
A Geoscience Perspective on Immersive 3D

Gridded Data Visualization

Magali I. Billen b,∗ Oliver Kreylos c Bernd Hamann d

Margarete A. Jadamec b Louise H. Kellogg b Oliver Staadt d

Dawn Y. Sumner b

W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES)
bDepartment of Geology, University of California, Davis

cComputer Science and Engineering, University of California, Davis
dDepartment of Computer Science, University of California, Davis

Abstract

We describe visualization software, Visualizer, that was developed specifically for
interactive, visual exploration in immersive virtual reality (VR) environments. Vi-
sualizer uses carefully optimized algorithms and data structures to support the high
frame rates required for immersion and the real-time feedback required for interac-
tivity. As an application developed for VR from the ground up, Visualizer realizes
benefits that usually can not be achieved by software initially developed for the
desktop and later ported to VR. However, Visualizer can also be used on desktop
systems (unix/linux based operating systems including Mac OS X) with a similar
level of real-time interactivity, bridging the “software gap” between desktop and
VR that has been an obstacle for the adoption of VR methods in the Geosciences.
While many of the capabilities of Visualizer are already available in other software
packages used in a desktop environment, the features that distinguish Visualizer
are: 1) Visualizer can be used in any VR environment including the desktop, Ge-
oWall, or CAVE, 2) In non-desktop environments the user interacts with the data
set directly using a wand or other input devices instead of working indirectly via
dialog boxes or text input, 3) On the desktop, Visualizer provides real-time inter-
action with very large data sets that can not easily be viewed or manipulated in
other software packages. Three case studies are presented that illustrate the direct
scientific benefits realized by analyzing data or simulation results with Visualizer in
a VR environment. We also address some of the main obstacles to widespread use
of VR environments in scientific research with a user study that shows Visualizer
is easy to learn and to use in a VR environment and can be as effective on desktop
systems as native desktop applications.

Key words: 3D data visualization, virtual reality, immersive visualization,
interactive exploration

Preprint submitted to Elsevier 14 November 2007

a) Seismic tomography & grid faces b) Seismic tomography & world map

d) Alaska slab isosurface & streamlinesc) Alaska slab color slices & grid faces

Fig. 1. Examples of geoscience gridded data sets illustrating the types of data that can be viewed with
Visualizer. a) Seismic tomography model of mantle shear wave velocity with the spherical grid faces shown
(Mégnin and Romanowicz, 2000). b) Seismic tomography model with world map superimposed for geographic
reference. c) Color slices of the input viscosity structure for a subduction model of the Alaskan slab. d)
Isosurface and streamlines for a numerical simulation of mantle flow near the Alaskan slab. See Movies 1–3
for demonstration of the Visualizer software.

1 Introduction1

Geoscientists work with diverse data sets ranging in spatial scales from nanometers to thousands of2

kilometers and varying on time scales from femtoseconds to billions of years. Typically, these obser-3

vations, or the results of numerical simulations, are 3D gridded data sets: seismic tomography images4

of the Earth’s interior, finite element models of mantle convection, atmospheric mixing and oceanic5

currents, or fossils imaged in ancient rocks. Analyzing and interpreting these large volumetric data sets6

with information at multiple scales poses a significant challenge in geoscience research – one that can7

be addressed by the scientific visualization community, particularly through innovative use of interac-8

tive and immersive virtual reality (VR) environments (Lin and Loftin, 1998; Rhyne and MacEachren,9

2004; Kreylos et al., 2006b). For example, analysis of complex geodynamic simulation results from one10

∗ Corresponding Author
Email address: billen@geology.ucdavis.edu (Magali I. Billen).
URL: www.keckcaves.org (Magali I. Billen).

2

of the world’s largest supercomputers, the Earth Simulator in Japan, has been found to benefit from11

visualization and direct manipulation in a CAVE VR system (Furumura and Chen, 2004; Ohno and12

Kageyama, 2007).13

A substantial component of research in the geosciences involves identifying the most important pro-14

cesses in natural systems and developing computational models of key interactions. One efficient way15

to identify unknown processes is to look for correlations within and among data sets. Quantitative16

evaluation of correlations requires the scientist to have a detailed conceptual model of the underlying17

relationships; however, the fundamental processes are poorly constrained for many of the problems at18

the forefront of research. Thus, correlations can be extremely difficult to predict and extract mathe-19

matically. In addition, while statistical and graphical information derived from computer simulations20

or observational data are important characterizations, by their very nature, they limit the amount21

and type of information conveyed. In these cases, relationships among data are best identified by ex-22

amining data visually in a flexible, interactive environment that takes full advantage of the human23

brain’s ability to visually identify patterns, outliers and unexpected or abnormal features. Such visual24

examination of data can lead to the conceptual framework necessary to develop quantitative methods25

for further analysis.26

Different software packages provide different methods with which to display and manipulate 3D gridded27

data sets, from clicking and dragging with a mouse to entering values via a keyboard. Throughout this28

article we use the term ”interactive” to describe software that allows the user to directly manipulate29

visualization objects in real-time in a manner similar to how one would interact with a real object.30

To give two examples, 1) as opposed to the IVS 3D Fledermaus software (Fledermaus, 2007), where31

users change views by manipulating special rotation widgets with the mouse, Visualizer allows users32

to directly grab and rotate an object with the mouse or other input device, and 2) instead of entering33

the value for a desired isosurface numerically, Visualizer allows users to create isosurfaces passing34

through any point in the data’s domain by selecting a point with the mouse or other input device, and35

to drag newly created isosurfaces in real time. This type of direct interactive visualization provides36

many advantages over other visualization approaches, not the least because it is intuitive and more37

natural than other approaches. However, it also places high demands on the software to respond38

in real time and to reproduce a real-world-like virtual space for data analysis. For example, in an39

immersive environment such as a CAVE, a user can create an isosurface by touching a point in the40

data’s domain using a tracked input device such as a wand, leading to very natural interactions. On a41

desktop system, on the other hand, the software has to provide more involved interaction mechanisms42

to support intuitive and unambiguous 3D point selection using only the mouse, a 2D input device.43

In 2003 a collaboration between computational scientists and geoscientists at U.C. Davis directed at44

developing scientific visualization methods and effective systems was formed in conjunction with the W.45

M. Keck Center for Active Visualization in the Earth Sciences, KeckCAVES (http://www.keckcaves.org).46

This collaborative effort is currently concerned with a range of scientific visualization problems includ-47

ing data quality and scientific analysis of LiDAR (Light Detection And Ranging) data sets of 10–35048

GB in size (Kreylos et al., 2006a; Bawden, 2006), mapping on digital terrain data sets (Remote Interac-49

tive Mapping System (RIMS), Bernardin et al. (2006)), and model assessment and scientific analysis of50

3D gridded data (Jadamec and Billen, 2006) (Figure 1). We discuss one of the software systems emerg-51

ing from this collaboration, Visualizer, developed for analyzing 3D gridded data sets in an interactive,52

3

immersive VR environment. Although the underlying VR Toolkit that Visualizer is built on (Vrui,53

(Kreylos et al., 2006a)) is capable of interfacing with real-time simulations to visualize dynamically54

evolving objects (Tipper, 1991), Visualizer has been developed to optimize the interactive experience55

with a single, unchanging, object. This software and instructions for installation and use are available56

for free download from the KeckCAVES website (http://www.keckcaves.org/software/index.html).57

Visualization of 3D gridded data is not new, and is certainly not new to the Geosciences. For exam-58

ple, the results of 3D structures in seismic tomographic images and mantle convection models have59

commonly been presented as combinations of isosurfaces and color-mapped slices (Mégnin and Ro-60

manowicz, 2000; Tackley, 2000; Furumura and Chen, 2004; McNamara and Zhong, 2005; Wang et al.,61

2007), 3D seismic reflection-refraction data is presented as 3D rendered volumes or movies of color62

slices (Lin and Loftin, 1998; Gao, 2003; Ma and Rokne, 2004), and 3D reconstructions of fossils has63

been used to study biomechanics of extinct species (Kalvin et al., 1992; Sutton et al., 2001; Zollikofer64

and de Leon, 2005; Motani et al., 2005). However, visualization software has historically been divided65

between desktop and VR environments, forcing users to learn to use two or more applications in order66

to move between the realms. Additionally, the design of the software was focused more on producing67

a final image than facilitating exploration of the data set. In the following sections we discuss the68

motivation for developing a new software package for visualizing 3D gridded data in the Geosciences69

(sections 1.1–1.2), how this software is similar to or different from other existing software packages70

(section 2.0), how the software achieves real-time interactivity (sections 3.0–4.0), and three case studies71

and a user study illustrating how the software facilitates efficient and effective data exploration and72

analysis (section 5.0). Visualizer is a complex software package built upon a complex development73

toolkit for virtual reality applications (Kreylos, 2006). Therefore, we limit our discussion of its design74

and implementation to those aspects that users will most directly interact with, and that are essential75

for providing an intuitive environment for data exploration. As it is sometimes difficult to fully com-76

municate the experience of using this software in a CAVE environment using words and still images,77

we strongly encourage the reader to view the accompanying movies showing the software being used78

in a CAVE (Movies 1 and 3) and on the desktop (Movie 2).79

1.1 Why Use a 3D Immersive Environment?80

Research on human visual perception of the world attests to the complexity and power of human visual81

ability. We perceive a 3D world primarily through a combination of binocular vision and the use of82

motion parallax (Harris, 2004). However, the brain obtains many clues as to the depth and shape of83

objects from the surrounding environment (ground-plane, shadows, relative motion). Immersive envi-84

ronments allow scientists to take advantage of the way the brain already interprets visual information85

