
Real-time Terrain Mapping
Tony Bernardin1, Eric Cowgil2, Ryan Gold2, Bernd Hamann3,
Oliver Kreylos3, and Alfred Schmitt1

1 Institut für Betriebs- und Dialogsysteme, Universität Karlsruhe
{ug1g,aschmitt}@rz.uni-karlsruhe.de

2 Department of Geology, University of California, Davis
{cowgill,gold}@geology.ucdavis.edu

3 Institute for Data Analysis and Visualization, University of California, Davis
{hamann,kreylos}@cs.ucdavis.edu

Abstract
We present an interactive, real-time mapping system for digital elevation maps (DEMs), which
allows Earth scientists to map and therefore understand the deformation of the continental crust
at length scales of 10m to 1000 km. Our system visualizes the surface of the Earth as a 3D surface
generated from a DEM, with a color texture generated from a registered multispectral image
and vector-based mapping elements draped over it. We use a quadtree-based multiresolution
method to be able to render high-resolution terrain mapping data sets of large spatial regions
in real time. The main strength of our system is the combination of interactive rendering and
interactive mapping directly onto the 3D surface, with the ability to navigate the terrain and to
change viewpoints arbitrarily during mapping. User studies and comparisons with commercially
available mapping software show that our system improves mapping accuracy and efficiency,
and also enables qualitatively different observations that are not possible to make with existing
systems.

1998 ACM Subject Classification I.3.7 Three-Dimensional Graphics and Realism, J.2 Physical
Sciences and Engineering

Keywords and phrases Earth, Space, and Environmental Sciences Visualization, Interaction,
Terrain Visualization, Multiresolution Visualization

Digital Object Identifier 10.4230/DFU.SciViz.2010.275

1 Introduction

Understanding how continents deform is a fundamental problem in Earth science [2]. Although
the plate tectonic paradigm provides an accurate description of the behavior of oceanic crust,
the theory fails to fully explain strain distribution within continents. There are currently two
end-member views of the problem [3]. In one, continental deformation is spatially distributed
over thousands of kilometers and thus, fundamentally differs from the plate-like behavior of
the oceanic crust. In a second view, continents are mosaics of strong, rigid blocks bounded
by weak faults, and thus mimic the behavior of oceanic plates. Distinguishing between
these two views centers on determining the geometric and mechanical evolution of first-order
(≈ 1000 km long) intracontinental structural systems [3]. Do these systems of faults and folds
remain stable in space and time for tens of millions of years (oceanic-plate like), or do they
migrate, eventually producing spatially distributed deformation zones (diffuse pattern)?

Addressing this problem centers on determining how these 1000 km-long structural systems
form and evolve over geologically intermediate time scales of a few tens of thousands to
a few million years. At its core, developing this understanding requires mapping these

© T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt;
licensed under Creative Commons License NC-ND

Scientific Visualization: Advanced Concepts.
Editor: Hans Hagen; pp. 275–288

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz Center for Informatics (Germany)

http://dx.doi.org/10.4230/DFU.SciViz.2010.275
http://creativecommons.org/licenses/by-nc-nd/3.0/


276 Real-time Terrain Mapping

structural systems. Specifically, mapping means identifying and measuring the 3D orientation
of surfaces such as faults and folded layers of rock, along with the various topographic
features by which these structures may be identified, such as contorted drainage networks
or displaced ridges. Short-term deformation of a few seconds to a few thousands of years
is straightforward to characterize using active, historical or paleo earthquakes as well as
geodetic techniques such as VLBI, GPS, or InSAR. Likewise, long-term deformation that
accumulates over tens of millions of years can be measured using thermochronology and
geochronology. But understanding the intermediate record has proven difficult because it
has been difficult to map.

At such intermediate time scales, active deformation of the Earth’s surface produces
detailed (10m–100m) topographic features by which active structures may be identified and
mapped. However, such mapping has been hampered by the lack of both data and tools that
permit efficient analysis of those data over the 1000 km × 1000 km areas that span regions of
active continental deformation. In the last few years the first of these problems has been
addressed and geologists now have access to non-classified intermediate (10m–20m) and high
(1m–10m) pixel resolution DEMs and multispectral satellite or photographic imagery. The
sudden availability of these new datasets has amplified the need within the earth sciences
community for straightforward tools that provide both efficient visualization of gigabyte to
terabyte datasets and geological mapping within an interactive, 3D visualization environment.
The problem of interactive, 3D visualization of large datasets has been previously addressed
using multi-resolution and level of detail techniques [8, 7]. We expand that environment
to allow users to map on the 3D surface and compare our new application with recently
developed alternative approaches based on 3D photogrammetric techniques.

