
Stacked-widget Visualization of Scheduling-based Algorithms

Tony Bernardin Brian C. Budge Bernd Hamann
Institute for Data Analysis and Visualization (IDAV)

Department of Computer Science, University of California, Davis
One Shields Avenue, Davis, California

{tbernardin,bcbudge,bhamann}@ucdavis.edu

Abstract

We present a visualization system to assist designers of scheduling-
based multi-threaded out-of-core algorithms. Our system facilitates
the understanding and improving of the algorithm through a stack
of visual widgets that effectively correlate the out-of-core system
state with scheduling decisions. The stack presents an increasing
refinement in the scope of both time and abstraction level; at the
top of the stack, the evolution of a derived efficiency measure is
shown for the scope of the entire out-of-core system execution and
at the bottom the details of a single scheduling decision are dis-
played. The stack provides much more than a temporal zoom-effect
as each widget presents a different view of the scheduling decision
data, presenting distinct aspects of the out-of-core system state as
well as correlating them with the neighboring widgets in the stack.
This approach allows designers to to better understand and more
effectively react to problems in scheduling or algorithm design.

As a case study we consider a global illumination renderer and
show how visualization of the scheduling behavior has led to key
improvements of the renderer’s performance.

CR Categories: D.2.5.b [Software/Software Engineering]:
Software Engineering—Testing and DebuggingDebugging aids;
D.4.8.d [Software/Software Engineering]: Operating Systems—
PerformanceOperational analysis; I.6.9.f [Simulation, Modeling,
and Visualization]: Visualization—Visualization techniques and
methodologies

Keywords: data visualization, task scheduling, out-of-core man-
agement, information visualization

1 Introduction

Software requires a high level of understanding on the part of the
designer in order to ensure good system performance. Often under-
standing from an algorithmic level to a software component level to
hot-spot inner loops are necessary to fully optimize an application.
In many cases, bottlenecks can be identified by directly examin-
ing algorithms used, or by employing software profilers. The com-
plexity of multi-threaded, and, in particular, non-deterministic soft-
ware, makes understanding program flow a more difficult problem;
a problem which can lead to suboptimal software performance.

One such complex software would be a system which performs task
scheduling and data management. Specifically, the system sched-
ules tasks in an environment where they can be executed on hy-
brid processing resources, namely CPUs or GPUs. The data ref-
erenced by the tasks is out-of-core, meaning much larger than the
main memory of the host computer system. The scheduler has to
ensure that data is local to the scheduling processor, moving it from
disk to system RAM, or from system RAM to video RAM when
necessary. When a processor requests a new task to be scheduled,
the scheduler utilizes information about the location of the data,
as well as task suitability to the scheduling processor as part of a
heuristic for prioritizing tasks.

In this complex scheduling system, characterizing the overall sys-
tem behavior is at least as important as optimizing individual com-
ponents. A first approach would be to instrument the software to
record global measures such as execution wall time. To retain read-
ability such information needs to be kept fairly simple if it is to
be considered directly by designers. A more successful approach
has been to record much more data than could be directly under-
stood and to use visualization to post-process it into more accessible
forms [Zernik et al. 1992; Sawant 2007; Summers et al. 2004; Cox
et al. 2005; Hummel et al. 1997; Reilly 1990]. A good visualiza-
tion for our scheduling system would provide insight into the data
flow, in particular when data movement (e.g., disk reads) cause bot-
tlenecks; the effect of one scheduling decision on future ones; side
effects due to system design choices; etc.

Smith and Munro [2002] proposed visualization techniques to il-
lustrate the distribution of the dynamic load or usage at the level
of Java classes. Their method provides snapshots of the state at
distinct points in times. Deelen et al. [2007] developed a simi-
lar approach to the problem, visualizing the system’s evolution in
time. Users can use the time lines to specify a time-frame for which
to evaluate a graph depicting the system load. Both techniques
focus on the more structural aspect of Java programs in illustrat-
ing how the components are connected to one another. Taking the
time-line visualization a step further, Moreta and Telea [2007] pre-
sented advanced rendering algorithms that allow for proper display
of complex time-lines that properly resolve sub-pixel spans. Their
visualization focuses on the understanding of dynamic memory al-
locations on small embedded systems. Mu et al. [2003] tackled
the problem of memory utilization on cluster systems using shared-
memory NUMA architectures. They presented time-line-like visu-
alizations spanning multiple views both 2D and 3D. Their 3D views
provide an additional dimension to classify the time evolution into
phases delimited by parallel synchronization primitives. In their
survey of requirements for effective software visualization Kienle
and Muller [2007] supported the use of such multiple related views.

