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Abstract

This paper presents an algorithm for material interface reconstruction for data sets where fractional material

information is given as a percentage for each element of the underlying grid. The reconstruction problem is

transformed to a problem that analyzes a dual grid, where each vertex in the dual grid has an associated barycen-

tric coordinate tuple that represents the fraction of each material present. Material boundaries are constructed

by analyzing the barycentric coordinate tuples of a tetrahedron in material space and calculating intersections

with Voronoi cells that represent the regions where one material dominates. These intersections are used to cal-

culate intersections in the Euclidean coordinates of the tetrahedron. By triangulating these intersection points

one creates the material boundary. The algorithm can treat data sets containing any number of materials. The

algorithm can also create non-manifold boundary surfaces if necessary. By clipping the generated material

boundaries against the original cells, one can examine the error in the algorithm. Error analysis shows that the

algorithm preserves volume fractions within an error range of 0.5% per material.
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FIGURE 1: Original grid and dual grid. The original grid (dashed lines) is replaced by a dual grid (solid lines), obtained by connecting

the centers of the original grid elements. Barycentric coordinates tuples are associated with each vertex of the dual grid.

1. INTRODUCTION

In many applications it is necessary to reconstruct or track the boundary surfaces (or “interfaces”) between multiple

materials that commonly result from £nite-element simulations. Multi-¤uid Eulerian hydrodynamics calculations,

for example, require geometric approximations of ¤uid interfaces to form the equations of motion to advance

interfaces over time. Typically, the grid cells (£nite elements) contain fractional information for each of the

materials. Each cell C of a grid S has an associated tuple (α1, α2, ..., αm) that represents the portions of each of

m materials in the cell, i.e., αi represents the fractional part of material i. It is assumed that α1+α2+· · ·+αm = 1

and αi ≥ 0. Given the fractions for each cell, we wish to £nd a crack-free piecewise-de£ned (potentially non-

manifold) surface approximating the boundary surfaces between the various materials.

To solve this problem, we consider the dual grid constructed from the original grid, as shown in Figure 1. In

the dual grid, each cell is represented by a point (typically the center of the cell), and each point has an associated

tuple (α1, α2, ..., αm), where m is the number of materials present in the data set. Thus, the boundary surface

reconstruction problem reduces to de£ning the material interfaces (boundaries) for a (dual) grid where each vertex

has an associated barycentric coordinate tuple representing the fractional parts of each material present at the

vertex. We split the dual cells into simplices creating an unstructured grid where each point of an simplex has an

associated barycentric coordinate.

We assume that the data set is given as a regular grid of three-dimensional hexahedral cells. In this case, the dual

grid is also hexahedral and regular. Each hexahedral cell of the dual grid is split into six tetrahedra, see Nielson

[1]. Each vertex of each tetrahedron is associated with a barycentric coordinate tuple.

Given a data set containing m materials, each vertex of a simplex generated from the dual grid can be written

and understood as a set of 3 + m coordinates, of which three represent the position of the vertex in Euclidean

space and m represent the barycentric coordinate tuple associated with the vertex. To £nd the intersection points

with material boundaries, we embed the simplex in m-space, using only the m coordinates de£ning the fractional
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material information for each vertex. In m-space (material space), we calculate intersections of the embedded

tetrahedron with the edges of the Voronoi diagram [2] of the m-simplex. The Voronoi cells represent regions

where one material “dominates” the other materials locally. In m space, the intersections generate barycentric

coordinates that can be used to obtain a boundary approximation in the original Euclidean space.

Section 2 describes previous work dealing with reconstruction of material boundary surfaces. Section 3 de-

scribes the algorithms for material interface reconstruction. Section 3.1 describes the two-material case, which

can be viewed as a simple extension of a isosurface extraction technique. [3, 4, 5]. Section 3.2 describes the three-

material case. Here, intersections are calculated in material space and mapped back to determine intersections in

physical space. The general m-material case is described in Section 3.3. In this case, intersections are calculated

in a barycentric m-simplex and mapped back to Euclidean coordinates of the simplices of the data set. Section 5

presents results for various data sets, and Section 6 provides an analysis of the error.