Although active structures typically deform the Earth’s surface, this surface is also under
constant attack by geomorphic processes that either destroy it via erosion or bury it via
deposition. The competition between the rates of surface deformation and destruction
results in a characteristic length scale for preserved deformed geomorphic markers, such
that markers that are a few thousand to a few million years old will typically have spatial
dimensions of a few tens to a few thousands of meters. This spatial range requires geologists
to make numerous detailed observations to fully map active structures, and therefore places
a fundamental limit on the data resolution needed to study these markers. In particular,
multispectral imagery and digital terrain data must have resolutions not coarser than 15m
and 30m, respectively. However, because the first-order structural systems are typically on
the order of 1000 km long, geologists must also make these detailed observations over very
large areas. In addition, many of the areas of active continental deformation lie in Africa,
Asia and the Middle East, where data are incomplete and/or of variable quality.

Geologists have struggled with the dilemma of making detailed, remote observations over
large areas for some time. One compromise is to use low-resolution imagery, and a second is
to conduct detailed investigations of small (10 km × 10 km) areas at a few, widely spaced
localities. Both methods give a strongly filtered view of the active deformation field. As a
result, the geomorphic record of neotectonic deformation, and thus our understanding of
how major structural systems evolve at intermediate time scales, remains largely unexplored.
In response, we have developed RIMS, a Real-time, Interactive, Mapping System. RIMS
allows geologists to visualize, and map in 3D space, structures that are active at intermediate
time scales, both in detail but also over thousand-kilometer wide zones of active continental
deformation.



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 277

2 Related Work

Prior to the development of RIMS, there were two basic methods for analysis of high
resolution, multispectral imagery and digital terrain data available to geologists. One option
was perspective views of texture data such as imagery draped over a DEM. A large number
of widely available tools allow interactive manipulation of such displays [6, 9, 10, 11, 12, 13].
Most of them do not yet appear to make use of multiresolution techniques [14]. More
importantly, it is not possible to map directly on the 3D scene. The second approach has
been to perform 3D feature extraction using a StereoGraphics Z-Screen and a photogrammetry
package [15, 16, 17].

2.1 Terrain Level-of-Detail (LOD) Algorithms
Multi-resolution visualization of large-scale 3D terrain models is an active area of research.
[1] have recently presented a technique using triangulated irregular network (TIN) patches as
drawing primitives in place of triangles. TIN patches represent terrain highly accurately and
are optimized in a preprocessing step for efficient storage and rendering and are batched to
the graphics hardware by a view-dependent algorithm. In addition, a texture tile hierarchy is
constructed to allow for multi-resolution imagery to be projected onto the terrain geometry. [4]
and [8] work with regular gridded data, considerably reducing the preprocessing requirement,
and present data management and view-dependent algorithms focusing on the real-time
generation of the triangulated mesh representation of the terrain. The former method focuses
on attaining the best fidelity in the generated approximation using complex algorithms,
whereas the latter method concentrates on the simplicity and ease of implementation of
the data management and simplification techniques. All the mentioned techniques feature
out-of-core data management enabling them to process the large data sets associated with
terrain visualization.

The terrain visualization component of our system is based on the algorithm of [7].
Quadtrees are a well-understood data structuring concept we use to uniformly represent and
manage the different components of our system (geometry, texture and mappings).

2.2 Vector Mapping and Display Systems
One of us (Cowgill) has recently developed a method for building digital stereo models (DSMs)
from 15m-pixel resolution ASTER stereoscopic imagery using only the ground control point
information provided with the Level 1A data. Individual DSMs comprise 4200 × 4200 pixel
(≈ 60 km × 60 km) images that can be mapped in 3D using StereoAnalyst (SA) [15] at scales
up to 1:20,000 (≈ 62 screen pixels to 1 image pixel). This system is limited to a plan or
bird’s eye view and does not permit a user to view the surface along a vertical cross-section,
which is a perspective that geologists rely upon heavily for analysis. In addition, the DSMs
typically have lateral variations in X and Y parallax, resulting in eye strain after a few hours
of analysis with SA. Finally, the lack of an ASTER-specific sensor model and external ground
control information restricts the DSM to a single scene, thus only a 60 km × 60 km area can
be mapped at once using SA.

To address the visualization problem of draping 2D vector data over a multi-resolution
3D terrain representation, [18] propose algorithms for rendering geometric lines adapted to
surface tessellation. Their method handles sophisticated restricted quadtree triangulations
where the representation is not fixed for a given node. Our approach employs fixed regu-
lar triangulations per node and allows for the more straightforward method presented in
Sect. 4.1.2.