Overwhelmingly, prior work seems to provide visualization
paradigms tuned for the analysis of single layers in the software
hierarchy, in particular finer-grained system layers (parallel-loops,
memory page accesses, etc.). The applicability of these types of
approaches to our complex scheduler was limited. This led to the
design of Lumière, a visualization system for detailed exploration
of non-deterministic scheduling systems. We propose a novel syn-



chronized stack-based-widget approach that leverages the utility of
multiple related views to provide insight across the many layers of
the analyzed software. Individual widgets display several aspects
of task scheduling in the context of both wide and narrow scopes in
time. The information presented by each widget is synchronized to
keep it relevant to the user exploration and is partially overlapped
with the one shown by neighboring widgets in the stack to allow
for easy transitioning. The details of the approach are discussed in
Section 3.

We have applied Lumière to an out-of-core global illumination ren-
derer capable of utilizing both the CPUs and the GPUs for rendering
tasks, which include ray tracing, shading, shadows, and reflection.
Most components are hybrid, and can be executed on either CPU or
GPU, while the main decision making component only runs on the
CPU. For this application, scheduling was designed for maximum
throughput, and latency for the processing of tasks was considered
unimportant unless it adversely affects throughput. The rendering
application serves two purposes: facilitating the exposition of the
scheduling system (Section 2), and evaluating the efficacy of the
visualization for understanding and improving the performance of
an application (Section 4).

2 Out-of-core Algorithms using Hybrid Re-
sources

The hybrid scheduling system which forms the central backbone of
our out-of-core applications was designed with a specific subset of
problems in mind. It understands algorithms that can mapped to
three key concepts: kernels which encapsulate the processing logic
to complete a task; static data which provides the main application
data base; and transient data which describes temporary scratchpad
data. For all components the scheduling system is agnostic to the
specific content (for data) or function (for kernels) they describe.
The scheduling system is sketched in Figure 1.

Figure 1: Data flow in our scheduling system. When work is sched-
uled, the scheduling system ensures that static data is in the correct
location in the hierarchy for execution, and that the transient data is
made available to the scheduling processor.

2.1 Data Management

The scheduling system assumes that algorithms use a large amount
of static support data. This data needs to be out-of-core. It is typi-

cally split into chunks sized such that loading them from mass stor-
age to memory as well as accessing the contained information can
be done efficiently. All other data seen by the scheduling system is
considered transient data, and is considered in-core, meaning that
the data is assumed to reside in the system’s main memory or in
dedicated device memory. This does not limit applications from
utilizing other out-of-core paradigms, however their specific ker-
nels are responsible for managing any such data. The transient data
is typically viewed by the system as defining the workload as input
and then output of kernels.

The scheduling system only sees the data as numerically labeled
raw memory buffers with a size and number of elements. Its re-
sponsibility, when a task must be executed, is to make sure that the
referenced data is made available to the appropriate processor. In
the case of transient data, for task executing on the CPU, it is only
necessary to pass the data location to the scheduled kernel. If the
task is to be executed on the GPU, however, the scheduling system
copies the transient data to the GPU, gets the corresponding GPU
memory address, and passes that to the kernel. This is done simi-
larly for static data, with the difference that it might need to be read
from disk to main memory for a CPU schedule. Because we main-
tain a two-level cache, if the data is already in system main memory
and needs to go to the GPU, the disk read is avoided. Likewise, if
the data is already on the GPU, we avoid expensive data transfer
completely with respect to static data.

2.2 Task Execution

A task corresponds to an executing kernel as well as correspond-
ing input transient data and supporting static data. The result of
processing a task is potentially new transient data to be consumed
by further kernels. A set of task queues implement the inter-kernel
communication by serving as named repositories for transient data.
They also bind the stored input to the corresponding static data
chunk. The job of the scheduling system is essentially to select
the most appropriate task queue when servicing an execution unit.