2. RELATED WORK

Most research in material interface reconstruction has been conducted in computational ¤uid dynamics (CFD)

and hydrodynamics, where researchers are concerned with the movement of material boundaries during a simu-

lation. The Simple Line Interface Calculation (SLIC) algorithm by Noh and Woodward [6] is one of the earliest

algorithms, describing a method for geometric approximation of ¤uid interfaces. Their algorithm is used in con-

junction with hydrodynamics simulations to track the advection of ¤uids. It produces an interface consisting of line

segments, constructed parallel or perpendicular to a coordinate axis. Multi-¤uid cells can be handled by grouping

¤uids together, calculating the interface between the groups, subdividing the groups, and iterating this process.

Since this algorithm only uses line segments that are parallel to the coordinate axes, the resulting interfaces are

generally discontinuous.

In determining the direction of the line segment, cells to the left and right (in the appropriate coordinate direc-

tion) of the current cell are considered, and classi£ed according to the ¤uid index. The ¤uid index indicates the

presence (1) or absence (0) of a material. Mixed-¤uid cells have multiple ¤uid indices, one per material. Fluids

with the same ¤uid index are grouped together so that only two types may be treated at one time.

Consider a two-¤uid 2D cell consisting of materials A (30%) and B (70%), and an x-direction pass of the

algorithm, if the left neighbor contains only material A and the right neighbor contains only material B, the

algorithm will generate an interface in the mixed ¤uid cell approximated by a vertical line dividing the cell into

two regions, 30% A on the left and 70% B on the right. If that same cell has both left and right neighbors consisting

entirely of material A, then the interface in the mixed-material cell would consist of two vertical lines dividing the

cell into three parts: 15% material A on the left, 70% material B in the center, and 15% material A on the right.

Consider a three-¤uid cell containing 20% A, 45% B, and 35% C, again with an x-direction pass. If the left

neighbor consists entirely of material A and the right neighbor consists entirely of material B, then the interface

would be represented by two vertical lines, dividing the cell into three zones, with material A on the left, C in
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FIGURE 2: Example data set (a). The speci£c volume fractions are listed for each cell. The approximations generated by the SLIC

algorithm are shown in (b) and (c), using an x-pass and y-pass, respectively.

the middle, and B on the right. If the left neighbor contains both A and B and the right neighbor contains A and

C, then a horizontal line segment is used to £rst construct the zone with material A, then the remaining portion

of the cell is divided by a vertical line with B on the left and C on the right. These simple rules can be used to

generate material interfaces for two-dimensional rectilinear grids. Figure 2 shows an approximation generated by

the SLIC algorithm to a sample data set, with both an x-coordinate and y-coordinate pass. Although the interface

is discontinuous, the volume fractions are preserved for each cell.

The algorithm of Youngs [7] also operates on two-dimensional grids and uses line segments to approximate

interfaces. In this algorithm, the line segments are not necessarily perpendicular or parallel to a coordinate axis.

Instead, the neighbor cells of a cell C are used to determine the slope of a line segment approximating an interface

in C. The exact location of the line segment is adjusted to preserve volume fractions. Multiple materials are

treated by grouping materials and determining interfaces on a two-material basis. Again, the resulting interfaces

are generally discontinuous.

Since this algorithm treats only two materials (or groups of materials) at a time, one of the materials is used

to determine the slope of the interface line. This is done by using neighboring fractions of this material, and the

Pythagorean theorem. Figure 3 demonstrates the neighbors of a cell containing materials A and B. The cell is

treated as a unit-square for this calculation. The slope is de£ned as
√

(δA − γA)2 + (βA − αA)2, where αA, βA,

γA, and δA are the fractions of material A present in the neighbor cells1 Once the slope is determined, the line

segment is positioned in the cell such that the volume fractions are preserved. For more than two materials, the

user determines in which order interfaces are calculated. Different interfaces will result depending on the chosen

ordering/grouping. Figure 4 demonstrates the results of applying Youngs’ algorithm.