(Hubona and Shirah, 2005) and provides key advantages for evaluating and analyzing Earth science86

data and simulations, including use of peripheral vision to provide global context, body-centric judge-87

ments about 3D spatial relations and enhanced 3D perception from stereo and motion parallax (head88

tracking) (van Dam et al., 2000). Together these spatial indicators create a more natural environment89

and thus promote more efficient exploration of 3D data. On a regular computer screen, the strongest90

available depth cue is motion parallax. As a result, to understand 3D data from images on a screen,91

users need to constantly rotate the view or rock it back and forth to perceive depth. This motion92

4

interferes with detailed examination or measurement of the displayed data, and is not required in93

stereoscopic environments where other depth cues are available. Furthermore, immersive environments94

– offering head tracking in addition to stereoscopy – enable motion parallax without the user having95

to consciously move the 3D data: motion is simply created by moving one’s head or walking around96

the data; an intuitive response that does not interfere with analysis tasks.97

While the use of proprietary software in 3D immersive environments in industrial applications has98

spread in recent years, and despite the possible advantages for scientific discovery, the use of immersive99

technology in scientific research has not grown as quickly (van Dam et al., 2000). Several concerns100

arise in evaluating the role of 3D immersive VR for scientific applications. Is anything new learned101

from viewing data in a 3D immersive VR environment? How do we quantify what is seen? Does102

the 3D viewing provide a real advantage over viewing multiple 2D slices or 2D images on a computer103

screen? Does using a 3D immersive environment save time? Are 3D immersive environments sufficiently104

accessible/available? The answers to each of these questions vary depending on the data type, size of105

data, and type of 3D environment considered. For example, only a few academic research groups (less106

than 10) in the U. S. have regular access to a CAVE environment, but more than 500 have access107

to a GeoWall (Johnson et al., 2006). With the continued decrease in cost of stereo-capable projection108

systems based on polarization (”passive stereo”), frame interlacing (”active stereo”), or other methods,109

GeoWall-type 3D immersive environments could become commonplace. However, this will only happen110

if software is already available that is easy to use and provides all the capabilities scientists require.111

As we look to the future of larger and more complex data sets and model results, we would like to112

prepare for the time when the current ways of carrying out scientific analyses are no longer effective113

or time-efficient. Is it possible to create software for 3D immersive VR environments that is easy-114

to-use and provides an effective and efficient tool for scientific analysis? The range in types of data115

and applications found in the Earth Sciences provides an ideal testing ground for developing such116

software. We present one software system designed with this long-term perspective in mind. This117

software does not provide everything one would need or want, but it demonstrates one way of bridging118

the visualization methods we are accustomed to on the desktop to a new way of analyzing data in 3D119

immersive VR environments.120

1.2 Visualizer: 3D Volume Visualization Software.121

It has long been known that graphical representations of complicated data sets on 2D displays provide122

efficient and insightful ways of interpreting quantitative data (Tufte, 1983), but similar analysis of 3D123

data sets using 3D visualization has lagged behind. One reason may be that the design of 3D volume124

visualization software has traditionally focused on providing an environment for users to create a125

final image of a data set that is effective at communicating ideas and results (TecPlot, 2006; Vis5D,126

2006; CAVE5D, 2006). This type of visualization software usually facilitates enhancing the appearance127

of structures of interest, or synthesizing various data types, e. g., isosurface of temperature, color-128

mapped slices of viscosity or stream-tubes of fluid flow in a numerical fluid dynamics model. However,129

this design objective is focused on visualizing known structures, such as when the value of the best130

isosurface to display is already known. However, this approach does not support exploring a data131

5

set in which the features of interest are yet to be discovered. Exploring a data set visually in order132

to identify features or processes of scientific interest requires an interactive environment and real-133

time visualizations that can be modified on-the-fly. In addition to making the software adaptable to134

different geoscience applications, it must be straight-forward to load data sets of various formats into135

the software, and easy to learn and use.136

The 3D volume visualization software presented here, called Visualizer, has been specifically designed137

for highly interactive 3D VR environments and therefore follows different design principles than soft-138

ware that was originally developed for use in a 2D desktop environment (Bowman et al., 2004). For139

example: 1) navigating (picking up, rotating and translating a slice or isosurface) in a VR environment140

is simply done by moving a tracked input device, such as a wand, while pushing a button, 2) intuitive141

direct manipulation, such as creating isosurfaces by touching a seed point using a tracked input device,142

is favored over indirect methods such as entering numbers, and 3) creating isosurfaces or slices occurs143

in real time as an input device is moved through a virtual data set.144

2 Related Work145

To put Visualizer into context, and compare it to other 3D visualization software for desktop and146

immersive environments, we first discuss several desktop applications, and then several applications147

developed for VR (Table 1).148

TecPlot (TecPlot, 2006) is a commercial visualization software for 3D volume data in a desktop149

environment, and is widely used in the Earth sciences. Its main goal is the production of publication-150

quality graphs and figures, but it also contains several features that make it applicable to visual151

data analysis. Its main volume visualization elements are color-mapped slices and isosurfaces, and152

the program allows one to change the set of elements interactively. However, interaction is limited to153

entering desired isovalues into dialog boxes or dragging axis-aligned slices through a data set using154

sliders in a dialog box. The program’s response to changes is not in real time: especially changing155

an isovalue causes delays of tens of seconds before the display is updated. We found that directly156

observing the changing shape of an isosurface under varying isovalues is a very powerful analysis tool157

(see Movie 3); the fact that TecPlot does not support this style of exploration is a major limitation.158

Additionally, TecPlot’s navigation methods are limited when a user wants to explore a small feature in159

a larger data set in detail. Although TecPlot provides the usual virtual trackball interface, it can only160

rotate the data around its centroid, not around arbitrary 3D points. This, and the fact that TecPlot161

reduces the resolution of surfaces during navigation, severely limit detail analysis. TecPlot does contain162

a measurement tool to query the spatial position of and data values at arbitrary locations, but it is163

not intuitively clear how TecPlot translates a 2D mouse position into 3D space for measurement.164

Vis5D (Vis5D, 2006) is an open-source visualization software aimed at time-varying, multivariate 3D165

volume data. It is often used in the Earth sciences, especially in atmospheric science. Its main goal166

is the production of figures and animations. Vis5D’s main visualization elements are color-mapped167

slices and isosurfaces, but it also supports direct volume rendering. The level of interactivity of Vis5D168

is similar to TecPlot’s, with the same limitations for visual data analysis, but Vis5D contains some169

6

Examples of Commonly-Used Software

Software Positive Features Negative Features

Desktop Applications

TecPlot - easy to learn - enter slice location/desired isovalues into dialog box
- easy to input data - response to use changes is not real-time (>10-60 s)
- multiple input data types - image resolution reduced during rotation/translation
- measurement tools - difficult to determine location of measurement in 3D
- virtual trackball rotation (VTR) - VTR limited to rotation around data centroid

Vis5D - easy to learn - enter slice location/desired isovalues in dialog box
- measurement tools - difficult to determine location of measurement in 3D
- direct volume rendering - long rendering times for isosurfaces
- slices can be dragged through data
- VTR around screen-center
- animations

VR Environment Applications

CAVE5D - direct port of Vis5D - slices must be dragged by box corner
- slices can be dragged through data - change isosurface value in virtual dialog box

- model rotates around its centroid or user’s head
- non-intuitive navigation is difficult to learn

NASA’s - developed for VR environment - only portable to limited range of VR environments
Virtual - direct 3D manipulation of data - only one grid format for input
Wind - real-time rendering
Tunnel - seeded slices and isosurfaces

- grab space navigation
- grab space data manipulation

Table 1
Examples of visualization software commonly-used in the geoscience community summarizing some of the
positive and negative features of the software evaluated for interactive 3D visualization.

improvements: slices can be dragged by direct manipulation with the mouse, and the virtual trackball170

for navigation always rotates around the screen center, improving the user’s ability to examine small171

features in detail. Vis5D’s volume rendering feature uses a simple slice-based algorithm, and is due to172

its long rendering times is not applicable to interactive exploration.173

CAVE5D (CAVE5D, 2006) is a direct port of Vis5D to immersive environments based on the CAVE174

(Computer Assisted Virtual Environment) library (Cruz-Neira et al., 1993). It runs in VR environments175

compatible with CAVELib, and uses a CAVE wand to control the visualization. Even though CAVE5D176

was introduced in late 1995, it is still used for Earth science visualization in immersive environments,177

especially CAVEs. One reason might be that it allows scientists to visualize data on the desktop178

first using Vis5D, and then to import the visualizations into a CAVE (e.g., a four-walled immersive179

7

visualization environment).180

The development of CAVE5D from Vis5D is a good example of the challenges posed by porting181

desktop software to immersive environments. The main benefits of VR, intuitive navigation and direct182

manipulation of 3D objects, are not realized because the original desktop program does not contain183

functionality to support them. For example, Vis5D allows a user to drag a slice by manipulating it with184

the mouse, and CAVE5D uses the same mechanism, but based on a 6-DOF input device. Instead of185

just moving the device to a position of interest and pressing a button to create a slice at that position186

(or drag an existing slice), the user has to aim the device at an “interaction box” at the corner of the187

slice to drag the slice along its axis. This makes it quite difficult to change a slice while zoomed-in to188

examine a feature, and is not the most appropriate way of using a 6-DOF input device to manipulate189

a 3D object. Interestingly, isosurfaces are still changed by numerically entering a desired isovalue;190

however, since VR environments have no keyboards, users have to use the wand to enter numbers via191

a virtual 3D keypad. This style of interaction is actually less effective in a VR environment than on192

a desktop. Navigation also does not take full advantage of interaction using a 6-DOF input device:193

rotating the wand causes the data set to rotate, but not around the current position of the wand.194