Chapte r 18



278 Real-time Terrain Mapping

As an alternative to the polyline-as-geometry approach mentioned above, [5] present
techniques to render vector data using textures generated on-demand. In hopes of being less
sensitive to vector data quantity, we would like to add such a polyline-as-texture approach
to our system in the future.

3 Terrain Visualization

To be useful for netotectonic studies, a 3D mapping system must provide interactive textured
height field rendering of very large terrain data sets (above 35 k × 35 k samples) with full
roaming and viewpoint manipulation, and at the same time must provide interactive mapping
of attributed points, polylines and polygons directly on the 3D terrain model. When zoomed
in to large magnifications, the system must display height field and texture at full resolution.
The system must be able to import and export georeferenced mapping data from and to
standard GIS applications. Ideally, the system should be able to manipulate the viewpoint
at any time while placing mapping elements.

3.1 Terrain Representation
Unprocessed terrain data sets are commonly maintained as two-dimensional single or multi-
band images. In our case, one gray-scale DEM represents the height measurements for a
given longitude/latitude sampling, and other three-channel images contain the corresponding
color-information – typically either false-colors generated from the height or spectral-band
interpretations, or actual aerial photographs. The first main task of our system is to facilitate
visual exploration of such data sets by constructing and rendering appropriate 3D surface
representations.

3.1.1 Quadtrees
For rendering purposes, a terrain data set’s surface is reconstructed using triangle drawing
primitives. When rendered directly, the large and high-resolution terrain data sets required by
the application would far exceed current graphics hardware capabilities, prohibiting real-time
exploration. To address this problem, we use multi-resolution representations based on a
quadtree subdivision. A quadtree’s lowest-level nodes correspond to a tiling of a given data
set at its native resolution. Higher-level nodes contain successively coarser representations,
subsampled by a factor of two between levels. All nodes in the same tree have a fixed size of
some power of two in each dimension. By sending only appropriate nodes to the graphics
hardware (see Sect. 3.1.2), we can render very large data sets in real time while maintaining
sufficient detail for mapping purposes. When treating each tree node as an atomic entity,
the quadtree representation enables efficient frame processing, e. g., hierarchical view culling
(see Sect. 3.1.3, selecting appropriate detail level (see Sect. 3.1.2), and computing mapping
element representations (see Sect. 4.1.2).

In our system, terrain models are represented by a set of correlated quadtrees, the first
one containing the terrain’s height values, and one or more additional ones containing texture
data. These trees are generated from the unprocessed data in a preprocessing step (see
Sect. 3.2). Considering that the original height and texture data are tightly correlated, the
height and texture trees will present a node-to-node matching if generated with appropriate
node sizes. For example, using a 30m resolution DEM with a 15m resolution texture draped
over it would require a texture quad twice the size of a height quad, e. g., 128 and 64,
respectively. This tight coupling prompted us to merge the two trees leaving a single terrain



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 279

tree that needs to be maintained and processed each frame: each of its nodes contains
references to corresponding height and texture data (see Fig. 1 left). We expect this structure
to also facilitate future out-of-core management/caching and allow for quick overlaying of
compatible preprocessed textures.

3.1.2 Level-of-Detail Calculation
To effectively exploit the multi-resolution terrain representation, we need a means of evaluating
the appropriateness of a node based on a set of frame conditions. We consider a continuous
LOD value characterizing a node as perfectly fitting the conditions if it is zero. Negative
values progressively indicate the node’s resolution to be too coarse and positive values
indicitate it being too fine. Additionally, we choose a split-threshold below which nodes will
be considered for subdivision and a merge-threshold above which merging is suggested (see
Sect. 3.1.3). We make the following considerations for our LOD evaluation:

Focus and Context

When mapping, users operate locally on the terrain data, effectively defining the region of
interest. We consider each evaluated node’s distance from the manipulation cursor as a first
LOD value: at the cursor location, the finest detail is desired and the farther away from the
focus point, the coarser we are allowed to represent the terrain (see Fig. 1, top-right).

View-Distance Dependency

To explore the data, users are constantly manipulating view parameters that in turn affect
the projection of terrain tree nodes into screen space. To account for such view-specific
characteristics we consider a node’s projected pixel coverage using [8] estimation of perspective
projection dependent on the distance between the node and the viewing camera. The node’s
world-space edge-size is projected and compared to a chosen optimum for a second LOD
value: for a given view, the finest detail level discernable on screen (as specified by the
optimum) is chosen (see Fig. 1, middle-right).