The algorithm of Gueyf£er [8] is similar to that of Youngs in that it requires an estimate of the normal vector to

1We use neighboring “corner” cells to determine the slope if this equation fails. It is possible that one must use the “negative” square
root to determine the correct slope.
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FIGURE 3: Two-material cell with material fractions fA and fB . Neighbor cells have material fractions αA, βA, γA, and δA for material

A. The slope of the line is determined by the values of αA, βA, γA, and δA. The position of the line is de£ned by fA and fB
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FIGURE 4: Result of Youngs’ algorithm applied to the data shown in (a). The material interface representation (b) is discontinuous.
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the interface in order to reconstruct the interface. Geuyf£er’s method utilizes £nite-differencing or least-squares

methods to determine this normal, depending upon the order of accuracy (£rst- or second-order) desired. In 2D,

a line segment representing the boundary surface is constructed perpendicular to the interface normal. The line

segment is positioned in the cell such that it divides the cell into appropriately proportioned areas. In the 3D case,

a cutting plane is computed whose normal is the interface normal. Again, the cutting plane is positioned in the cell

so that volume fractions are preserved. It is unclear how this algorithm would handle multiple materials.

Pilliod and Puckett [9] compare various volume-of-¤uid interface reconstruction algorithms, including SLIC,

noting differences in the surfaces reconstructed and demonstrating £rst-order or second-order accuracy. Their goal

is to develop an algorithm that accurately reproduces a linear material interface, allowing discontinuous interfaces

if the material boundary is not linear.

Nielson and Franke [10] have presented a method for calculating a separating surface in an unstructured grid

where each vertex of the grid is associated with one of several possible classes. Their method generalizes the

marching-cubes (or marching-tetrahedra) algorithm, but instead of using a strict binary classi£cation of vertices,

it allows any number of classes. Edges in tetrahedral grids whose endpoints have different classi£cations are

intersected by the separating surface. Similarly, the faces of a tetrahedron whose three vertices are classi£ed

differently, are assumed to be intersected by the surface in the middle of the face. When all four vertices of a

tetrahedron have different classi£cations, the boundary surface intersects in the interior of the tetrahedron. The

resulting “mid-edge,” “mid-face,” and “mid-tetrahedron” intersections are triangulated to linearly approximate the

surface.

Using the dual-grid representation, Figure 5 shows how Nielson and Franke’s algorithm might be applied to the

example data set. As this algorithm requires classi£cation of vertices, the greater αi value in the volume fraction

tuple for each cell was chosen as the classi£er. The dual grid has also been triangulated so that the algorithm can

be applied. Mid-edge intersections are made half-way between two endpoints that have different classi£cations.

Mid-face intersections are assumed when all three vertices of the triangle have different classi£cations.

This paper is an expansion of our work discussed in [11], and generalizes the above schemes. It utilizes a

dual-grid approach, where each vertex of the grid has an associated barycentric coordinate tuple. This allows

the generation of material boundaries directly from intersections calculated in “material space.” The algorithm

handles multiple materials and can reconstruct layers and non-manifold interfaces. The algorithm does not rely on

application-speci£c knowledge of hydrodynamics or other simulation codes, but solves the problem from a purely

mathematical viewpoint.