Instead, the model rotates either around its centroid or the user’s head position, depending on the195

navigation mode. Both navigation modes are hard to learn, and even experienced users sometimes have196

problems moving a model in the desired way. As a result, CAVE5D is mostly used to present previously197

created visualizations in a more impressive environment, and not to create or analyze visualizations198

by interactive exploration.199

The NASA virtual wind tunnel (Bryson and Levit, 1991; Meyer and Globus, 1993; Bryson, 1996)200

is an even older application than CAVE5D, but it was directly developed for immersive environments201

and takes into account the particular benefits and constraints of VR. Its main purpose, as the name202

implies, is the analysis of computational fluid dynamics data, but it could be used for other 3D volume203

data as well. Its main visualization elements are streamlines/streaklines, particle traces, color-mapped204

slices, and isosurfaces. As opposed to CAVE5D, all visualization algorithms are optimized for direct205

3D manipulation and real-time feedback. For example, streamlines are created by directly selecting206

their starting point in 3D space, and isosurfaces are created by growing them from a selected seed207

point in space, instead of specifying their isovalue. Isosurfaces are based on time-outs, i. e., the result208

of creating a surface will be visible in the display in less than 0.1 s, enabling direct observation of an209

isosurface’s change as the seed point is dragged (see section 4.2 for description of seeded algorithms).210

Navigation is also intuitive: users can “grab space” using a 6-DOF input device, and then reposition211

the data set by moving/rotating the input device. Overall, the virtual wind tunnel is an effective visual212

analysis application. Its main limitations are that it only supports a single grid format and that it is213

only portable to a very limited range of VR environments.214

3 Interactive Exploration of 3D Volume Data215

In the development of the Visualizer software, we followed many of the design principles first exhibited216

by the NASA virtual wind tunnel (Bryson and Levit, 1991) and later described in more detail in (Sher-217

man and Craig, 2002). These design principles are summarized in Table 2 and described in more detail218

8

Key Design Features of the Visualizer Software

Element Description
Virtual Reality High Frame rates (>30 Hz) for head-tracked stereo-viewing

– Real-time response to user interaction (< 1/10 s)

Interaction Display can not ”freeze” during rendering
– intermediate results presented in < 1/10 s
– generated triangle set rendered in < 1/30 s
Direct manipulation for navigation, element creation and manipulation
– grab space ability
– point-and-click selection of visualization elements

Portability Use same software in multiple environments
– built on VRUI development tool-kit
– Visualizer is completely independent of underlying VR environment
– Optimal matching of interaction patterns to capabilities of underlying environ-
ment

Multiple Supports wide range of input data types
Grid Formats – regular (Cartesian), hexahedral (curvilinear), simplical (tetrahedral) grids, and

heterogeneous FEM meshes
– optimized visualization algorithms implemented for different data types

Table 2
Key design features in the Visualizer software required for interaction in VR environments and use in geoscience
applications.

here. Three movies also illustrate how these design principles create an efficient and effective tool for219

exploration of 3D volume data on the desktop or in a CAVE (see online supplementary material).220

The two main constraints of VR are the high frame rates upwards of 30 Hz required for head-tracked221

stereo viewing, and real-time response to any user interaction within 1/10 s (Bryson, 1996; Kreylos222

et al., 2001). These constraints influence the implementation of all visualization algorithms, whose223

“standard implementations” typically do not observe them. A standard Marching Cubes (Lorensen224

and Cline, 1987) implementation, for example, might require several seconds or minutes to generate225

millions of triangles for larger data sets. An interactive and immersive implementation of this algorithm226

must ensure that the display does not “freeze” during that time, that at least intermediate results are227

presented to the user after at most 1/10 s, and that the generated triangle set can later be rendered at228

frame rates upwards of 30 Hz (Bryson and Levit, 1991). These goals require multithreaded program-229

ming (Lewis and Berg, 1998), special algorithms such as seeded isosurfaces (Meyer and Globus, 1993;230

Kreylos et al., 2001), advanced rendering using compressed geometry or multiresolution methods (En-231

gel et al., 1999), and careful optimization of the extraction and rendering algorithms.232

The main benefits of VR are the direct 3D perception enabled by head-tracked stereoscopic displays and233

the ease with which users can select positions in 3D space using 6-DOF input devices. To fully exploit234

these benefits, visualization software has to follow a direct manipulation approach (Shneiderman,235

1983) across the entire range of functionality, from navigation over creation of visualization elements236

to quantitative analysis. If users see a feature of interest in a data set, they must be able to quickly237

9

a) Desktop b) Workbench c) Display wall d) CAVE

Fig. 2. The Visualizer application in four different VR environments: a) desktop, b) responsive workbench, c)
tiled display wall, and b) CAVE. Visualizer achieves this cross-system portability by being built on the VRUI
development toolkit (Kreylos, 2006), being completely independent of the underlying VR environment and
optimally matching interaction patterns to the capabilities of the underlying environment.

create appropriate visualization elements to explore the feature in more detail; it is not appropriate to238

first have to measure the position of or the data value at the feature, and then enter those numbers into239

text fields to create slices or isosurfaces. Instead, VR software should allow users to create elements240

by “point-and-click.” For example (Movie 3), when looking for connections between fossil structures241

in rocks, dragging the wand through the data to create isosurfaces allows the user to determine if the242

feature of interest is isolated or at what iso-value it is connected to nearby structures.243

An additional important design goal is the ability to run the visualization application effectively on a244

wide range of VR environments with different sets of input devices, including desktop environments245

with only a mouse and keyboard (Figure 2). Our experience has shown that scientists are reluctant to246

use VR software because it forces them to use a (shared) VR environment for all their analytical work,247

or become proficient with two or more different visualization applications. Being able to use the same248

VR software on the desktop or low-cost GeoWall-like environment first for preview generation and249

initial quality assessment, and then only perform important and detailed explorations in VR alleviates250

these concerns and should lead to a wider acceptance of VR methods in scientific domains. To achieve251

maximum portability, we developed Visualizer on top of the Vrui VR development toolkit (Kreylos,252

2006). Vrui supports highly interactive and high-performance VR applications that are completely253

independent of the underlying VR environment, including the type and number of available input254

devices. For example, Visualizer’s direct manipulation paradigm relies on a user’s ability to select255

arbitrary points in 3D space. In an immersive environment, this is achieved by directly touching points256

with a 6-DOF input device. On the desktop, on the other hand, users are limited to 2D interactions257

using mouse and keyboard. Here, Visualizer (through Vrui) implements 3D point selection as an258

extension of the virtual trackball-based navigation mechanism. Users can rotate the view around the259

current screen center, can translate (pan) the view parallel to the screen plane, and can translate260

(dolly) the view orthogonally to the screen plane. This means it is possible, and efficient after some261

practice, to bring any arbitrary 3D point into the screen plane, and then select it by clicking it with262

the mouse. As a result, Visualizer’s approach to data exploration works well even on desktop systems,263

and our user study, discussed in Section 5, shows that while Visualizer is very effective in a CAVE, it264

is also effective in a desktop environment – sometimes as effective, or even more so, than other native265

desktop visualization applications.266

Finally, we designed Visualizer such that it can be applied to a wide range of data formats. The differ-267

10

ences between data formats such as regular (Cartesian), hexahedral (curvilinear), simplical (tetrahe-268

dral) grids, and heterogeneous finite-element meshes are so fundamental that each normally requires269

its own implementation of all visualization algorithms (Shen and Johnson, 1995; Lorensen and Cline,270

1987). As VR software must be carefully optimized to satisfy VR’s real-time constraints, a software271

architecture should allow easy experimentation with different algorithms and data structures. For ex-272

ample, developers might have to change the representation of isosurfaces from individual triangles to273

indexed triangles or triangle strips to evaluate which performs best on a given system (Engel et al.,274

1999). If there are separate implementations of the underlying algorithms for different data formats,275

applying such changes while keeping all versions working together is a major software engineering276

challenge. As a result, most visualization programs, especially VR visualization programs, support277

only a single data format. Visualizer is based on a separation between data formats and algorithms278

that allows one to develop visualization algorithms only once, and apply them to all supported data279

formats. In fact, Visualizer only contains a single piece of code implementing its isosurface extraction280

algorithm, and this code is applied to regular, hexahedral, and tetrahedral grids (for more on isosurface281

extraction methods, see Shen and Johnson (1995); Lorensen and Cline (1987)). This data format and282

algorithm abstraction uses the C++ template mechanism (Alexandrescu, 2001; Stroustrup, 1997) to283

create highly efficient code that, according to our experiments, performs on par with, and sometimes284

out-performs, other code developed directly for a specific data format.285

4 System Architecture286

The Visualizer software was designed with maximum modularity in mind, as a toolbox of generic287

interacting components, each encapsulating a particular functionality. While it is beyond the scope of288

the paper to describe each component of the software package, we provide references which describe289

these elsewhere and focus the discussion on those aspects that the user interacts with and are directly290

related to achieving the real-time, direct manipulation of data. The lower-level components of this291

architecture have been described previously (Kreylos et al., 2001), but have since been completely292

redesigned for better performance, and the higher-level components and the module system have been293

added. The overall architecture of the new component toolbox is shown in Figure 3.294

While many of these individual components are not new to the visualization community, our contri-295

bution lies in integrating these pieces into a software package that is geared towards data exploration296

and is portable to a wide range of VR or desktop environments. Components fall into three basic297

categories: Data representation, visualization algorithms, and visualization elements. Visualizer uses298

the C++ template mechanism to combine concrete instantiations of all components required to vi-299

sualize a particular data format, and a data file reader required to load individual data set formats,300

into a visualization module. These visualization modules are packaged as external plug-ins, and loaded301

into the overall Visualizer application at run-time when a user requests loading a data file. A module302

advertises to the overall application the scalar and vector variables contained in the current data set,303

and the visualization algorithms that can be performed on it. Visualizer then creates a graphical user304

interface to allow users to select variables and algorithms and assign them to input device buttons.305