In the end, the final LOD value is computed by combining the two previous ones: the
focus-LOD sets the coarsest bound, meaning that although the view would allow for more
detail to be displayed on the screen, for a node away from the focus point this does not
currently interest the user. On the other hand, the view-LOD specifies the finest bound, in
that even for the node directly under the focus point we need only render as much detail as
will be discernable in the screen projection (see Fig. 1, bottom-right).

3.1.3 Tree Maintenance
Ideally, the active tree nodes chosen for a terrain approximation would be those with a LOD
value evaluated between the split and merge thresholds. Refining recursively by starting with
the root node and subdividing nodes whose LOD values lie below the split-threshold would
in fact result in a set of leaf nodes defining a gap-less, overlay-free tiling of the terrain area.
However, cracks might appear between neighboring nodes of different resolutions due to
hanging triangle vertices (see Fig. 2). To address this problem, we modify the LOD criterion
such that direct neighbors in the active set differ at most by one level of resolution. If this
property holds for an entire tree, cracks can be removed by simple stitching at the edges of
affected nodes.

Chapte r 18



280 Real-time Terrain Mapping

Figure 1 Left: Terrain tree with height and texture data. Active tiles belonging to the current
approximation are colored, and their geometry and texture data quads are shown. Right: Level-of-
detail computation. Top: LOD is calculated based solely on the focus point (note the overly detailed
square in the middle). Middle: LOD is determined only using the view parameters. Bottom: Focus
and view LODs are combined

Splitting and Merging

Since users exploring terrain roam interactively, view parameters change little from one frame
to the next. A high inter-frame coherence can be expected and an approach similar to the
one followed by [4] is worthwhile. Instead of generating the appropriate representation by
recursive subdivision of the root (with the necessary balancing performed on the fly), the
previous representation is tweaked to conform to the new frame conditions. Our current
implementation dedicates a first traversal pass to tree maintenance using split and merge
operations, but the task could easily be left to the care of an independent thread.

The tree maintenace pass initially evaluates the LOD values of all previously active nodes.
Their new LOD values are then compared to the thresholds in order to decide whether nodes
should be kept as they are, split into their children, or merged with their siblings. Both the
split and merge operations assume a valid one-level difference terrain tree and result in a
similarly valid one. The split operation does so by recursively forcing the considered node’s
neighborhood to subdivide appropriately, whereas the merge operation only succeeds if the
siblings and neighborhood allow for the parent to become a leaf. This scheme favors showing
detail over hiding it. Additionally, before either operation can be completed, the stitching
attributes for the inserted node(s) and the neighborhood have to be corrected, i. e., coarser
nodes have to be adapted to neighboring finer ones. We use four bit-flags, one for each edge,
specifying if the corresponding edge connects to a more detailed one. We describe how these
bit-flags relate to actual mesh approximations in Sect. 3.3.

View Frustum Culling

By taking advantage of the quadtree structure, we can further reduce maintenance costs (and
later rendering time) using hierarchical view frustum culling. The tree maintenance pass
traverses the terrain tree depth-first from the root until it encounters a node that is outside
the current view frustum or a leaf node in the current approximation (as determined by the



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 281

Figure 2 Stitching between nodes. Left: Cracks can appear at the edge of neighboring nodes of
different resolutions. Right: Stitching adapts lower-resolution nodes to higher-resolution ones for
smooth transitions.

Figure 3 Quadbase preprocessing. Left: Alignment of vertex positions in a height quad (blue
dots) and texels in a texture quad (bold squares). Right: Alignment between input height data,
height quads in the same level, and height quads between levels. Black tick marks denote pixel
borders of input data, blue dots denote vertex positions in height quads, hollow dots denote “ghost
vertices” around height quads.

split and merge criteria described above). Computing the visibility of a node is done by
intersecting its bounding sphere with the view frustum. This check is very inexpensive, and
enables efficient culling of entire subtrees from the maintenance traversal if an upper-level
node is invisible. We maintain a visibility flag in each node to forward the results obtained
here to the rendering phase (see Sect. 3.3).

3.2 Quadbase Preprocessing

Available terrain data sets usually describe a continuous area at a given resolution, whereas
our program requires a multi-resolution hierarchical tiling of that area. We generate the
needed tiles off-line with our preprocessing tool and store them in a binary quadbase file.
The preprocessor first constructs a skeletal quadtree with the property that its leaf nodes
tile the input data set at its native resolution, the root node entirely covers the input data
set’s domain, and only those nodes intersecting the domain are retained. The skeletal tree
is then traversed in a bottom-up, breadth-first fashion. At each level, each node crops out
the data associated with it and appends it to the quadbase file. After all nodes in a level
are processed, the input data is resampled to the resolution appropriate for the next higher
level. To associate the image data with mesh geometry we place vertices at the centers of
pixels (see Fig. 3, left). Therefore, care must be taken to duplicate quad edge pixels where
vertices are shared for rendering. Moreover, quads produced to store height information
should additionally store border pixels to facilitate generation of vertex normals later on (see
Fig. 3, right).