2.3 Recording Scheduling Decisions

Our visualization system is geared toward investigating and un-
derstanding the system state as the program progresses through
its execution. In order to support this, the scheduling system can
be configured to write out packets describing system state during
each scheduling decision. These packets include information about
the work pending in each task queue, the static chunks which are
cached in various levels of the hierarchy, the processor requesting
the scheduling, the time of the decision, and information about the
scheduling decision taken along with a list of all possible choices.

2.4 A Rendering Application

The application that initially motivated us to develop and refine our
visualization tool was a computer graphics application; specifically
a photo-realistic image synthesis program based on path tracing.
We were challenged to design a highly efficient approach based on
scheduling. The foundational operations of path tracing are tracing
rays, sampling light sources, shading, and computing reflections
and refractions. The algorithm is not be discussed in detail here
and we refer the reader to literature on ray tracing, path tracing, and
global illumination [Dutre et al. 2002; Shirley and Morley 2003;
Pharr and Humphreys 2004].

The algorithm is broken into several kernels which execute sep-
arate types of tasks. These include ray tracing, shadow tracing,
light source sampling, a main decision-making kernel, and sev-
eral shading kernels. Each kernel typically has one or several task



queues for transient data pending execution. The path tracer un-
derstands transient data in the form of rays, hit points, light sample
requests, shaded points, and other algorithm-specific elements. The
static data managed by the scheduler amounts to scene geometry
pre-processed into acceleration structures for ray tracing [Wald and
Havran 2006], and texture, color, and surface normal modulation
information for shading and reflection.

3 Lumière Stack Widgets

Lumière is a tool that makes possible the offline inspection of sys-
tem behavior recorded throughout the execution of multi-threaded
scheduling systems. Designers of such systems require highly de-
tailed information; for each scheduling decision, it is necessary to
be able to inspect all available choices for a full characterization,
which can provide debugging information when it is suspected that
a flawed scheduling decision was made. It is not possible to use
such detailed information alone in the context of a long execu-
tion times: many scheduled algorithms can generate several million
scheduling decisions. Thus, developers need to be able to restrict
their search to select times during execution where problematic be-
havior might be occurring.

Lumière provides layers in increasing scopes of time and coarse-
ness of information in order to overcome this issue. Each widget
presents a specialized view of the data highlighting a specific aspect
of the execution, and each widget relates to other widgets providing
enough redundancy for intuitive navigation of the data. The widgets
can also each be manipulated to adjust the view (e.g., panning or
zooming), or to highlight specific information. More specifically,
selections are restricted to picking a particular scheduling decision,
or one of the alternative choices for that decision; setting a specific
point in time, or defining a time frame of interest. These actions are
understood by all widgets and allow us to synchronize their display.

Figure 2 presents the tool in its entirety, showing all of the widgets
available. The lowest level of the stack, the Detail view, shows the
individual scheduling details for a specific scheduling event. The
Schedule view is the next level of the stack, and it shows a progres-
sion of scheduling events over time within a small, but adjustable,
time window. Level 3 of the stack shows a view of the Workload
at a scheduling event. Level 4 is a dual-layered widget showing
the Evolution of workload over time, where the bottom depicts a
zoomed-in portion of the top. This zoom-box more readily shows
the details in regions where the frequency is too high for accurate
representation in the top layer. Finally, level 5 of the stack presents
a Performance measure that graphs a metric corresponding to the
“goodness” of our scheduling ability over time. Throughout the
tool, color schemes are consistent to allow fast visual association.

3.1 Level 1: Scheduling Decision Details

The lowest level of the stack is the Detail view. It reports the raw
data recorded for each decision. On the left side, a set of buttons
display all of the possible tasks that can be run, each labeled with a
unique identifier corresponding to “kernel:queue.” The label is pre-
sented in bold face for the currently highlighted choice. To facilitate
identification, buttons are also colored based on the identifier of the
kernel. The layout reflects scheduling prioritization by arranging
choices by decreasing priority left to right and top to bottom. When
a button is clicked, the corresponding components in the other stack
views are highlighted, and the details of this task are shown in the
“details” panel of the widget.

The three panels on the right side of the widget show the memory
state of the system at the time of the scheduling decision. This state
considers the location of the static data chunks in the memory hi-

erarchy. Buttons, colored and labeled by the chunk identifiers, are
placed in one or more of the three panels depending on the resi-
dence status in main memory; the residence status in the special-
ized device memory (e.g., video RAM), or if the chunk is currently
being read from disk.