The result of executing a visualization algorithm on a data set is a visualization element, e. g., a vol-306

ume, a color-mapped slice or an isosurface. Elements are stored in a scene graph inside the Visualizer307

11

Visualization Module
G

ri
d

 S
tr

u
c
tu

re
/D

a
ta

 V
a

lu
e

s

Cell Type

Cell

Edge

Locator

Vertex

Geometry
Slice

Extractor

Isosurface

Extractor

Streamline

Extractor

Volume

Extractor

Slice

Volume

Isosurface

Streamline

Data Representation Vis. Algorithms Vis. Elements

Data File

Reader

Fig. 3. Visualizer’s system architecture. Modules are plug-ins encapsulating the data structures and algorithms
to visualize a particular data format, and are created by linking concrete instantiations of the underlying
generic components.

application and can be toggled on/off and deleted individually.308

The C++ template mechanism is very powerful for creating component architectures. As opposed to309

run-time polymorphism, where descendants of the same base class can only differ in the implemen-310

tation of virtual functions, templates allow one to additionally use different data types, supporting311

more powerful abstractions (Alexandrescu, 2001). Furthermore, templates are instantiated and linked312

at compile-time, allowing the compiler to perform full optimization on the generated code. As a result,313

generic code often performs as well as specialized code, and sometimes better than specialized C code314

due to the compiler’s ability to optimize across function calls (GCC Compiler, 2007; Alexandrescu,315

2001). To combine the benefits of high performance and run-time polymorphism, our module archi-316

tecture links sets of closely interacting components at compile-time into larger polymorphic modules317

that only loosely interact with the overall application.318

4.1 Data Representation319

The core component of all visualization modules is the representation of the visualized data set. Visu-320

alizer currently supports regular (Cartesian), curvilinear (hexahedral) and unstructured (tetrahedral)321

grid structures, commonly found in finite element simulations (Hughes, 2000). The interface between322

data representations and visualization algorithms is implemented as a set of utility classes giving ac-323

cess to the underlying geometry of a data set, i. e., the dimension and scalar type of its domain space,324

the type of its cells, currently simplices or n-dimensional cuboids, and the vertices, edges, and cells325

defining the data values and grid structure. A final accessor class, Locator, is a spatial iterator: it326

makes it possible to query data values and local grid structure at arbitrary positions inside the data327

set’s domain. Depending on the grid structure, data representation components contain acceleration328

structures to query the neighborhood relationships between cells, and to support the interface to the329

Locator.330

12

Fig. 4. Creation of a seeded isosurface. Extraction starts with the cell containing the Locator. After each cell
is processed, the algorithm determines into which neighboring cells the isosurface extends, and adds those to
the queue of pending cells. Processing the queue in order causes the isosurface to grow outwards from the cell
containing the Locator. The black and white dots denote grid vertices whose value is above and below the
isovalue (the interpolated data value at the Locator’s position), respectively.

4.2 Visualization Algorithms331

Visualization algorithms create visualization elements such as slices and isosurfaces based on the grid332

structure and data values of a data set, and the position/orientation of a Locator. Although Visualizer333

contains “global” algorithms such as isosurfaces specified by isovalue and slices specified by position334

and orientation, its user interface focuses on direct manipulation, i. e., the creation of elements based335

only on a point/orientation of interest: this is a key feature that distinguishes Visualizer from other336

VR software (Table 1). Visualizer currently supports color-mapped slices, isosurfaces, streamlines, and337

volume rendering (Hansen and Johnson, 2004). In accordance with the direct manipulation approach,338

and to provide more meaningful immediate feedback to users, most algorithms are seeded implemen-339

tations (Meyer and Globus, 1993; Kreylos et al., 2001). As illustrated in Figure 4, a seeded algorithm340

does not create visualization elements by processing an entire data set cell-by-cell, but instead starts341

element creation from the cell containing the point of interest, and traverses all other cells containing342

the same element radially outwards. This means that any intermediate results created by seeded algo-343

rithms provide local information in an area around the point of interest, and allow a user to explore a344

region of a data set by moving the point of interest while observing the change of the element’s shape345

as it is dragged along (see movies). Once the user stops dragging, the partial element is created to346

its full extent, or to the maximum number of graphics primitives the display system can render in its347

alloted frame time (see movies).348

The main benefit of a generic component architecture is that algorithms can be expressed independently349

of grid format. For example, Visualizer contains only a single implementation of isosurfaces, which is350

applied to all grid formats. By using the interfaces described in the previous section and listed in Table351

2, the isosurface algorithm only contains the logic of how to create isosurface fragments inside a single352

cell based on vertex values, how to traverse all cells containing the isosurface, and how to use timers353

to satisfy real-time constraints. Any additional required information, such as triangulation case tables,354

cell neighborhood information, and the formulas used to interpolate vertex positions/data values along355

cell edges, are provided by the data representation interface classes.356

Another benefit of a generic component architecture is the ability to provide specialized implementa-357

tions of components. For example, there are many different ways to volume-render 3D data, and some358

of the highest-performance ones only work on particular data types (Hansen and Johnson, 2004). In359

these cases it is possible to provide special-case components, and the C++ compiler will use them360

automatically when possible. For example, Visualizer’s generic volume rendering algorithm is based on361

blending color-mapped slices (Reed et al., 1996); the specialization for regular (Cartesian) grids uses362

13

hardware-assisted volume rendering based on 3D textures (Cabral et al., 1994) to achieve frame rates363

high enough for immersive visualization.364

4.3 Visualization Elements365

Visualization elements, such as color-mapped slices or isosurfaces, are produced by visualization algo-366

rithms, and stored in a scene graph (Wernecke, 1994) managed by the overall Visualizer application.367

Element components share lower-level implementations, such as triangulated surfaces optimized for368

high-performance rendering, and provide an interface for algorithms to create those in a streaming369

fashion. This additional separation of algorithms and their resulting data allows developers to opti-370

mize them separately. For example, changing the initial implementation of isosurfaces from unordered371

triangle sets to indexed triangle sets increased rendering performance substantially, and only required372

changing a single type definition inside the Isosurface component, and no changes in the Isosurface373

Extractor component. Once the superior performance of indexed triangle sets was established, we374

changed the Isosurface Extractor to generate indexed triangles internally, increasing extraction speed375

by a large factor. We expect that implementing even higher-performance surface representations will376

be not much more difficult. While such features are of no immediate interest to users, they allow devel-377

opers to more quickly and easily experiment with new algorithms or data structures, both to improve378

performance or to create new analysis tools. It is this flexibility that has enabled us to rapidly expand379

Visualizer for new scientific applications such as the ones described in Section 5.380

4.4 Visualization Modules381

A visualization module ties together all components required to visualize a particular data format,382

and a file reader to load concrete data sets from external storage. The actual code of a visualization383

module is usually very short. It only contains “glue code,” i. e., type definitions to describe the internal384

structure of the data and the required components, and the code to read grid structures and data385

values from an input file and store them in the data representation.386

The module concept is the incorporation of an approach to data handling that differs from many other387

visualization applications. Many applications, including Tecplot and Vis5D, define a “native” data388

format, and users have to convert their data to this data format in a pre-processing step. Although these389

conversions are generally simple, having to keep several versions of the same data in several formats390

wastes storage space, and conversions can lose precision, especially since most interchange formats are391

plain ASCII tables. More importantly, conversion means that it becomes impossible or inefficient to392

directly stream intermediate results from a running simulation code into a visualization application to393

monitor the process of an ongoing simulation, and potentially even manipulate simulation state on-394

the-fly (Kreylos et al., 2002). Our ultimate goal for Visualizer is to have it used in such a context; hence395

we decided not to enforce native data formats for each basic grid structure, but to give programmers396

the ability to make the simulation’s data format native to Visualizer by coding a visualization module.397

From a user’s point of view, Visualizer does not have one native data format, but as many as there are398

visualization modules. Our approach is also different from providing file reader plug-ins, which convert399

14

data file formats into an internal format. Instead, all data representation, visualization algorithm, and400

visualization element components related to a particular data format are compiled specifically for the401

data format, giving the compiler the option to optimize across component boundaries. We believe that402

our approach yields higher extraction and rendering performance.403

4.5 Overall System Architecture404

The Visualizer application itself is responsible for managing all loaded visualization module plug-ins,405

all loaded data sets, the graphical user interface that lets users select variables and algorithms, and406

the scene graph of created visualization elements. Another important component is the DataLocator407

module responsible for translating input device interactions to extracting visualization elements, as408

explained in Section 3, and for displaying intermediate extraction results for real-time feedback. Addi-409

tionally, Visualizer contains modules to measure the position of and data value at arbitrary locations,410

to edit the color maps applied to all data variables individually, and to add interactive clipping planes411

(i.e., planes that remove all 3D content behind a 3D plane defined by the user’s input, to reveal the412

internal structure of visualization elements, or previously occluded elements) to the visualization.413