3. MATERIAL INTERFACE CONSTRUCTION

We assume that we are dealing with a grid containing m materials, where the grid cells contain fractional in-

formation for each of the materials. To generate the boundaries of material regions, we consider the dual grid

constructed from the original grid. In the dual grid, each cell is represented by a point and each point has an
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FIGURE 5: Applying the Nielson-Franke algorithm. The test data set (a) represents only “classes” of data, The boundary reconstruction

result is shown in (b)

associated barycentric coordinate tuple α = (α1, α2, ..., αm). We split each cell of the dual grid into tetrahedra

(triangles in the two-dimensional case), creating an unstructured grid S where the vertices of each tetrahedron

(triangle) have the form (p, α), where p denotes the coordinate of the vertex in Euclidean space and α is the

associated m-material barycentric coordinate tuple. Thus, the boundary surface reconstruction problem reduces

to generating the material interfaces for an unstructured simplicial grid, where the vertices of each tetrahedron

(triangle) have associated barycentric coordinate tuples.

In most cases, the associated barycentric coordinate tuples of the vertices of a tetrahedron (triangle) T will

indicate that only one material present, i.e., for some k, αk = 1 and αi = 0 for all i �= k for each barycentric

coordinate associated with the vertices of T . We call this case the one-material case. In this case, we assume that

the entire tetrahedron is £lled with only one material and no boundary is present.

3.1. The Two-material Case

Consider an unstructured grid S containing m materials, i.e., each vertex of S has the form (p, α). A tetrahedron

(triangle) T of S contains two materials if there are two indices i1 and i2, such that the associated barycentric

coordinate tuple α = (α1, α2..., αm) of each vertex of T has the property that αi = 0 for i �= i1, i2.

If T contains two materials, then, without loss of generality, we can assume that each vertex of T has an

associated barycentric coordinate tuple that can be represented by a two-tuple α = (α1, α2), where α1 + α2 = 1.

Given two vertices (p1, α
(1)) and (p2, α

(2)), α(1) and α(2) lie on the line connecting the points (1, 0), and (0, 1)

in material space, as is shown in Figure 6. We assume that the set of points where α1 = α2 = 1
2 corresponds to

the boundary between the two materials in material space.2. There are two cases one must consider:

1. The line segment α(1)α(2) does not contain the point (1
2 , 1

2). In this case, we assume that the line does not

2This choice is clearly a heuristic, but it is the most reasonable one among all the points of the line.
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FIGURE 6: Mapping the barycentric coordinate tuples in the two-material case. The mapping results in a line segment lying on the line

having endpoints (1, 0), and (0, 1). We assume that the material boundary corresponds to the point
(

1
2
, 1

2

)
.

intersect the material boundary.

2. The line segment α(1)α(2) contains the point (1
2 , 1

2). In this case, we assume that the line intersects the

material boundary and use linear interpolation to calculate a value r such that

(
1
2
,
1
2

)
= (1 − r)α(1) + rα(2).

We can then calculate a point p

p = (1 − r)p1 + rp2

in Euclidean space that lies on the line p1p2 that crosses the material boundary.

If T is a two-material triangle in a two-dimensional unstructured grid with vertices (p1, α
(1)), (p2, α

(2)), and

(p3, α
(3)), the barycentric coordinate tuples of each edge of T de£ne a line segment in material space. We test

these three line segments to determine if they contain the point (1
2 , 1

2), the material boundary. Two cases arise:

1. No material-space line segment contains (1
2 , 1

2). In this case, we assume that the material boundary does not

intersect the triangle.

2. Exactly two of the material-space line segments contain the point (1
2 , 1

2). In this case, we calculate points

on the line segments where the boundary interface exists (using the approach discussed above) and connect

the two points with a line.

If T is a two-material tetrahedron contained in a three-dimensional unstructured grid, the barycentric coordinate

tuples of each of the six edges of T de£ne line segments in material space. We test these line segments to determine

if they contain the point (1
2 , 1

2), the material boundary. Three cases arise:

1. No material-space line segment contains (1
2 , 1

2). In this case, we assume that the material boundary does not

intersect the triangle.