3.2 Level 2: Schedule Timeline

The scheduling timeline is a natural progression from inspecting
a single decision. It acts as an explorer for the decisions as they
happen during the run of the application, and allows visualization
of the system’s concurrency. A timeline is generated for each CPU
and GPU processing resource, as well as for a pseudo-execution
unit whose job is to read the required data from disk. The events
in the timelines are colored with respect to the kernels scheduled or
an idle marker when no tasks could be assigned.

In order to better identify sources of latencies, a set of visual cues
denotes various data transfers: clear blocks indicate that the re-
source is waiting on an asynchronous load from storage; quarter-
sized blocks are drawn for a static data transfer from system RAM
to special device RAM; and two-third-sized blocks define transfers
of transient data from system RAM to device RAM.

The timeline can be interactively panned and zoomed, and clicking
on a particular block selects the corresponding scheduling decision
in the Detail view. The selected decision is highlighted with a stip-
pled dark-red border in order to maintain a visual connection with
the other components.

3.3 Level 3: Workload Detail

The Workload widget provides an intuitive transition between the
decision-oriented bottom widgets and the workload-oriented wid-
gets at levels 4 and 5. It does this by combining the task choices
and the residence status of corresponding static data for the selected
scheduling decision. The horizontal subdivisions of the widget are
associated with static chunks. A color mark at the bottom of each
subdivision tags the chunk. The arrangement is left to right in order
of the chunk’s numeric identifier. Vertical subdivisions within each
horizontal section represent the various tasks requiring the associ-
ated chunk. The tasks are layered bottom to top in prioritized order,
and the thickness of each layer denotes the quantity of work for the
task. Finally, a color-coded highlight is drawn around the chunks’
color mark. It indicates the location of the chunk in the memory
hierarchy. No highlight means that the data is on mass storage, red
denotes main memory, green implies the device being scheduled,
blue indicates that the chunk is resident on a device other than the
one being scheduled, and the RGB color combinations represent
corresponding multiple locations.

The representation depicts the distribution of the task workload
across the data used by the application. It supports identifying
flaws in prioritization (e.g., when thicker layers appear above thin-
ner ones), as well as flaws with respect to loading of inappropriate
chunks. Users can click on any of the displayed layers to select
that specific scheduling choice from the array of available ones dur-
ing the current scheduling event. The selection is denoted by the
same dark-red stippled line as in the schedule view and synchro-
nized across widgets.

3.4 Level 4: Workload Evolution

The goal of the Evolution widget is to provide an evolving view
of the workload over the course of execution. The workload cor-
responding to each static data chunk is color-coded as in the mark



Figure 2: The stack of widgets of the Lumière tool. The layout and interconnection of the widgets allow users to drill down to problem
spots in the execution. At the top, Performance and Evolution views provide much needed context and coarse-grained viewing of a derived
performance measure contrasting it with the actual workload distribution over the referenced static data. The Workload view breaks down
this workload for a specific scheduling decision into its individual tasks. The scheduled tasks are shown in the Schedule view below, arranged
in time lines for each execution unit and the raw measured details are presented in the bottom most Detail view. The multiple views of the
synchronized state across the various layouts provide the basis for Lumière’s effectiveness.



from the Workload view. The areas are stacked from bottom to top
respective to the sequence of the chunk numeric identifiers.

Overview The top part of the widget shows a static overview of
the evolution of workload over the entire execution time. The pur-
pose is to hint at problem areas at a glance and to provide temporal
context. Users can manipulate a rectangular cut-out window by
changing its position and size. This window provides a time scope
for the timelines of the Schedule view and a zoom-in which is dis-
played in the lower half of the widget. Sometimes the resolution of
events is high enough that the Schedule view needs to be zoomed-in
further. Thus, manipulation of that widget does not provide feed-
back to the Workload widget. The exception is that the selection of
a decision in a timeline adjusts the position of the zoom-in window,
but does not resize it.

Zoom-in The zoom-in view of the widget is useful due of the high
density of workload information presented in the overall view. The
zoom-in helps to avoid clutter, and allows investigation of possible
overarching issues. Users can click within the workspace to select
a schedule choice based on the time at the clicked location. If the
position is outside the top-most area (the gray space), the choice
which was actually scheduled is selected. On the other hand, if one
of the colored areas is selected, the corresponding choice is selected
instead.