Descriptive information for both the quadtree, e. g., quad resolution and number of quads,
and the contained data, e. g., upper-left corner longitude/latitude and data resolution, is
stored in an additional quadbase header file.

Chapte r 18



282 Real-time Terrain Mapping

3.3 Rendering

Mesh Representation

Whereas the preprocessed texture quads can be used directly as sources for texture objects,
the height quads have to be converted into triangulated patches of 3D vertices. The vertex
positions and texture coordinates are generated by creating a planar regular grid where
(x, y)-points are elevated using the appropriate pixel value of the height quad. Vertex texture
coordinates are calculated by linearly mapping (x, y)-coordinates into the associated texture
quad’s texture rectangle, which is identical for each texture node. The only considerable
computation comes from running a filter on a height pixel’s neighborhood to obtain vertex
normals for rendering. After being computed, the position, texture coordinates and normals
are stored in memory compactly as an interleaved vertex array. We have chosen to omit this
step from the preprocessing to keep the input data as general and independent of internal
geometric representation as possible. This approach also reduces I/O volume, making us less
dependent on slow reads from disk.

We employ a simple caching scheme for node geometry and texture data, to circumvent
having to wait for disk I/O when a previously active node becomes activated again. This
caching scheme can be enhanced for full data size-independent out-of-core rendering for very
large terrain data and limited main memory.

Rendering pass

The image corresponding to the current terrain representation is produced in a second pass
through the terrain tree. Similar to tree maintenance, a separate thread could be assigned
this task, refreshing at the graphics hardware’s rate instead of the I/O-bound update thread’s
rate. A depth-first traversal from the root finds the active nodes of the current approximation
and renders them, exploiting the hierarchical view culling maintained in the visibility bit-flag
(see Sect. 3.1.3). Additionally, we could use the quadtree structure to always draw the nodes
in front-to-back order and take advantage of the graphics hardware’s depth buffer culling.

In Sect. 3.1.3, we mention the need for neighboring rendered quads to align without cracks,
even when they do not represent the same level of detail. This affects the triangulations that
have to be generated: with one level of difference maximally possible between neighbors, we
can identify fifteen different stitching cases. For each case, we pre-compute a static index
array defining appropriate triangle strips over the vertex grid. To render a node, its vertex
data can then efficiently be sent to the graphics hardware with the appropriate index array
for the node’s stitching flag computed by the tree maintenance traversal (see Sect. 3.1.3).

4 Mapping

The real-time rendering provided by RIMS constitutes a highly valuable tool for terrain
data exploration. However, textured 3D representations are already available in common
commercial software (albeit not using multi-resolution approaches yet) and many advanced
techniques have been published. More important for our purposes is the use of the 3D terrain
model to directly and efficiently specify and edit georeferenced mapping elements. The
following section presents our program’s mapping capabilities.



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 283

Figure 4 Top: Refining a polyline by inserting a new control point. Bottom: 3D polyline
representation. Left: Line strips connecting the segment control points follow the terrain topology.
Right: Mesh representation has changed showing more detail, thus hiding the old line strips (red). A
new line strip has to be generated connecting the same control points.

Specifying 2.5D Mappings

Typically, mapping data is two-dimensional, e. g., a polyline would be specified as a list
of (longitude, latitude) control points. Our mapping tools conceptually operate on a 2D
plane by keeping this representation and dynamically assigning appropriate height values to
all control points. This approach allows for mappings to be defined independently of the
current 3D terrain approximation which, in our case, is constantly changing. Interfacing
with common GIS packages can then also be realized easily: our system supports the ASCII
ARC/INFO interchange file format for imports and exports.

Most commonly, geologists highlight features using a connected sequences of line segments,
i. e., polylines. Our system supports mapping with this primitive: controlling a cursor bound
to the terrain surface as a spatial reference, users can perform various actions such as creating,
selecting, moving and deleting control points (see Fig. 4, top).

4.1 Polyline Rendering
To display polylines we take a line-as-geometry approach similar to [18]. Combining such an
approach with the multi-resolution 3D terrain representation requires “lifting” polylines to
the 3D terrain model appropriatedly to avoid clipping with the terrain geometry (see Fig. 4,
bottom). In the following, we describe processing the polyline approximation in detail.