2. Exactly three of the material-space line segments contain the point (1
2 , 1

2). In this case, we calculate the

intersections in material space and use the interpolated values to calculate Euclidean-space points on the

edges of T . These points are connected to form a triangle. This case is illustrated in Figure 7a.
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(a) (b)

FIGURE 7: Calculating a material interface in the two-material case. A material interface can intersect a tetrahedron in two ways. In case

(a), one triangle is produced, in case (b), two triangles are produced.

3. Exactly four of the material-space line segments contain the point (1
2 , 1

2). In this case, we calculate inter-

sections in material space, and use the interpolated values to calculate Euclidean-space points on the edges

of T . Connecting these points forms a quadrilateral. This quadrilateral is split into two triangles. This is

shown in Figure 7b.

This method uses the same technique underlying the marching-tetrahedra algorithm [5]. Therefore, £nding the

boundary in the two-material case is equivalent to an isosurface calculation.

3.2. The Three-Material Case

Consider an unstructured simplicial grid S containing m materials, i.e., each vertex of S has the form (p, α),

where p is the Euclidean coordinate of the vertex and α is the associated barycentric coordinate tuple. A tetra-

hedron (triangle) T of S contains three materials if there are three indices i1, i2 and i3, such that the associated

barycentric coordinate tuple α = (α1, α2, ..., αm) of each vertex of T has the property that αi = 0 for i �= i1, i2, i3.

If T contains three materials, it is suf£cient to assume that each vertex has an associated barycentric coordinate

3-tuple α = (α1, α2, α3), where α1 + α2 + α3 = 1. For each vertex, the tuple (α1, α2, α3) lies inside or on the

boundary of the equilateral triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) in material space, as shown in

Figure 8. The triangle is partitioned into three regions, de£ned by the Voronoi cells V1, V2, and V3. The Voronoi

cells Vj are bounded by the edges of the triangle and the three line segments l12, l13, and l23, where (i) α1 = α2

and α3 ≤ 1
3 , (ii) α1 = α3 and α2 ≤ 1

3 , or (iii) α2 = α3 and α1 ≤ 1
3 , respectively.

If T is a triangle in an unstructured two-dimensional grid, the associated barycentric coordinate tuples of the

vertices of T form a triangle Tα in material space. The intersections of the edges of Tα with the edges of the

Voronoi cells are used to de£ne material interfaces in Tα. These intersections are used to form intersections on the

Euclidean-space coordinates of T . There are three cases to consider:

• The triangle Tα does not intersect l12, l13, or l23. In this case, it is assumed that no material boundary exists

in T .
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FIGURE 8: The partitioned triangle for the three-material case. The point c is the point ( 1
3
, 1

3
, 1

3
), the center of the triangle. The line

segments l12, l13, and l23 bound the Voronoi cells Vj in the interior of the triangle.

• The triangle Tα intersects at least one of the line segments l12, l13, or l23 and the center c of the barycentric

triangle does not lie inside Tα. In this case, intersections of Tα with l12, l13, and l23 are calculated. (The

triangle Tα may intersect at most two of these lines.) These intersections are used to de£ne intersections in

the coordinates of T , forming the material boundary in T . Figures 9a, 9d, and 9e illustrate these cases.

• The point c lies inside Tα. In this case, three edge intersections are calculated for Tα, one with each line

segment lij . These intersections, and the point (1
3 , 1

3 , 1
3) in the interior of Tα, are used to de£ne edge

intersections for the edges of T and a “face point” in the interior of T . Material boundary line segments are

de£ned as the three lines connecting the edge intersections and the interior face point. Figures 9b and 9c

illustrate the possible cases.

If T is a tetrahedron in an unstructured three-dimensional grid, the barycentric coordinate tuples associated

with the vertices of T are used to map the tetrahedron to a tetrahedron Tα in material space. Intersections are

calculated separately for each face of Tα, which are then used to create the Euclidean-space coordinates of the

material boundary in T . There are three cases to consider:

• No edge of the tetrahedron Tα intersects the line segments l12, l13, or l23. In this case, no material boundaries

exist in the tetrahedron T .

