrace the
points that generate the streamline, and for each point s in-
crement the mkT

property stored at the grid vertex nearest
the point s. This is illustrated in Figure 6. Given a stream-
line point s in tetrahedron T , we calculate the barycentric
coordinate β of s in T , and increment the mkT

property in
the vertex of T that corresponds to the largest component
of β.

(p1,α1)

(p2,α2)

(p3,α3)

(p4,α4)

1

2

Separatrix

s1

s2

Figure 6: Separatrix and Triangle. Points on streamlines
on both sides of the separatrix contribute to the barycentric
coordinate tuple at a vertex. The streamline with marker 1
and the streamline with marker 2 both contribute to α2, as
the points s1 and s2 both lie closer to p2.

After sampling all streamlines, we normalize the prop-
erty values at the vertices of the grid, creating the required
barycentric coordinate tuples. The result is a segmented
data set.

5 Implementation

The algorithm is straightforward to implement and is
based upon streamline generation and interface construc-
tion.

Due to the fact that a large number of inflow/outflow
boundary regions may occur on the boundary, the barycen-
tric coordinates tuples may contain a large number of com-
ponents. However, most of the data points will be associ-
ated with only one marker. Several of the data points may
be associated with two markers near the local separatrices,
and the case where three or more markers are present will
be rare. Thus we never store the full barycentric coordi-
nate, but only those components of each coordinate that
are non-zero. This enables the algorithm to work with a
large number of “properties.”

Many three-dimensional vector fields have orbits, i.e.,
closed streamlines, that never enter a terminating cell, see
[23]. In this case, a separate “property marker” must be
used for each orbit. We have tested several heuristic algo-
rithms to detect orbits and have implemented one that cor-
rectly identifies orbits when two-tetrahedron patterns are
repeated along a streamline. This strategy seems to work
well in practice and is illustrated in the results below.

6 Results

The segmentation of a three-dimensional vector field is il-
lustrated by a computational simulation of a spherical ar-
gon bubble that is hit by a 1.25 Mach shock in the air.
The bubble is deformed through interaction with the vor-
ticity generated as the shock passes over the bubble. This



data set was generated at the Center for Computational
Sciences and Engineering at Lawrence Berkeley National
Laboratory and has been used in a variety of adaptive mesh
refinement methods (see Berger and Colella [1]). The data
set is 128×128×256 and we illustrate the field at time step
500. Here the argon bubble has deformed into a shape with
a characteristic “smoke ring.” The following figures show
the result of the segmentation algorithm on this data set.
The separatrices shown separate the flow between outflow
regions on the boundary box, and also correctly identifies
the ring with the vortices due to the turbulence. The ring
is generated by identifying orbits in the streamlines.

Figure 7 and Figure 8 give a front view of the argon
bubble flow field and the results of the segmentation algo-
rithm.

Figure 9 and Figure 10 show close-up views of the ring
identified by the segmentation algorithm.

7 Conclusions and Future Work

We have presented a new segmentation approach for sci-
entific visualization. This approach defines a derived data
set from higher-level data that allows the generation of
boundaries defining regions of interest in the data set.
The algorithm is simple to implement and can be used
on both scalar and vector quantities. This “segmentation”
approach to massive data set exploration allows the user
to focus upon regions, and interactively explore these re-
gions efficiently. The future challenge is to generate this
segmented data from multi-valued, time-varying data sets
containing scalar, vector and tensor quantities.
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