4.1.1 General Handling
Geometric lines, our display primitives, can only accurately follow flat surfaces, like those
defined by the triangles of the 3D terrain representation. Thus, each 2D polyline segment –
specified by a pair of 2D control points – has to be represented by a sequence of 3D line
segments, one for each triangle intersected by the 2D polyline segment. Re-computing the
appropriate 3D vertices for each frame would dramatically reduce the amount of segments
that can be visualized interactively. To address this limitation, we exploit the locality of
polyline manipulations (moving an inner control point, for example, modifies at most two
segments) and the strong frame-to-frame coherence (triangulations will only change for few
quads in each frame) by storing 3D representations for all polylines, and tweaking previously
valid representations when polyline segments are edited, or the terrain approximation changes.

Chapte r 18



284 Real-time Terrain Mapping

Table 1 Data set sizes (in pixels for DEM and texture), preprocessing times (in seconds) and
frame rates (in frames per second) for the three test data sets.

Data Set DEM Size Tex Size Build Min. fps Avg. fps Max. fps
Aksai 1850 × 900 3700 × 1800 6 s 41.2 141.6 285.7
Mosul 2558 × 2447 5115 × 4901 22 s 60.6 130.0 400.0

Puget Sound 8193 × 8193 16384 × 16384 750 s 30.1 94.2 285.7

A polyline is represented as a list of subsegments, such that each subsegment is contained
in a single currently active quadtree node. When a polyline is created or manipulated, the
sequence of subsegments is computed by clipping the 2D polyline against the domains of
all active nodes it intersects. Each active node also stores a list of subsegments associates
with it, such that when a node splits or is merged with its neighbors, the affected polyline
subsegments can be determined efficiently, and replaced with new ones appropriate for the
changed set of active nodes.

4.1.2 Subsegment Computation
The dominating computational cost of visualizing a polyline lies in the generation of line
strips for each of its subsegments, i. e., for each polyline part contained in an active quad
of the current terrain approximation; thus, a fast technique is required to maintain high
frame rates. In our case, this is facilitated by the regular triangulations within each quad.
Moreover, computing the subsegment vertices is effectively only to a 2D problem: since all
vertices of the 3D terrain approximation are extruded from the (x, y)-plane along the same
direction, we “flatten” them back onto the plane containing the 2D polylines. Intersection
points can then be computed and subsequently extruded appropriately. Thus, a very simple
algorithm similar to those used to rasterize lines to a regular pixel grid can be used with few
modifications.

5 Results

To evaluate RIMS’ performance, we simulated mapping usage on three test data sets of
different sizes. The data set sizes (as DEM size and texture size) and the preprocessing times
necessary to create the hierarchical quadbases from the input data sets are given in Table 1,
as well as the minimum, average and maximum frame rates achieved during mapping.

To evaluate the utility of RIMS, we conducted two comparison tests between the RIMS
and StereoAnalyst (SA) [15] mapping methods. The first test (see Fig.5 and 6) compares
the maximum level of geological detail that can be extracted from the data to identify the
mapping system with the highest sensitivity to detail. Geologists seek the most sensitive
system because it allows them to extract the largest amount of information and thus develop
the most sophisticated geological analysis. For this test, a user spent as much time as needed
to extract the maximum number of features over the same area. The second test (see Fig. 7)
compares the number and quality of geologic observations that can be collected in the same
finite period of time to identify the most efficient mapping system. Geologists prefer highly
efficient systems that allow them to process their data as quickly as possible. For this test, a
user spent two hours mapping the same area. In both tests, the study areas were mapped first
with SA, then with RIMS. This approach was admittedly biased, because the users had the
benefit of already having mapped the scene once at the start of their RIMS sessions. However,
both users are significantly more familiar with the SA navigation/mapping environment;



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 285

thus, their lack of familiarity with the RIMS controls likely offsets any advantage their prior
SA mapping provided.

The tests indicated that RIMS provides a number of user benefits, including reduced
eye strain, faster zoom and pan speeds, and slight advantages in the navigation. More
importantly, the tests also revealed five key differences that make RIMS more useful for
geological applications. Relative to SA, RIMS provided greater 1) understanding of the
mapped structural geometry and thus pattern of active deformation; 2) confidence in feature
identification and location; 3) numbers of mapped features (i. e., a larger number of mapping
elements); 4) mapping accuracy (i. e., a larger number of vertices per mapping element);
and 5) ability to locate and identify small features. Specific examples of each difference are
provided in the following sections, highlighting the utility of RIMS.