A cross-hair shows the picked location, and a highlight is placed
around the corresponding tasks workload evolution. The highlight
is useful for showcasing where work is generated and consumed for
that static data chunk.

3.5 Level 5: Performance Measure

At the highest level, at the scope of a whole program execution,
a performance metric is graphed. It presents information derived
from the recorded data rather than a display of the raw data. The
purpose of the Performance widget is to provide hints to locations
where flawed decisions or bad system behavior might be exhibited.
This performance metric is application-specific and would likely
need to be adapted to algorithms other than path tracing.

For our application, we know that disk access is the main bottle-
neck, but access patterns are difficult to predict or even detect. The
scheduler ideally should maximize reuse of static data chunks. To
reflect this, the metric for our performance measure is based on data
residence. It evaluates roughly how well the resident set of chunks
covers the workload at each decision-making event. The actual met-
ric is based on accumulating all task workloads for corresponding
static chunks, and then weighting them by the locations of those
chunks. The chosen weights are shown in Table 1.

A cursor in the form of a vertical line indicates the location in time
for the current scheduling decision, and users can click the view to
select a new scheduling time.

unit storage reading main current other
memory GPU GPU

CPU 0.0 1.250 2.0 N/A N/A
GPU 0.0 1.125 1.5 2.0 1.125

Table 1: Weights associated with the cumulative task units of a
static chunk for the residence measure. A weight is zero if the data
is on persistent storage.

4 Illuminating an Out-of-core Renderer

This section presents several examples of how Lumière was used to
analyze our out-of-core rendering system (Section 2). We describe
the process of identifying problems and discuss how some of the
issues were resolved. Our test cases span three scenes which have
3, 17, and 33 static data chunks of roughly 250 MB each. The
captured scheduling decisions number between 80 thousand to 2.3
million decisions per execution lifetime.

4.1 Honing in on Scheduling Inefficiencies

A methodology we successfully used when searching for perfor-
mance issues in the scheduling system is that of “honing in” on
problems. We started at a high-level view, and worked our way to-
ward the details. Figure 3 illustrates this process for discovering
shortcomings in our lazy data fetching strategy.

After loading the recorded data into the tool, we followed the pro-
gression of the performance metric (green line) in the Performance
widget, looking for locations where the metric indicated low effi-
ciency. At one such location, the Evolution view indicated that a
large amount of work was actually available, which should have
been a favorable case for efficiency.

To investigate, we created a zoom-box in the Evolution view and
selected a scheduling time point within that frame. This updated the
Workload view to provide the pending work’s distribution into its
different tasks. This view revealed that although a large amount of
work was available it was mostly associated with chunks that were
not resident in the memory caches. Instead the resident chunks had
very few associated pending tasks, explaining the observed dip in
the performance metric. Scheduling decisions would require the
transfer of data from mass storage.

At the same time we noted that there were segments of idle-time in
the reader process’ timeline (the central row in the Schedule view).
This insight into the reader’s underutilization suggested that a form
of data prefetching would be appropriate at that point of the ren-
derer’s execution.

Further investigation of the Workload view revealed that the next
task picked to be scheduled was not associated with the static data
chunk having the largest amount of pending work. In Figure 3 the
eighth subdivision from the left denoted that chunk, however, a task
was scheduled from the one shown in the seventh subdivision from
the right. This happened because the scheduler only considers indi-
vidual task when prioritizing. Instead, our investigation suggested
that considering collections of tasks associated with the same static
data could further minimize slow transfers from mass storage.

4.2 Windowed Dispatch of Rendering Tasks

Figure 4 shows the Evolution and Schedule views relevant to this
example. During visualization of several executions of the ren-
derer our attention was drawn to the distinct saw-tooth pattern of
the workload displayed in the global Evolution view. The very low
workload between the spikes was also disconcerting. In order to
shed some light on the situation, we used the zoomed-in view to
explore the decisions leading up to a spike.

