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Abstract. We present a new algorithm for terrain modeling based on Voronoi di-
agrams and Sibson’s interpolant. Starting with a set of scattered sites in the plane
with associated function values defining a height field, our algorithm constructs a
top-down hierarchy of smooth approximations. We use the convex hull of the given
sites as domain for our hierarchical representation. Sibson’s interpolant is used to
approximate the underlying height field based on the associated function values
of selected subsets of the sites. Therefore, our algorithm constructs a hierarchy
of Voronoi diagrams for nested subsets of the given sites. The quality of approx-
imations obtained with our method compares favorably to results obtained from
other multiresolution algorithms like wavelet transforms. For every level of reso-
lution, our approximations are C1 continuous, except at the selected sites, where
only C0 continuity is satisfied. Considering n sites, the expected time complexity of
our algorithm is O(n log n). In addition to a hierarchy of smooth approximations,
our method provides a cluster hierarchy based on convex cells and an importance
ranking for sites.

1 Introduction

Clustering techniques [7] can be used to generate a data-dependent parti-
tioning of space representing inherent topological and geometric structures
of scattered data. Adaptive clustering methods recursively refine a parti-
tioning resulting in a multiresolution representation that is of advantage for
applications like progressive transmission, compression, view-dependent ren-
dering, and topology reconstruction. For example, topological structures of
two-manifold surfaces can be reconstructed from scattered points in three-
dimensional space using adaptive clustering methods [6]. In contrast to mesh-
simplification algorithms, adaptive clustering methods do not require a grid
structure connecting data points. A cluster hierarchy is built in a “top-down”
approach, so that coarse levels of resolution require less computation times
than finer levels.

We present a Voronoi-based adaptive clustering method for terrain mod-
eling. Arbitrary samples taken from large-scale terrain models are recursively
selected according to their relevance. Continuous approximations of the ter-
rain model are constructed based on the individual sets of selected sites using
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Sibson’s interpolant [10]. We have implemented this algorithm using a De-
launay triangulation, i.e., the dual of a Voronoi diagram, as underlying data
structure. Constructing a Delaunay triangulation is simpler than construct-
ing the corresponding Voronoi diagram, since a large number of special cases
(where Voronoi vertices have valences greater than three) can be ignored. A
major drawback of Delaunay triangulations is that they are not unique, in
general. This becomes evident when the selected sites are sampled from regu-
lar, rectilinear grids such that either diagonal of a quadrilateral can be used,
resulting in random choices affecting the approximation. The corresponding
Voronoi diagram, however, is uniquely defined and can be derived directly
from a Delaunay triangulation. Sibson’s interpolant is also efficiently com-
puted from a Delaunay triangulation. The advantage of our method when
compared to Delaunay-based multiresolution methods [4] is that our approx-
imations are unique and C1 continuous almost everywhere.

2 Adaptive Clustering Approach

Adaptive clustering schemes construct a hierarchy of tesselations, each of
which is associated with a simplified representation of the data. We assume
that a data set is represented at its finest level of resolution by a set P of n
points in the plane with associated function values:

P = {(pi, fi) | pi ∈ R
2, fi ∈ R, i = 1, . . . , n}.

This set can be considered as a sampled version of a continuous function
f : D → R, where D ⊂ R

2 is a compact domain containing all points pi.
The points pi define the associated parameter values for the samples fi. We
do not assume any kind of “connectivity” or grid structure for the points pi.
For applications more general than terrain modeling, the points pi can have
s dimensions with t-dimensional function values fi, see Figure 1.
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Fig. 1. Scattered sites with associated function values.

The output of an adaptive clustering scheme consists of a number of levels
Lj , j = 0, 1, . . ., defined as

Lj = {(τ j
k , f̃ j

k , εj
k) | k = 1, . . . , nj},
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where, for every level with index j, the tiles (or regions) {τ j
k ⊆ D | k =

1, . . . , nj} form a partitioning of the domain D, the functions f̃ j
k : τ j

k → R

approximate the function values of points in the tiles τ j
k , i.e.,

f̃ j
k(pi) ≈ fi ∀pi ∈ τ j

k ,

and the residuals εj
k ∈ R ≥ 0 estimate the approximation error. In principle,

any error norm can be chosen to compute the residuals εj
k. We note that the

error norm has a high impact on the efficiency and quality of the clustering
algorithm, since it defines an optimization criterion for the approximations
at every level of resolution. We suggest to use the following norm:

εj
k =


 1

nj
k

∑
pi∈τ j

k

∣∣∣f̃ j
k(pi) − fi

∣∣∣p



1
p

, p ∈ [1,∞], (1)

where nj
k = |{pi ∈ τ j

k}| is the number of points located in tile τ j
k . In the

case of p = ∞, the residual is simply the maximal error considering all sites
in the corresponding tile. This error norm can be easily adapted to higher-
dimensional function values fi ∈ R

t by using the Euclidean norm of the
individual differences, ‖f̃ j

k(pi) − fi‖.
A global error εj with respect to this norm can be computed efficiently

for every level of resolution from the residuals εj
i as

εj =


 1

n

nj∑
k=1

∑
pi∈τ j
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(2)

Starting with a coarse approximation L0, an adaptive clustering algo-
rithm computes finer levels Lj+1 from Lj until a maximal number of clusters
is reached or a prescribed error bound is satisfied. To keep the clustering
algorithm simple and efficient, the approximation Lj+1 should differ from Lj

only in cluster regions with large residuals in Lj . As the clustering is refined,
it should eventually converge to a space partitioning, where every tile con-
tains exactly one data point or where the number of points in every tile is
sufficiently low leading to zero residuals.

3 Constructing Voronoi Hierarchies

In the following, we describe our adaptive clustering approach for multireso-
lution representation of scattered data: a hierarchy of Voronoi diagrams [1,9]
constructed from nested subsets of the original point set.
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The Voronoi diagram of a set of points pi, i = 1, . . . , n in the plane is a
space partitioning consisting of n tiles τi. Every tile τi is defined as a subset
of R

2 containing all points that are closer to pi than to any pj , j �= i, with
respect to the Euclidean norm.

Fig. 2. Planar Voronoi diagram and its dual, the (not uniquely defined) Delaunay
triangulation.

A Voronoi diagram can be derived from its dual, the Delaunay triangu-
lation [2,5,3,4], see Figure 2. The circumscribed circle of every triangle in a
Delaunay triangulation does not contain any other data points. If more than
three points are located on such a circle, the Delaunay triangulation is not
unique. The Voronoi vertices are located at the centers of circumscribed cir-
cles of Delaunay triangles, which can be exploited for constructing a Voronoi
diagram. The Voronoi diagram is unique, in contrast to the Delaunay trian-
gulation.

Our method constructs a Delaunay triangulation incrementally by succes-
sive insertion of selected points. For every point inserted, all triangles whose
circumscribed circles contain the new point are erased. The points belong-
ing to erased triangles are then connected to the new point, defining new
triangles that satisfy the Delaunay property, see Figure 3.

When inserting a point located inside a prescribed Voronoi tile, the cor-
responding tile center is incident to one or more Delaunay triangles to be
removed. Since all triangles to be removed define a connected region, point
insertion is a local operation of expected constant time complexity (and of
O(n) complexity in the extremely rare worst case).

For applications in s-dimensional spaces (s > 2), the Delaunay triangula-
tion consists of s-simplices whose circumscribed s-dimensional hyperspheres
contain no other point. Our algorithm remains valid for applications using
data defined on higher-dimensional domains.

Our adaptive clustering algorithm uses Sibson’s interpolant [10] for con-
structing the functions f̃ j

k . Sibson’s interpolant is based on blending function
values fi associated with the points pi defining the Voronoi diagram. The
blending weights for Sibson’s interpolant at a point p ∈ R

2 are computed
by inserting p temporarily into the Voronoi diagram and by computing the
areas ai that are “cut away” from Voronoi tiles τi, see Figure 4. The value of
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Fig. 3. Construction of Delaunay triangulation by point insertion. Every trian-
gle whose circumscribed circle contains the inserted point is erased. The points
belonging to removed triangles are connected to the new point.

fi

a ip

Fig. 4. Computing Sibson’s interpolant at point p by inserting p into a Voronoi
diagram and using the areas cut away from every tile as blending weights.

Sibson’s interpolant at p is defined as

f(p) =
∑

i aifi∑
i ai

.

Sibson’s interpolant is C1 continuous everywhere, except at the points pi. To
avoid infinite areas ai, we clip the Voronoi diagram against the boundary of
the compact domain D. A natural choice for the domain D is the convex hull
of the points pi.