1. The most important difference revealed by the tests is that RIMS allowed both users to
obtain a more sophisticated understanding of the structural geometry of their areas. For
example, in Fig. 5, arrow A′ on the right-hand side of the figure points to a structure
that was obvious in the RIMS environment. The lack of a structure at arrow A on the
left-hand side of the figure indicates that the user was not able to see and interpret this
feature using SA. A RIMS screen shot (see Fig. 6, right half) clearly shows the structure
mapped at A′, and also demonstrates that it appears as an uninterpretable bump in a
plan-view stereo pair that replicates the view from SA (see Fig. 6, left half). Likewise,
additional structures were discovered at B′ and C ′ using RIMS while the corresponding
points B and C indicate that the user missed these features when using SA. In summary,
the plan (bird’s eye) view and grayscale imagery of SA made it difficult to identify the
topographic and textural variations that indicated the existence of these subtle features.

2. RIMS provided both users with higher confidence in their vector mapping, as indicated
by the type of lines selected to represent mapped features. Geologists express their
confidence in their ability to accurately locate a mapped feature by using solid, dashed,
or dotted lines (in order of decreasing confidence). Fig. 7 shows that the RIMS project
contains 20 boundaries mapped using solid lines, 2 using dashed, and 2 with dotted. In
contrast, the SA project has only 2 boundaries defined with solid lines, 21 with dashed
lines, and 1 with a dotted line.

3. Both users were able to identify a larger number of features using RIMS than SA. The
RIMS output shown in Fig. 5 has 289 mapped features whereas only 172 features were
extracted using SA. Likewise, Fig. 7 indicates that 14 major structures were defined using
RIMS, in contrast to 8 structures on the SA map.

4. RIMS allows users to more accurately locate features and then map them using more
vertices per feature because it does not demand constant manual parallax adjustments.
Because the polylines have more vertices in the RIMS outputs, they better track short
wavelength variations in the feature geometry and thus more accurately follow subtle
changes in the boundaries between geologic units. In contrast, the maps generated
from SA show a prevalence of long straight line segments. Differences in detail are
especially evident in Fig. 7 at comparison points A–A′, B–B′ and C–C ′ in SA and RIMS,
respectively.

5. Finally, RIMS is more effective for locating small geologic features. For example, a series
of river terraces located at point D′ in the RIMS output were not located at point A using
SA (see Fig. 7). Likewise, points E–E′ indicate a small outcrop that was not seen in SA
at E but that was mappable using RIMS at E′. Although these features are small, their
identification has important implications regarding the geometry of active deformation in
the mapped area.

Chapte r 18



286 Real-time Terrain Mapping

A

B

A'

B'

C'

C'
C

C C C'

Figure 5 Results of sensitivity test. Gold arrows highlight points where the maps differ signifi-
cantly, as discussed in the text. Red lines are fold hingelines and are solid where confidently located
and dashed where their position is less clear. Blue lines denote drainages. Broken black lines indicate
contacts between two different geologic units, dotted black lines are marker beds. Dashed yellow
line denotes the edge of a geomorphic surface. Brown lines indicate drainage divides. Left: Map
generated using StereoAnalyst. Right: Map generated using RIMS.

Figure 6 Subtle ridge appearing at location A–A′ in Fig. 5. Left and center: Cross-eye stereo
pair reconstructing the plan view provided by StereoAnalyst. Right: Screen shot from RIMS.

?

??

Qm

Qy
Qy

Qy

Qo

pC

pC

T

T
T

T

T

T T

pC

pC
pC

pC

pC

pC

pC

pC

pC

pC

pC T

T

Qm

Qm1

Qm2 Qm3

Qm

Qm

Qm

T

Qo

Qo

Qm

Qy

T

T

Qo

Qo

Qo

Qo
?

?

? ?
?????

?
?

?

A A'

D'
E'E

D

B B'

C C'

Figure 7 Results of efficiency test. Decorated red lines are various types of active faults. Black
lines represent folds and contacts between two different geologic units. Red and black lines are solid
where features are confidently located and dashed, dotted, or querried where position is increasingly
less clear. Solid blue lines are drainages. Text labels (pC, T, Qo, Qm#, Qy) denote units of different
apparent ages. Left: Map generated using StereoAnalyst. Right: Map generated using RIMS.



T. Bernardin, E. Cowgil, R. Gold, B. Hamann, O. Kreylos, and A. Schmitt 287

6 Conclusions and Future Work

In summary, while the tests described above show that the maps generated using both
utilities capture many of the same major geologic features, it is clear that RIMS is both a
more sensitive and a more efficient mapping utility, and thus greatly advances geologists’
ability to remotely map patterns of active defomation in fine detail while also spanning
continental collision zones that are thousands of kilometers wide and often inaccessible for
field study. The advantages of RIMS over the previously used system are mostly due to
RIMS’ interactive visualization of large textured 3D terrain models, and its ability to map
directly onto the 3D terrain in real-time.