The Schedule view showed that the eye-ray-dispatching kernel was
being run slightly ahead of each spike. The spikes were consis-
tent with the properties of the dispatcher, requiring only little input
transient data but producing a large amount of output. Specifically,
this dispatcher generated eye rays in windows of some width and
height in pixels. Moreover it required windows to be processed en-
tirely, before they could be redispatched. Because path tracing is



Figure 3: Using Lumière to find flaws in a rendering algorithm. Where the Performance view is indicating a dip in its measure, the Evolution
and Workload views show the presence of a significant amount of tasks, but they do not have resident static data. This system is not exploiting
the idle time of the static data reader (middle scheduling timeline) to improve residency of data for posted tasks.

a stochastic process, it was possible for a window to take a long
time to complete, even when the majority of its pixels had been
processed.

This led us to a design where we could dispatch more work each
time a single pixel finished processing (with some performance
trade-offs). The result is shown in Figure 5. The overall work-
load is noticeably higher. The graph still exhibits some spikes that
can be attributed to the delayed execution of the dispatcher due to
task buffering. The performance improvement from this optimiza-
tion was quite dramatic: The rendering time, which was originally
2485 seconds, was reduced to 1290 seconds.

Additionally, the change allowed us to maintain more pixels in
flight at a time, leading to even greater overall efficiency. The result
is a graph similar to the one in Figure 3, and a further decrease of
the run time to 510 seconds, corresponding to an improvement by
a factor of nearly five. The spikes can still be seen in the figure,
but they are severely muted due to the large amount of additional
concurrent work.

The evolution of the workload with the above optimization pro-
duced a new issue that is clearly displayed in the Evolution view
of Figure 3: The execution terminates in a trail where considerably

less work is processed but a large amount of time is spent process-
ing it. To some extent this behavior is actually to be expected of
the path tracing algorithm we used. In fact, Figure 5 also exhibits
it. Comparing the two figures provides us with some insight into
the nature of our optimization and the limitations of the chosen al-
gorithm. Recall that the overall rendering time was shortened from
1290 seconds in the case of Figure 5 to 510 seconds for Figure 3. In
both cases the trail actually took roughly the same amount of pro-
cessing time but the preceeding work was accelerated going from
the former to the latter.

4.3 Lock Contention on Task Queues

This example illustrates the effectiveness of the Schedule views in
highlighting problematic behavior by exposing patterns. The moti-
vation for the sequence of visualizations came from observing poor
scalability of the renderer with respect to increases in workload.
This behavior was conflicting with the core design of the schedul-
ing system. In fact, the issue was so prominent that it appeared even
when the entire static data of the scene could fit in-core.

The top of Figure 6 shows our first discovery: Transfers of rela-
tively small (maximum of 50 MB) transient data to GPU required



Figure 4: Evolution and Schedule views when using windows to
dispatch pixel computation tasks. Schedule view, from top to bot-
tom: two CPUs, one reader and two GPUs. Before each “spike”
the dispatcher kernel is executed (light-colored box with the dark,
dashed outline in the first CPU’s timeline).

Figure 5: Evolution view for a run using a pixel-based dispatcher.
“Spikes” in the workload are still present, however noticeably more
work is present between them.

disproportionately long time when compared with the actual execu-
tion of a kernel or the transfer of the much larger (≈ 250 MB) static
data chunks both from disk, and across the PCI-Express bus. For
context, the small, thin vertical bar on the third timeline represents
a disk read of static data, usually the slowest process in our system.

The transient data in question was produced by our dispatching ker-
nel running on the CPUs (the top-most two light-colored segments).
As the ray intersection kernel was the only other running kernel
(bottom timeline), we suspected that these two kernels were ad-
versely affecting each other in their producer/consumer interaction
via shared task queues.

A second experiment was performed with the GPU disabled, and
two additional CPUs for a total of four. A cut-out of the Schedule
view (bottom of Figure 6) shows a honey-comb-like pattern consis-
tent throughout the execution. The regular offsets in the schedule
times reinforced our intuition about the system behavior. As a re-
sult, we optimized the task queue data structure to reduce the po-
tential for lock contention on this centralized resource. This led to
a reduction in runtime from 700 to 113 seconds for the test scene.
An advanced software profiler likely could have directed us to the
same conclusion for this issue. The example shows that even some
“low-level” issues can be effectively found using our visualization
framework.

4.4 Error Prioritizing Chunk Residence

Although our rendering application is typically executed with both
CPUs and GPUs, it was also necessary to benchmark the system
with only CPUs. Some of these experiments provided cause for

Figure 6: Schedule views showing, top: the initial phase of a ren-
dering run with two CPUs, one reader and one GPU (top to bottom)
exhibiting suspiciously long transient data transfers; bottom: a run
with four CPUs exhibiting suspicious offsets in the times of execu-
tion.

concern as some execution runs would take significantly longer to
finish.