4.6 Tying It All Together414

Judging by the descriptions provided in this section, it might seem that Visualizer is more of a pro-415

gramming toolkit for visualization software than an actual application aimed at end users. And this416

impression is partially true; our experience shows that VR visualization requires fine-tuned algorithms417

and data structures that sometimes depend on the particular data set to be visualized, and sometimes418

a particular scientific question requires custom analysis tools that need to be implemented at a low419

level to perform in real time. Visualizer’s component toolkit enables programmers to quickly add such420

custom algorithms, and experiment until their optimal implementation is found. Finally, reading a421

particular data set requires writing a data file reader, and the “glue” code that binds all required422

components into a visualization module.423

However, from a user’s point of view, Visualizer is a complete application for visual exploration. If424

users happen to use a data format that is already supported by a visualization module, they can read425

it directly without the need for any scripting or programming; if there is no module, they can initially426

convert their data to a supported format in the same way they previously did for other visualization427

software, or find a programmer to write a custom module for their data. In our experience, this has428

not been a barrier for a wide range of datasets.429

15

5 Evaluation430

5.1 Visualizer Performance for Interactive Virtual Exploration431

As Visualizer is designed for immersive VR environments, it is important to ask whether its imple-432

mentation satisfies the VR real-time constraints. To evaluate this, we measured its performance on433

the data set described in case 1 and used in the user study (see below and Figure 5), on a desktop434

PC with a 2.4 GHz AMD Athlon 64 X2 CPU, 1 GB of RAM, and an Nvidia Geforce 7800GS graphics435

card. The test data set is defined on a curvilinear hexahedral grid of 271× 81× 201 vertices, with two436

variables (temperature and viscosity) given for each vertex. The data set is stored in the native ASCII437

format written by the simulation code, and occupies 353.5 MB of disk space.438

On loading the data set, Visualizer needed 12.4 s to parse the input file, convert all vertex positions from439

spherical to Cartesian coordinates, calculate the decadic logarithm of the viscosity values (viscosities are440

best visualized logarithmically), and create a kd-tree, a part of the interal representation of curvilinear441

grids containing all cell centers (Preparata and Shamos, 1993), that is later used to quickly find the442

cell containing a given position. Most of this time is spent parsing the ASCII input file (creating the443

kd-tree of 4.4 million vertices takes about 3 s); storing input data as binary files reduces load times444

substantially. Afterwards, we measured how long it takes to extract the isosurface shown in Figure 5, b),445

using smooth shading with vertex normal vectors computed as data value gradients. Creating a seeded446

isosurface from the center point of the feature shown in Figure 5, c), took 304 ms and generated447

339,722 triangles. For comparison, creating a global isosurface of the same isovalue took 744 ms and448

generated 339,854 triangles (the isosurface has a small disconnected component not extracted by the449

seeded algorithm). After extraction, Visualizer was able to render either isosurface at a frame rate of450

146.8 frames/second, or 49.9 million triangles per second. During dragging, the extraction algorithm451

was able to create about 100,000 triangles before it had to stop and display the intermediate result452

due to the 0.1 s time-out; in other words, it was able to visualize a large region of the isosurface around453

the point of interest in real time.454

Performance is similar in immersive environments. Startup in our CAVE takes a few seconds longer455

since Visualizer itself and the input data set have to be replicated to all six cluster nodes, but isosurface456

extraction times are about the same. The rendering performance in the CAVE is about a factor of two457

lower, since all surfaces have to be rendered twice in each frame (once for the left eye and once for the458

right eye).459

5.2 Scientific Applications Using Visualizer: Three Case Studies460

One of the most difficult questions to address regarding 3D visualization is whether analyzing obser-461

vational or experimental data or computer simulation results in a 3D immersive environment actually462

leads to scientific understanding or results that would not have been found using more traditional463

methods on a desktop computer. While it is not possible to provide a definitive answer to this question464

for all scientific data sets, we present three examples of how using Visualizer in both immersive VR465

16

and desktop environments has impacted our own research and led to scientific understanding that was466

missed or not possible using other software or methods.467

5.2.1 Assessing 3D Simulation Input for Subduction Dynamics Models468

The interaction between tectonic plates at the Earth’s surface and convection in the mantle often469

manifests in deformation such as mountain building or rifting over long periods of time (e.g., millions470

of years). On these time scales the deformation of tectonic plates and the mantle can be modeled471

as viscous flow to gain insight into how coupling between plates, the viscosity and density structure472

of the mantle, and crustal structure contributes to observed deformation (Billen and Gurnis, 2001;473

Billen et al., 2003). Numerical simulations of deformation related to plate tectonics often incorporate474

the geometry of structures such as plate boundaries, crustal terranes or subducted lithosphere (slabs)475

for a particular study region. While 2D cross sections of regional geometries can be relatively simple,476

i.e., gently sloping faults, and smoothly varying slab dip, in 3D space these same structures can vary477

rapidly in directions that are not orthogonal to the model mesh, making them challenging to represent478

on meshes of limited resolution required for simulations. In particular, the success of iterative solution479

methods used in finite element models are strongly dependent on the smoothness of the viscosity and480

temperature field defining the tectonic plates and plate boundaries. In addition, the model simulations481

take anywhere from three days to two weeks to run on a 64-processor beowulf cluster. Therefore,482

the ability to troubleshoot problems with the input model before running the simulation can save an483

enormous amount of time and money.484

Coauthors Billen and Jadamec are using Visualizer to assess the appropriateness of input models for485

finite element simulations of crust and lithosphere deformation in southern Alaska, and to analyze the486

results of these simulations. Figure 5a–d shows the viscosity structure for a 3D model of the subducting487

Pacific plate beneath southern Alaska. The realistic 3D geometry of the subducted plate and plate488

boundary weak zone incorporated in this model is based on the seismicity within the subducting489

plate (Ratchkovski and Hansen, 2002; Page et al., 1989; Gudmundsson and Sambridge, 1998) and490

is unusual for tectonic simulations, which usually use simplified geometries. The viscosity structure491

depends on both the constructed thermal structure of the subducting Pacific plate and overriding North492

American plate, and the specification of the geometry, width, and weakening within the weak zone of493

the plate boundary. Before Visualizer was available, the thermal structure and weak zone structure were494

constructed and examined with multiple mesh-orthogonal slices using MATLAB. Because the large495

size of the data set (20 million mesh points), it was not possible to view isosurfaces of the individual496

input structures, or to overlay the structures to examine their alignment. In addition, due to the large497

amount of time required to generate and view all the slices, only a subset of mesh slices were viewed to498

assess the smoothness and appropriate superposition of the two input structures. However, from the499

examination of the individual data sets, it was concluded that the structures were correctly positioned500

relative to one-another and were appropriately smooth for input to the numerical simulation.501

Following failure of the numerical simulation to converge to a solution, the output viscosity structure502

was viewed in a CAVE environment using the Visualizer software. Isosurfaces created for multiple503

isovalues obtained by dragging the wand through the data set immediately revealed grid-aliasing prob-504

lems (stair-stepped isosurfaces from the thermal structure) and unintended holes in and protrusions505

17

a) Slices of Alaska slab temperature b) Isosurface showing grid aliasing

c) Isosurface of unwanted structure d) Unwanted holes in plate boundary

Fig. 5. Case study 1: Snapshots from input data set for finite element model of subduction (also used in user
study). a) Color-mapped slices showing cross section of a subducted slab is used to locate initial problem
features in a finite element model. b) Isosurface providing a 3D view of the subducting tectonic plate struc-
ture with stair-step aliasing on grid. c) Close-up view of a ”problem feature” protruding from slab surface.
d) Close-up view of a second problem feature, holes in the isosurface of the slab edge. See also Movies 1 and
2.

from the tectonic plate (Figure 5b–d). Dragging slices through the data set also illustrated the holes506

and protrusions in these regions. These unintended features were located in regions where the radius507

of curvature of the subducting plate was small and so changed rapidly with respect to the underlying508

mesh. These features indicated that the failure of the model simulation to converge was a result of the509

challenges in constructing the realistic 3D plate boundary zone geometry, rather than a limitation of510

the iterative solver or finite element scheme. Based on analysis of the location and type of unintended511

structures, a new method of smoothly defining the thermal structure and weak zone geometry was512

implemented. Visualizer was used to quality-check the input data set before running the simulation.513

The ability to drag isosurfaces that could be viewed in real time from multiple perspectives and to514

drag slices through the data set for any orientation provided an efficient method of visually inspecting515

the entire model input data set and make improvements before running the model. The newly con-516

structed model input was then used for the simulation, which converged on a solution for the flow and517

deformation associated with the subducting Pacific plate beneath Alaska (Figure 1c, d).518

In this application, the interactivity built into Visualizer is the key advantage over other available519

software. The ability to recognize the features of interest were similar on a desktop computer and in520

the CAVE. However, both environments were used for different tasks. The immersive VR environment521

was used when discussion of the causes of features and decisions on how to modify the input model were522

made by more than one person. The desktop version was used to quickly check the result of incremental523

18

c) Poincare section
0.6

0.5

0.4

0.3

0.2

0.1
0

0.50.40.30.20.10

a) Space-filling streamline b) Closed-path streamline

Fig. 6. Case study 2: Using the streamline visualization tool to investigate a 3D steady velocity field. (a)
A particle path that appears space-filling. The plane shows the horizontal velocity near the top edge of the
calculation; the spreading center and transform faults are visible. (b) Use of the streamline tool to explore
the field reveals a contained region. This particle path has the same number of timesteps as the path in (a).
(c) The Poincaré section shows crossing points for particle paths in the two regions shown in (a) and (b). The
small area covered by the contained particle path (red) makes it difficult to find this feature without the use
of Visualizer.

changes made to the procedure and methods used to make the input model. The flexibility of being524

able to use Visualizer in either environment, while preserving the interactivity developed for use in an525

immersive environment in the desktop environment, proved to be another key advantage over other526

software.527

5.2.2 Locating Closed Particle Paths in Chaotic 3D Flow Beneath Spreading Ridges528

Convection in the mantle is responsible for mixing material that is recycled at subduction zones;529

to interpret the different geochemical signatures of mantle-derived basalts one must understand the530

extent and timescales of mantle mixing (Kellogg and Turcotte, 1990; Kellogg, 1992). Mixing in 2D has531

been studied extensively, for example (Gurnis, 1986; Christensen, 1989; Kellogg, 1992), but studies of532

mixing in 3D models of mantle flow have been limited by the few available methods for visualizing533

and analyzing the flow in general and the resulting mixing in particular. Mixing in 2D incompressible534

flows may be quite different from 3D mixing. For example, in steady-state flows in 2D space, the flow535

is characterized by closed particle paths (Ottino, 1989); efficient mixing requires time-varying flow536