Our future efforts will focus on moving the terrain maintenance out-of-core to allow for
more scalability. We are also looking into on-demand textures to support a higher quantity
of mappings with a more varied appearance (as seen in the results figures produced with
ArcMap). In addition, mapping capabilities are to be extended providing geologist with more
tools and help so as to more efficiently extract interesting features from the data sets.

Acknowledgments

This work was supported by the National Science Foundation under contract ACI 9624034
(CAREER Award), through the Large Scientific and Software Data Set Visualization (LSS-
DSV) program under contract ACI 9982251, through the National Partnership for Advanced
Computational Infrastructure (NPACI), and a large Information Technology Research (ITR)
grant. This work was partially supported by the W.M. Keck Center for Active Visualiza-
tion in the Earth Sciences (Keck CAVES) and NASA grant EOS/03–0663–0306. We have
benefited from conversations with Magali Billen, Louise Kellogg, and Nickolas Raterman.
We thank the members of the Visualization and Graphics Research Group at the Center for
Image Processing and Integrated Computing (IDAV) at the University of California, Davis.

References
1 P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. BDAM –

batched dynamic adaptive meshes for high performance terrain visualization. Computer
Graphics Forum, 22(3), 2003.

2 E. Cowgill, J Ramón Arrowsmith, A. Yin, X.-F. Wang, and Z. Chen. The Akato Tagh
bend along the Altyn Tagh fault, NW Tibet 2. Active deformation and the importance of
transpression and strain-hardening within the Altyn Tagh system. Geological Society of
America Bulletin, 2004.

3 E. Cowgill, A. Yin, J Ramón Arrowsmith, Xiao-Feng Wang, and Shuanghong Zhang. The
Akato Tagh bend along the Altyn Tagh fault, NW Tibet 1. Smoothing by vertical-axis
rotation and the effect of topographic stresses on bend-flanking faults. Geological Society
of America Bulletin, 2004.

4 Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles Aldrich,
and Mark B. Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes.
In Proceedings of the 8th conference on Visualization ’97, pages 81–88. IEEE Computer
Society Press, 1997.

5 Oliver Kersting and Jürgen Döllner. Interactive 3D visualization of vector data in GIS. In
Proceedings of the tenth ACM international symposium on Advances in geographic infor-
mation systems, pages 107–112. ACM Press, 2002.

6 J. M. Lees. Geotouch: Software for three- and four-dimensional GIS in the Earth sciences.
Computers and Geosciences, 26:751–761, 2000.

Chapte r 18



288 Real-time Terrain Mapping

7 Peter Lindstrom, David Koller, Larry F. Hodges, William Ribarsky, Nickolas Faust, and
Gregory Turner. Level-of-detail management for real-time rendering of phototextured ter-
rain. Technical Report 6, 1995.

8 Peter Lindstrom and Valerio Pascucci. Terrain simplification simplified: A general frame-
work for view-dependent out-of-core visualization. IEEE Transactions on Visualization and
Computer Graphics, 8(3):239–254, 2002.

9 GRASS GIS. http://grass.baylor.edu.
10 ArcScene utility in 3D Analyst extension of ArcGIS.

http://www.esri.com/software/arcgis/arcgisxtensions/3danalyst/.
11 3D SurfaceView utility in ENVI.

http://www.rsinc.com/envi/.
12 VirtualGIS module in ERDAS IMAGINE.

http://gis.leica-geosystems.com/Products/Imagine/.
13 FLY! http://www.pcigeomatics.com/product_ind/fly.html.
14 ArcGlobe, to be released in Spring 2004.

http://www.esri.com/news/arcnews/summer03articles/introducing-arcglobe.html.
15 Stereo Analyst for ArcGIS.

http://gis.leica-geosystems.com/Products/StereoAnalyst/.
16 OrthoEngine add-on for Geomatica.

http://www.pcigeomatics.com/product_ind/add_on_oe.html.
17 SOCET SET. http://www.vitec.com/products/socetset/.
18 Zachary Wartell, Eunjung Kang, Tony Wasilewski, William Ribarsky, and Nickolas Faust.

Rendering vector data over global, multi-resolution 3D terrain. In Proceedings of the sym-
posium on Data visualisation 2003, pages 213–222. Eurographics Association, 2003.


	Introduction
	Related Work
	Terrain Level-of-Detail (LOD) Algorithms
	Vector Mapping and Display Systems

	Terrain Visualization
	Terrain Representation
	Quadtrees
	Level-of-Detail Calculation
	Tree Maintenance

	Quadbase Preprocessing
	Rendering

	Mapping
	Polyline Rendering
	General Handling
	Subsegment Computation


	Results
	Conclusions and Future Work