Figure 7 shows a sequence of Lumière views that was instrumental
in solving a scheduling issue causing the performance problem. It
also highlights the value of being able to investigate the details of
all the scheduling choices. On the left half, the Evolution, Workload
and Schedule views are presented. In the Evolution view, we first
noticed an obvious stagnation in the system’s progress after only
a short time running. We confirmed it using the Workload view at
corresponding scheduling decisions. The display of the associated
Schedule view further provided a telling interaction between the
top two CPUs and the bottom reader timelines: The CPUs spent
progressively less time in actual execution, and progressively more
time waiting for read requests to complete. Correspondingly the
reader thread serviced these requests uninterrupted.

The right side of Figure 7 presents two zoomed-in views of the
Schedule view with the corresponding Detail view. In the top half,
we selected a specific CPU read request and observed the demand
for chunk 0 to be read in order to execute kernel 14. In the bottom
half, the immediately following scheduling decision for that CPU
was selected. We observed it to be yet another read request, this
time for chunk 27. Perusing the choices, the previous task, 14:0,
was still present but having a much lower priority.

The observations led to the investigation of the prioritization code
for the scheduler. The system was properly registering the presence
of the chunk in main memory: “Cr” meaning CPU-resident, versus
“Cp” meaning CPU is pending read). However, the prioritization
was mis-ordering the choices. As a consequence, the scheduling
decisions would favor out-of-core chunks and continually thrash
the caches, only occasionally making progress.

5 Conclusions and Future Work

We have presented a visualization tool consisting of several widgets
interconnected in a stack that facilitates exploration of scheduling
data. The tool was shown to be effective in improving our under-
standing of our scheduling and rendering software. The visualiza-
tion widget stack aided in locating several implementation bugs
within the scheduler, and has also helped to pinpoint conceptual
problems with our implementation of the rendering algorithm.

Because Lumière is built to interface with a general-purpose hy-
brid out-of-core scheduling framework it can be directly used to
visualize the behavior of any algorithm implemented on top of this



Figure 7: Discovering flaws in scheduling prioritization details. On the left: Evolution, Workload and Schedule (from top to bottom, two
CPUs and one Reader) views displaying the stagnation of the renderer’s progress. On the right: zoomed-in views of the Schedule and
accompanying Detail views. For two succeeding events on the same execution unit, prioritization is erroneously favoring chunks on disk over
those resident in main memory.

framework. In particular, we used it to analyze a stochastic path
tracer. Other algorithms which would fit well include large Monte
Carlo simulations, or particle advection systems in out-of-core flow
fields. The data Lumière assumes to be captured from the consid-
ered application is fairly general. It is likely that most hybrid out-
of-core systems could easily be modified to produce it. However,
we concede that the design of the particular visualization widgets
used is focused on highlighting issues related to out-of-core data
transfers. Those were the bottlenecks most prominent in our ren-
dering application.

In the future, we would like to explore the efficacy of the Lumière
stack paradigm applied to different sets of widgets. One can imag-
ine widgets more focused on illuminating the communication be-
tween kernels, or the evolution of the memory usage. More specific
to our application, we would like to investigate better/additional
performance metrics that might be more indicative of bad behav-
ior. Some additional useful features would have been: being able
to simultaneously see all times when a given chunk is resident, or
all times when a specific kernel or task queue is scheduled; visual-
izing the durations of residency for chunks in various levels of the
memory hierarchy. The timeline display of the Schedule view might
be improved by implementing a technique similar to the cushions
proposed by Moreta et al. [2007] to improve visual quality.

Currently the system has several limitations that might be resolved.
While our software allows exploration of out-of-core algorithms,
Lumière does not itself handle out-of-core data. Future implemen-
tations should allow investigating very large captured schedule-data
from long software execution runs. Additionally, the software relies
heavily on the user’s expert knowledge of the visualized application
for locating bottlenecks; Lumière does no analysis to automatically
pinpoint specific problems. Future work could go in this direction,
however, making this analysis agnostic to the underlying applica-

tion may prove difficult. Likely this would lead to a visualization
system with different analytic plugins for distinct applications.