In the following, we provide the individual steps of our clustering algo-
rithm:

(i) Construct the Voronoi diagram for the minimal point set defining the
convex hull of all points pi, i = 1, . . . , n. The tiles of this Voronoi diagram
define the cluster regions τ0

k , k = 1, . . . , n0, of level L0.
(ii) From the functions f̃ j

k , defined by Sibson’s interpolant and from error
norm (1) (p = 2), compute all residuals ε0

k. To avoid square root compu-
tations, (ε0

k)2 is stored.
(iii) Refinement: Lj → Lj+1. Let m denote the index of a maximal residual

in Lj , i.e., εj
m ≥ εj

k ∀k = 1, . . . , nj . Among all pi ∈ τ j
m, identify a data

point pmax with maximal error given by maxpi∈τ j
m
{|f̃ j

m(pi)−fi|}. Insert
pmax into the Voronoi diagram, resulting in a new tile denoted as τ j+1

nj+1
,

where nj+1 = nj + 1.
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(iv) Update εj+1
nj+1

and all residuals associated with tiles that have been mod-
ified, i.e., all tiles that are adjacent to the new tile τ j+1

nj+1
with center

pmax. (All other tiles remain unchanged, i.e., τ j+1
i = τ j

i , f̃ j+1
i = f̃ j

i , and
εj+1

i = εj
i .)

(v) Compute the global approximation error εj using the error norm given
by equation (2). Terminate the process when a prescribed global error
bound is satisfied or when a maximal number of points has been inserted.
Otherwise, increment j and continue with step (iii).

We briefly analyze the complexity of our algorithm. As stated above,
point insertion into a Delaunay triangulation is a local operation, provided
that the Voronoi tile containing the inserted point is known. Analogously,
evaluating Sibson’s interpolant at a point inside a certain Voronoi tile is
a local, expected constant-time operation. If we had an oracle providing the
order of insertion and the indices of the Voronoi tiles containing every inserted
point, our algorithm would perform in expected linear time (and in O(n2)
time in the worst case, for example when all points are nearly co-circular).

The overall computational cost of our method is determined by the cost
for computing residuals, selecting points for insertion, and keeping track of
the Voronoi tiles containing these points. When starting with a sufficiently
even distribution of original points, we can assume that every point is re-
located into a different tile on average O(log n) times. For computing the
residuals, Sibson’s interpolant is evaluated at every original point also expect-
edly O(log n) times. After locally updating the residuals, a tile with greatest
residual can be determined in expected constant time by a comparison-free
sorting algorithm like hashing. Thus, the overall expected time complexity of
our method is O(n log n).

For comparison, an algorithm constructing Delaunay triangulations and
convex hulls from the scratch (without providing a hierarchy) in expected
linear time is described by Maus [8]. A divide-and-conquer method provides
a worst-case solution with O(n log n) time complexity.

4 Numerical Results

We have applied our Voronoi-based clustering approach to approximate the
“Crater Lake” terrain data set, courtesy of U.S. Geological Survey. This data
set consists of 159272 samples at full resolution. Approximation results for
multiple levels of resolution are shown in Figure 5 and summarized in Table 1.

The quality of approximations obtained with our method compares favor-
ably to results obtained from other multiresolution algorithms like wavelet
transforms. A standard compression method, for example, uses a wavelet
transform followed by quantization and arithmetic coding of the resulting
coefficients. Using the Haar-wavelet transform for compression of the Crater-
Lake data set (re-sampled on a regular grid at approximately the same reso-
lution) results in approximation errors (for p = 2) of 0.89 percent for a 1:10
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Table 1. Approximation errors in percent of amplitude for Crater Lake. Figure 5
shows the different levels of resolution.

No. Voronoi Tiles Error (p = ∞) [%] Error (p = 2) [%]

100 31.6 3.13

200 17.1 1.96

300 16.3 1.55

400 13.9 1.33

500 11.9 1.21

1000 10.8 0.80

compression and 4.01 percent for a 1:100 compression [1]. For a Voronoi-based
compression locations of the samples need to be encoded as well.

In addition to a hierarchy of smooth approximations, our method provides
a cluster hierarchy consisting of convex cells and an importance ranking for
sites. Future work will be directed at the explicit representation of disconti-
nuities and sharp features.
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n = 100

n = 300

n = 1000n = 500

n = 200
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Fig. 5. Crater-Lake terrain data set at different levels of resolution (using p = 2).
The full-resolution data set consists of 159272 points, courtesy of U.S. Geological
Survey.
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