(McKenzie, 1979; Olson et al., 1984) and chaotic particle paths can only develop in time-dependent537

flows (Christensen, 1989; Kellogg and Stewart, 1991; Kellogg, 1992). In contrast, in steady-state 3D538

flows with both a toroidal and poloidal component, chaotic particle paths have been found (Ferrachat539

and Ricard, 1998; van Keken and Zhong, 1999). Moreover, turbulent mixing can coexist with regions540

of laminar flow in which mixing is inefficient (Ferrachat and Ricard, 1998).541

One method for finding nonchaotic regions embedded in a chaotic flow is based on constructing Poincaré542

sections, in which the crossing points of a particle path are plotted on a plane bisecting the flow. The543

nonchaotic paths will form a regular pattern of points restricted to a limited region of the plane. This544

method requires a certain amount of serendipity in that the Poincaré plane must cross the non-chaotic545

paths, and the particle paths selected must include the nonchaotic paths. In exploring a simplified546

19

50 mm

b) Microbial structurea) Rock surface

1 mm

c) Isolated inclusion

Fig. 7. Structure of fossil mats and biofilms in rocks. a) Reconstructed 3D volume of scanned thin sections
of a rock. b) Color image of microbial structure in rock. c) Isolated inclusion of microbial material. See also
Movie 3.

model of mantle flow beneath a spreading center with transform faults, co-author Kellogg found no547

non-chaotic particle paths using the Poincaré method. However, after a few minutes of exploration548

of the velocity data field using a streamline tool that interactively updates particle path stream lines549

emanating from the wand, closed loop paths were discovered (Figure 6a,b). Starting at the point550

specified by the user using the wand, Visualizer numerically integrates the velocity field to obtain a551

particle path. (The user specifies the time-step used and number of steps in the integration.) These552

paths occupy a small volume of space and are not single closed loop paths, which makes them difficult553

to locate using traditional methods. Once the appropriate particle paths were identified, we were able554

to use Poincaré sections to compare the structure to results from previous work (Figure 6c).555

In this application, using Visualizer in an immersive environment provides both the interactivity needed556

to thoroughly explore the 3D data set and the 3D viewing experience that allows the multiple streamline557

paths to be viewed without the clutter of overlapping paths seen in the figure.558

5.2.3 Exploration of Intricate Fossil Microbialites559

The morphology of some microbial communities provides information about the organization and560

behavior of the microbes forming the mats and biofilms. These structures are sometimes preserved561

in ancient rocks and therefore are a record of early life on Earth. To use morphology to constrain562

the early evolution of life, the structures in ancient rocks much be quantitatively compared to those563

created by specific microbial processes and a precise understanding of the 3D geometry of intricate564

structures is needed. This requires the reconstruction of the morphology of ancient structures and565

the measurement of relevant features. Co-author Sumner is using Visualizer to characterize Archean566

fenestrate microbialites (Sumner, 1997, 2000). The reconstruction of microbialite samples is done by567

successively polishing 20 µm off the surface of a sample and scanning each new surface. Scanned images568

are aligned and assembled to define a reconstructed 3D volume (Figure 7a, Movie 3). Visualization569

consists of rendering the volume and using a number of tools to manipulate views of the data. For570

this application, the structure of the ancient microbial community is most effectively visualized by571

20

rendering mineral components (white to light gray) fully transparent and microbial components (black572

to dark gray) in color with variably transparency (Figure 7b). Visualization of the volume in a non-573

stereo system provides significantly improved understanding of the structures over observing successive574

opaque images. Visualization in a 3D immersive environment provides even more substantial increases575

in understanding over non-stereo volume visualization, in addition to enabling precise measurement of576

features.577

One significant advantage of stereo volume visualization is the ability to investigate data and see it in578

3D space while it is not moving. With non-stereo 3D visualization, one must continually manipulate the579

volume and use parallax to comprehend the full geometry of structures. This motion obscures details in580

the data; the user must remember the spatial relationships when viewing fine details in a static image,581

which is a significant challenge. For example, it is very difficult to evaluate whether a small microbial582

feature within a predominantly mineral-only areas is attached to a larger sheet of microbial structures583

or is fully isolated. In the absence of stereo rendering, one must move the image significantly to obtain584

parallax 3D vision and, if the feature is fairly isolated, detailed spatial relationships are only observable585

through slicing the data and removing geometrical information. Then the user must remember these586

relationships and observe the data at a high zoom to look for very small features such as isolated587

clumps of organic inclusions (Figure 7c, Movie 3). Rotations of the data must be found where multiple588

clumps occlude each other to obtain 3D spatial information. The need for parallax significantly limits589

the user’s ability to understand the geometry. In contrast, in an immersive stereo environment, the user590

only needs to observe the volume at a high zoom, seeing the relationships among minute structures591

at any orientation and simultaneously seeing their relationships to larger structures with peripheral592

vision. The increased spatial understanding is obtained almost immediately and with much higher593

accuracy than is possible in a non-stereo system.594

The insights from viewing the data can be extended to quantitative characterization of geometry595

within Visualizer. For our isolated clump example, the separation of structures could be due to either596

the primary growth geometry of the microbial community or the decay of organic matter after burial.597

Measurements such as the spacing between patches of preserved organic inclusions and the orientation598

of preserved patches are two very important constraints which cannot be obtained from 2D data and599

are inaccurate and extremely difficult to make without stereo rendering of the 3D data. In Visualizer,600

these measurements are easily made in the volume, both along and oblique to the original scanned601

images (Movie 3). With the precise locating of the pointer implemented in Visualizer, measurements602

can be made with an accuracy of the full resolution of the data set more quickly than the user can603

decide where to measure. The limits to obtaining quantitative information shift from the time spent604

manipulating data to obtain the measurements desired to the intellectual challenge of deciding which605

measurements best characterize the data.606

5.3 Assessing The User Experience607

Two of the major drawbacks of some software used in immersive environments are, first, that the608

software is difficult to learn and use, and second, that most software tools only work well on the609

desktop or in an immersive environment, but not in both (Table 1). Throughout the development of610

21

Vis-CAVEVis-DeskTecPlot TecPlot Vis-Desk Vis-CAVE

0 5 10

Number of
Features
Located

Identifying
Features

Difficult Easy

Locating
Features

NavigatingD
at

a
Ex

pl
or

at
io

n

Learning
Software

0 20 40 60 80 100

Rating

Overall
UseG

en
er

al

 ±53 18

 ±51 21

 ±61 24

 ±81 13

 ±68 24

 ±5 4 ±5 3

 ±72 17

 ±66 22

 ±54 25

 ±58 27

 ±70 15

 ±91 7

 ±84 24

 ±91 8

 ±92 7

 ±8 3

 ±1 8

±USER STUDY RESULTS (1σ)

Fig. 8. User study results. Rating of data exploration (navigating, identifying and locating features) and
general use (learning software and overall usability) displayed as the mean and standard deviation. Results
show that Visualizer used in the CAVE made data exploration very easy and the software was easy to learn
and use overall. Visualizer used on a desktop was also better for data exploration than Tecplot, but was more
difficult to learn since the tool assignment process is somewhat cumbersome on the desktop.

Visualizer the goal has been to create a flexible, easy-to-use and intuitive tool for interactive, scientific611

analysis of 3D volume data sets that can be used in multiple environments. However, the verification612

of whether the software achieves this goal must be done by the scientists using the software. To613

this end, we have conducted a user study aimed at assessing how well Visualizer aids researchers in614

evaluating unknown data sets, by comparing it to Tecplot (TecPlot, 2006), described in Section 2, a615

software package commonly used by geoscientists. Tecplot was chosen as a comparison because it has616

a menu/button-driven interface that is similar to many other visualization programs. In the first part617

of the study both visualization systems were compared in their native environments (Visualizer in a618

CAVE and Tecplot on a desktop computer). In the second part of the study, Visualizer was also used619

on a desktop computer and the results were compared to the those from the CAVE; Tecplot does not620

run in VR environments.621

5.3.1 User Study Format622

In each software/environment setting, the study participants were asked to explore a data set and623

to identify features that did not meet specified criteria: 1) features must be smooth and continuous,624

without steps or faceted surfaces, and 2) features must be continuous, without holes or protruding625

structures. The data used in all parts of the study is the model input of a subducting tectonic plate626

beneath southern Alaska described in the case study on 3D numerical simulation (Figure 5). The tasks627

22

performed by the study participants were based on the same steps used by geoscientists in analyzing628

the appropriateness of a model input data set for a FE model calculation.629

Before beginning the prescribed tasks, the study participants were taught how to use the software630

in each environment using an idealized input data structure. Afterwards, the participants were then631

given 30 minutes to explore the target data set and instructed to write down the coordinates and data632

value for features they found that did not meet the specified criteria. After completing the analysis,633

the participants were asked about the tools within the software that they found most and least useful634

for navigating through the data set and identifying features. They were also asked to note any tasks635

that they found to be particularly easy or difficult to complete. Finally, after completing the tasks636

in all three software/environment settings, the participants rated the software on a scale of easy to637

difficult for the tasks of navigating, identifying features, locating features, learning the software, and638

overall use.639

The study included 19 participants – eleven graduate students, five undergraduate students, and three640

faculty – engaged in geoscience study and/or research. Of the 19 participants, two had minimal previous641

experience using a CAVE and one had previously used Tecplot. Although none of the participants were642

experts on the scientific objectives related to this particular data set, all the participants were familiar643

with the general geologic problem.644

5.3.2 User Study Results645

The results of the user study, shown in Figure 8, demonstrate that the high level of interactivity pro-646

vided by Visualizer in the CAVE makes analysis of 3D volume data both easy and effective. Participant647

responses indicate that not only is data exploration (navigating, identifying and locating features) eas-648

ier to do in the CAVE than using Tecplot, Visualizer is also easier to learn how to use and easier to use649

overall. In addition, on average more features were located using Visualizer in the CAVE than using650