Finally, adding support for comparative visualization may be help-
ful. Many issues only come to light when comparing several
slightly adjusted runs of the application. Some examples of how
Lumière could support this would be to overlap performance metric
graphs of multiple executions, or synchronizing two visualizations
to the same time scale.

Acknowledgements

We would like to acknowledge funding by the Office of Sci-
ence, U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 through the Scientific Discovery through Advanced
Computing (SciDAC) program’s Visualization and Analytics Cen-
ter for Enabling Technologies (VACET) and by a United States De-
partment of Education Government Assistance in Areas of National
Need (DOEGAANN) grant No. P200A980307. Additionally, we
would like to thank the members of the Visualization and Computer
Graphics Research Group of the Institute for Data Analysis and Vi-
sualization at UC Davis.



References

COX, P., GAUVIN, S., AND RAU-CHAPLIN, A. 2005. Adding
parallelism to visual data flow programs. In Proceedings of the
ACM Symposium on Software Visualization, ACM, 135–144.

DEELEN, P., VAN HAM, F., HUIZING, C., AND VAN DE WETER-
ING, H. 2007. Visualization of dynamic program aspects. Inter-
national Workshop on Visualizing Software for Understanding
and Analysis 0, 39–46.

DUTRE, P., BALA, K., AND BEKAERT, P. 2002. Advanced Global
Illumination. A. K. Peters, Ltd.

HUMMEL, S. F., KIMELMAN, D., SCHONBERG, E., TENNEN-
HOUSE, M., AND ZERNIK, D. 1997. Using program visualiza-
tion for tuning parallel-loop scheduling. IEEE Concurrency 05,
1, 26–40.

KIENLE, H. M., AND MULLER, H. A. 2007. Requirements of
software visualization tools: A literature survey. International
Workshop on Visualizing Software for Understanding and Anal-
ysis 0, 2–9.

MORETA, S., AND TELEA, A. 2007. Visualizing dynamic memory
allocations. International Workshop on Visualizing Software for
Understanding and Analysis, 31–38.

MU, T., TAO, J., SCHULZ, M., AND MCKEE, S. A. 2003. Interac-
tive locality optimization on numa architectures. In Proceedings
of the ACM Symposium on Software Visualization, ACM, 133.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann
Publishers Inc.

REILLY, M. 1990. Presentation tools for performance visualiza-
tion: the m31 instrumentation experience. Proceedings of the
Twenty-Third Annual Hawaii International Conference on Sys-
tem Sciences 1, 307–313.

SAWANT, A. 2007. Diffarchviz: A tool to visualize correspondence
between multiple representations of a software architecture. In-
ternational Workshop on Visualizing Software for Understanding
and Analysis 0, 121–128.

SHIRLEY, P., AND MORLEY, R. K. 2003. Realistic Ray Tracing.
A. K. Peters, Ltd.

SMITH, M. P., AND MUNRO, M. 2002. Runtime visualisation of
object oriented software. International Workshop on Visualizing
Software for Understanding and Analysis 0, 81.

SUMMERS, K. L., CAUDELL, T. P., BERKBIGLER, K., BUSH,
B., DAVIS, K., AND SMITH, S. 2004. Graph visualization
for the analysis of the structure and dynamics of extreme-scale
supercomputers. Information Visualization 3, 3, 209–222.

WALD, I., AND HAVRAN, V. 2006. On building fast kd-trees for
ray tracing, and on doing that in O(N log N). In Proceedings of
IEEE Symposium on Interactive Ray Tracing, 61–69.

ZERNIK, D., SNIR, M., AND MALKI, D. 1992. Using visualiza-
tion tools to understand concurrency. IEEE Software 9, 3, 87–92.



Figure 2: The stack of widgets of the Lumière tool. The layout and interconnection of the widgets allow users to drill down to problem
spots in the execution. At the top, Performance and Evolution views provide much needed context and coarse-grained viewing of a derived
performance measure contrasting it with the actual workload distribution over the referenced static data. The Workload view breaks down
this workload for a specific scheduling decision into its individual tasks. The scheduled tasks are shown in the Schedule view below, arranged
in time lines for each execution unit and the raw measured details are presented in the bottom most Detail view. The multiple views of the
synchronized state across the various layouts provide the basis for Lumière’s effectiveness.