Tecplot or Visualizer on the desktop, although this part of the results is not conclusive and demands651

further investigation. The participants also found that data exploration is easier on the desktop using652

Visualizer than using Tecplot, but they also found it more difficult to learn how to use, which probably653

affected both their overall impression of the software and ability to locate features.654

Participant feed-back on the individual software provided additional information on why Visualizer is655

easy to learn and use in the CAVE and more difficult to learn on the desktop. First, nine participants656

stated that they did not find any of the tasks to be difficult in the CAVE and found it particularly easy657

to identify and locate features. As one user reported, “the Visualizer-CAVE was by far the easiest to658

work with. All the features stood out very clearly and it was incredibly easy to navigate.” In contrast,659

13 participants stated that identifying and locating features in Tecplot was the most difficult task.660

We interpret this response to reflect both advantages of viewing the data set in a fully immersive661

environment and the intuitive design of the software.662

Second, 13 users stated that assigning tools in Visualizer on the desktop was the most difficult task. In663

any environment, tool assignment in Visualizer requires first choosing what one would like the program664

to do (e. g., create isosurfaces) from the main menu and then assigning this action to to an input device665

button, e.g., a mouse button, by selecting a locator tool from the tool selection menu using the desired666

23

button. On the desktop, however, two things make this process more cumbersome. First, buttons on the667

mouse are used to navigate (e. g., left button for rotating and right button for translating the data) and668

they are also used to create color-mapped slices or isosurfaces by using a modifier key on the keyboard669

(this caused confusion for new users who had to remember the button-key assignments). Second, the670

tool selection process on the desktop includes an extra step of creating a “virtual input device” to671

map 2D mouse positions into 3D model coordinates. User responses indicate that remembering the672

button-key combinations made tool assignment and use more difficult; however, they also stated that,673

once this was overcome, Visualizer was better for identifying and locating features. As one user stated,674

“the greatest difficulty is probably the initial complexity of click and key combination, but even in675

30 minutes I became pretty efficient with what I learned and I can see getting used to it very quickly.”676

Based on the responses and suggestions of the study participants, we plan to add an optional, fixed677

“tool bar” for tool assignment that can be used to introduce new users to Visualizer, but can be turned678

off once button-key combinations, which are faster to use, are learned.679

The user study ratings and responses show that the interactivity provided by using Visualizer in a680

CAVE is intuitive and allows users to focus their attention on exploring the data set. In addition, they681

indicate that while interacting with a 3D data set in a 2D environment can be made effective in an682

interactive visualization system, it requires practice, while an immersive 3D VR environment provides683

immediate benefits by allowing the user to interact with data in a natural and intuitive manner. These684

results, combined with our experiences illustrated in the case studies above, suggest that immersive685

environments will become popular within scientific applications if software design meets the goals we686

addressed in Visualizer.687

6 Conclusions and Future Work688

We have presented new software for visualization of 3D gridded data sets, which has been designed for689

highly interactive, immersive 3D VR environments, but also achieves cross-system portability making690

it a powerful tool for visualization in the Geosciences. As an application aimed at immersive VR envi-691

ronments, Visualizer satisfies two real-time constraints: 1) it maintains a high frame rate upwards of692

30 Hz to create a realistic immersive experience, and 2) it provides real-time feedback (display of vi-693

sualization elements) to any user interaction within about 1/10 s to enable interactivity. Interaction is694

further enhanced by following a direct manipulation approach across the entire range of functionality,695

from navigation to creation of visualization elements to quantitative analysis. At the software devel-696

opment level these constraints are met by using multithreaded programming, special algorithms such697

as seeded isosurfaces, advanced rendering using compressed geometry or multiresolution methods, and698

careful optimization of extraction and rendering algorithms. Meeting the real-time constraints for VR699

environments translates into an efficient and highly-interactive desktop application for very large data700

sets, which are often too large for real-time interaction using other software. Visualizer achieves this701

cross-system portability by being built on the Vrui development toolkit, being completely independent702

of the underlying VR environment and optimally matching interaction patterns to the capabilities of703

the underlying environment. While many of the optimization methods and visualization techniques704

used in Visualizer have been available in other desktop visualization software, our contribution lies in705

integrating these pieces into a software package that is designed for data exploration and analysis and706

24

is portable to a wide range of VR and desktop environments.707

The three case studies outlining how Visualizer has been used for Geoscience applications provide direct708

evidence of how Visualizer can enable discoveries or insight related to complex 3D gridded data sets.709

These case studies illustrate 1) how the interactivity speeds up analysis of the data leading to discovery710

of new behaviors (case study 2), 2) how the portability allows users to choose which environment best711

suits a particular task of data exploration and evaluation (case study 2), and 3) how viewing data with712

complex 3D morphology in a VR environment allows the user to recognize previously unseen features713

(case study 3). These examples also demonstrate how immersive stereo environments facilitate more714

detailed analysis of complex structures by eliminating the need to constantly move data to create715

parallax motion, and by providing zoomed-in views of data, while maintaining the perspective of larger716

spatial relationships with peripheral vision. Finally, the user study also provided valuable feedback on717

how further to improve Visualizer. We learned that effective exploration requires “transparent” user718

interfaces, such as intuitive navigation and “point and click” creation of visualization elements, and we719

will continue developing Visualizer, and the Vrui toolkit itself, to provide a more efficient, and easier720

to learn, user interface especially on the desktop.721

Acknowledgements
This research has been support in part by a grant from the W. M. Keck Foundation. We thank Bar-
bara Romanowicz for the shear wave seismic tomography model, N.S. Conjeepuram for spreading ridge
model results and Poincaré section, and Patrick Senge for serial sectioning the microbialite sample.
We thank John Tipper and Eric de Kemp for their thoughtful reviews.

References

Alexandrescu, A., 2001. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley Proffesional.

Bawden, G., 2006. Imaging postseismic transient nearfield deformation following the 2004 parkfield
earthquake in central california with ground-based lidar. Eos Transactions AGU Fall Meeting Sup-
plement Abstracts 87 (52), S23C–0172.

Bernardin, T., Cowgill, E., Gold, R., Hamann, B., Kreylos, O., Schmitt, A., 2006. Interactive Mapping
on 3D Terrain Models. Geochemistry, Geophysics and Geosystems in press.

Billen, M. I., Gurnis, M., 2001. A low viscosity wedge in subduction zones. Earth and Planet. Sci.
Lett. 193, 227–236.

Billen, M. I., Gurnis, M., Simons, M., 2003. Multiscale dynamic models of the Tonga-Kermadec sub-
duction zone. Geophys. J. Int. 153, 359–388.

Bowman, D. A., Kruijff, E., LaViola, J. J., Poupyrev, I., 2004. 3D User Interfaces: Theory and Practice.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA.

Bryson, S., 1996. Virtual reality in scientific visualization. Communications of the ACM 39 (5), 62–71.
Bryson, S., Levit, C., 1991. The Virtual Windtunnel: An environment for the exploration of three-

dimensional unsteady flows. In: Proc. of Visualization ’91. IEEE Computer Society Press, Los
Alamitos, CA, pp. 17–24.

25

Cabral, B., Cam, N., Foran, J., 1994. Accelerated volume rendering and tomographic reconstruction
using texture mapping hardware. In: VVS ’94: Proceedings of the 1994 symposium on Volume
visualization. ACM Press, New York, NY, USA, pp. 91–98.

CAVE5D, 2006. visualization software. http://www-unix.mcs.anl.gov/˜mickelso/CAVE2.0.html.
Christensen, U., 1989. Mixing by time-dependent convection. Earth and Planetary Science Letters 95,

382–394.
Cruz-Neira, C., Sandin, D., DeFanti, T., 1993. Surround-screen projection-based virtual reality: the

design and implementation of the CAVE. In: Proc. of SIGGRAPH ’93. ACM Press, Anaheim, CA,
pp. 135–142.

Engel, K., Westermann, R., Ertl, T., 1999. Isosurface extraction techniques for web-based volume
visualization. In: VIS ’99: Proceedings of the conference on Visualization ’99. IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 139–146.

Ferrachat, S., Ricard, Y., 1998. Regular vs chaotic mixing. Earth and Planetary Science Letters 155,
75–86.

Fledermaus, 2007. IVS 3D Fledermaus Software.
URL http://www.ivs3d.com/products/fledermaus/

Furumura, T., Chen, L., 2004. Large scale parallel simulation and visualization of 3d seismic wavefield
using the earth simulator. Computer Modeling and Engineering Sciences 6, 153–165.

Gao, D., 2003. Volume texture extraction for 3D seismic visualization and interpretation. Geophysics
68 (4), 1294–1302.

GCC Compiler, 2007. The GNU GCC compiler online manual.
URL http://gcc.gnu.org/

Gudmundsson, O., Sambridge, M., 1998. A regionalized upper mantle (RUM) seismic model. J. of
Geophys. Res. 103 (B4), 7121–7136.

Gurnis, M., 1986. Stirring and mixing in the mantle by plate-scale flow: large persistent blobs and long
tendrils coexist. Geophysical Research Letters 13, 1474–1477.

Hansen, C. D., Johnson, C. R., 2004. The Visualization Handbook. Adacemic Press.
Harris, J. M., 2004. Binocular vision: moving closer to reality. Phil. Trans. R. Soc. Lond. A. 362,

2721–2739.
Hubona, G. S., Shirah, G. W., 2005. Spatial Cues in 3D Visualization. In: Cai, Y. (Ed.), Ambient

Intelligence for Scientific Discovery, LNAI 3345. Springer-Verlag, Heidelberg, pp. 104–128.
Hughes, T. J. R., 2000. The Finite Element Method: Linear Static and Dynamics Finite Element

Analysis. Dover, Mineola, New York.
Jadamec, M. A., Billen, M. I., 2006. Building a geodynamic model of Alaska. Geological Society of

America, Cordilleran Section, 102nd annual meeting 38 (5496), 97.
Johnson, A., Leigh, J., Morin, P., Keken, P. V., 2006. GeoWall: stereoscopic visualization for geoscience

research and education. IEEE Computer Graphics and Applications, 10–14.
Kalvin, A. D., Dean, D., Hublin, J.-J., Braun, M., 1992. Visualization in anthropology: reconstruction

of human fossils from multiple pieces. In: Proceedings of the IEEE Conference on Visualization.
Kellogg, L. H., 1992. Mixing in the mantle. Annual Review of Earth and Planetary Sciences 20, 365–

388.
Kellogg, L. H., Stewart, C. A., 1991. Mixing by chaotic convection in an infinite prandtl number fluid

and implications for mantle convection. Physics of Fluids A 3, 1374–1378.
Kellogg, L. H., Turcotte, D. L., 1990. Mixing and the distribution of heterogeneities in a chaotically

convecting mantle. Journal of Geophysical Research 95, 421–432.

26

Kreylos, O., 2006. Environment-independent VR development. Tech. rep., U. C. Davis, KeckCaves.
Kreylos, O., Bawden, G. W., Bernardin, T., Billen, M. I., Cowgill, E. S., Gold, R. D., Hamann, B.,

Jadamec, M., Kellogg, L. H., Staadt, O. G., Sumner, D. Y., 2006a. Enabling scientific workflows
in virtual reality. In: Wong, K. H., Baciu, G., Bao, H. (Eds.), Proceedings of ACM SIGGRAPH
International Conference on Virtual Reality Continuum and Its Applications 2006 (VRCIA 2006).
ACM Press, New York, pp. 155–162.

Kreylos, O., Bernardin, T., Billen, M. I., Cowgill, E. S., Gold, R. D., Hamann, B., Jadamec, M.,
Kellogg, L., Staadt, O. G., Sumner, D. Y., 2006b. Enabling scientic worksflows in virtual reality.
In: Procȯf the ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its
Applications (VRCIA) 2006. ACM SIGGRAPH, ACM SIGGRAPH.

Kreylos, O., Bethel, E. W., Ligocki, T. J., Hamann, B., 2001. Virtual-reality based interactive explo-
ration of multiresolution data. In: Farin, G., Hagen, H., Hamann, B. (Eds.), Hierarchical Approxi-
mation and Geometrical Methods for Scientific Visualization. Springer-Verlag, Heidelberg, Germany,
pp. 205–224.

Kreylos, O., Tesdall, A. M., Hamann, B., Hunter, J. K., Joy, K. I., 2002. Interactive visualization and
steering of CFD simulations. In: Ebert, D., Brunet, P., Navazo, I. (Eds.), Data Visualization 2002
(Proceedings of VisSym 02). Association for Computing Machinery, New York, NY, pp. 25–34.

Lewis, B., Berg, D. J., 1998. Multithreaded Programming with Pthreads. Sun Microsystems Press.
Lin, C.-R., Loftin, R. B., 1998. Application of virtual reality in the interpretation of geoscience data.

In: VRST ’98: Proceedings of the ACM symposium on Virtual reality software and technology. ACM
Press, New York, NY, pp. 187–194.

Lorensen, W. E., Cline, H. E., 1987. Marching Cubes: A high resolution 3D surface construction
algorithm. In: Proc. of SIGGRAPH ’87. ACM, pp. 163–169.

Ma, C., Rokne, J., 2004. 3D seismic volume visualization. In: Integrated image and graphics technolo-
gies. Kluwer Academic Publishers, Norwell, MA, USA, pp. 241–262.

McKenzie, D., 1979. Finite deformation during fluid flow. Geophysical Journal of the Royal Astronomy
Society 58, 689–715.

McNamara, A. K., Zhong, S., 2005. Thermochemical structures beneath Africa and the Pacific Ocean.
Nature 437, 1136–1139.

Mégnin, C., Romanowicz, B., 2000. The shear velocity of the mantle from the inversion og body, surface
and higher mode waveforms. Geophysical Journal International 143, 709–728.

Meyer, T., Globus, A., 1993. Direct manipulation of isosurfaces and cutting planes in virtual environ-
ments. Tech. Rep. CS–93–54, Brown University, Providence, RI.

Motani, R., Amenta, N., Wiley, D. F., 2005. Possibilities and limitations of three dimensional retrode-
formation of a trilobite and plesiosaur vertebrae. PaleoBios, 88.

Ohno, N., Kageyama, A., 2007. Scientific visualization of geophysical simulation data by the cave vr
system with volume rendering. Physics of the Earth and Planetary Interiors 163, 305–311.

Olson, P., Yuen, D. A., Balsiger, D., 1984. Mixing of passive heterogeneities by mantle convection.
Journal of Geophysical Research 89, 425–436.

Ottino, J. M., 1989. The kinematics of mixing: stretching, chaos, and transport. Cambridge University
Press.

Page, R. A., Stephens, C. D., Lahr, J. C., 1989. Seismicity of the Wrangell and Aleutian Wadati-Benioff
zones and the North American plate along the Trans-Alaska Crustal Transect, Chugach Mountains
and Copper River basin, southern Alaska. J. of Geophys. Res. 94, 16059–16082.

Preparata, F. P., Shamos, M. I., 1993. Computational Geometry: an Introduction, 5th Edition. Mono-

27

graphs in Computer Science. Springer Verlag.
Ratchkovski, N. A., Hansen, R. A., 2002. New evidence for segmentation of the Alaska Subduction

Zone. Bulletin of the Seismological Society of America 92, 1754–1765.
Reed, D. M., Yagel, R., Law, A., Shin, P.-W., Shareef, N., 1996. Hardware assisted volume rendering

of unstructured grids by incremental slicing. In: VVS ’96: Proceedings of the 1996 symposium on
Volume visualization. IEEE Press, Piscataway, NJ, USA, pp. 55–ff.

Rhyne, T. M., MacEachren, A., 2004. Visualizing geospatial data. In: SIGGRAPH ’04: Proceedings of
the conference on SIGGRAPH 2004 course notes. ACM Press, New York, NY, p. 31.

Shen, H.-W., Johnson, C. R., 1995. Sweeping simplices: A fast iso-surface extraction algorithm for un-
structured grids. In: VIS ’95: Proceedings of the 6th conference on Visualization ’95. IEEE Computer
Society, Washington, DC, USA, p. 143.

Sherman, W. R., Craig, A. B., 2002. Understanding Virtual Reality: Interface, Application, and Design.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Shneiderman, B., 1983. Direct manipulation: a step beyond programming languages. IEEE Computer
16 (8), 57–69.

Stroustrup, B., 1997. The C++ Programming Language, 3rd Edition. Addison-Wesley Professional.
Sumner, D. Y., 1997. Late archean calcite-microbe interactions: Two morphologically distinct microbial

communities that affected calcite nucleation differently. Palaios 12, 300–316.
Sumner, D. Y., 2000. Microbial versus environmental influences on the morphology of late archean

fenestrate microbialites in microbial sediments. In: Riding, R., Awramik, S. (Eds.), Microbial Sedi-
ments. Springer, Berlin, pp. 307–314.

Sutton, M. D., Briggs, D. E. G., Siveter, D. J., Siveter, D. J., 2001. Methodologies for the visual-
ization and reconstruction of three-dimensional fossils from the silurian herefordshire lagerstätte.
Palaeontologia Electronica 4 (1).

Tackley, P. J., June 2000. Mantle convection and plate tectonics: Toward an integrated physical and
chemical theory. Science 288, 2002–2007.

TecPlot, 2006. visualization software. http://www.tecplot.com.
Tipper, J. C., 1991. A prototype general-purpose dynamic visualization system. GeoByte 6 (3), 11–15.
Tufte, E., 1983. The Visual Display of Quantitative Information. Graphics Press.
van Dam, A., Forsberg, A. S., Laidlaw, D. H., Jr, J. J. L., Simpson, R. M., 2000. Immersive VR for

scientific visualization: A progress report. IEEE Computer Graphics and Applications 20.
van Keken, P., Zhong, S., 1999. Mixing in a 3d spherical model of present-day mantle convection.

Earth and Planet. Sci. Lett. 171, 533–547.
Vis5D, 2006. visualization software. http://www.ssec.wisc.edu/˜billh/vis5d.html.
Wang, S., Zhang, S., Yuen, D. A., 2007. Visualization of downwelling in 3-d spherical mantle convection.

Physics of the Earth and Planetary Interiors 163, 299–304.
Wernecke, J., 1994. The Inventor Mentor: Programming Object-Oriented Graphics with Open Inventor,

Release 2. Addison-Wesley Professional.
Zollikofer, C., de Leon, M. P., 2005. Virtual Reconstruction: A Primer in COmputer-Assisted Paleon-

toogy and Biomedicine. Wiley.

28