• The edges of the tetrahedron Tα intersect at least one of the line segments l12, l13, or l23, but the point

(1
3 , 1

3 , 1
3), the center of the barycentric triangle, does not lie inside any of the faces of Tα. In this case, the

intersection line segments for each face of T are calculated and a surface triangulation inside T is determined

from these segments by using the triangulation rules of an isosurface extraction algorithm [5]. Figures 10a-d

illustrate possible cases.

• The center point lies inside two faces of Tα. In this case, two faces of T will have a line segment connecting

two edge intersection points, and two faces have three line segments meeting in the interior of these faces.
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FIGURE 9: Mapping from material space to Euclidean Space for a triangle T . The images on the left show the triangle Tα in material

space, and the images on the right show the material boundary line segments mapped from the intersections of Tα with the Voronoi cell

boundaries to the Euclidean-space coordinates of the triangle T .
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FIGURE 10: Material boundary construction for the three material case for tetrahedra.
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FIGURE 11: Voronoi cell decomposition for the four-material case. The £gure illustrates a three-dimensional projection of the 3-simplex.

The 3-simplex is segmented into four Voronoi cells in (a). A 3-simplex Tα, mapped from a tetrahedron T , is shown inside the 3-simplex

in (b).

Using these line segments, a valid triangulation of the boundary surface can be determined. Figures 10e-h

illustrate the possible cases.

3.3. The General Case

A tetrahedron (triangle) T in an unstructured simplicial grid contains k-materials if there are k indices i1, i2, ..., ik,

such that the associated barycentric coordinate tuple α = (α1, α2..., αm). of each vertex of T has the property

that αi = 0 for i �= i1, ..., ik. It is helpful to examine the k-material case by £rst looking at the four-material case.

In the case of four materials, it is suf£cient to assume that each vertex of T has an associated barycentric

coordinate tuple α = (α1, α2, α3, α4), where α1 + α2 + α3 + α4 = 1, and αi ≥ 0. By considering the 3-simplex

having vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) in material space, a partition of this simplex into

Voronoi cells can be de£ned. The boundaries of these cells are bounded by the faces of the 3-simplex and six

hyperplanes, de£ned by the set of α such that (i) α1 = α2, (ii) α1 = α3, (iii) α1 = α4, (iv) α2 = α3, (v) α2 = α4,

and (vi) α3 = α4. The resulting Voronoi partition is shown in Figure 11a.

If T is a triangle in a two-dimensional unstructured grid, the barycentric coordinate tuples associated with the

vertices of T are mapped into a triangle Tα in the material space 3-simplex. A clipping algorithm is applied to Tα

to generate intersections with the boundaries of the Voronoi cells, by clipping against each of the six hyperplanes

de£ning the Voronoi-cell boundaries.

Intersections can be found by a simple procedure. Suppose that an edge of Tα with endpoints α(1) and α(2)

13



crosses the hyperplane de£ned by α1 = α2. If α is the intersection point, we can compute r such that

α = (1 − r)α(1) + rα(2).

If the £rst two coordinates of α are equal, then

(1 − r)α(1)
1 + rα

(2)
1 = (1 − r)α(1)

2 + rα
(2)
2 ,

which allows us to calculate r directly. (See Hanson [14] for similar methods.) Once the intersections are deter-

mined by the clipping algorithm, the polygons in Tα are used to determine polygons in the Euclidean coordinates

of T , which represent the material boundary.

In the k-material case, a tetrahedron (triangle) T has an associated k-simplex Tα in material space. The k-

simplex is partitioned into Voronoi cells whose boundaries consist of the faces of the k-simplex and the
(
k
2

)
hyperplanes de£ned by the equations αi = αj , where 1 ≤ i < j ≤ k. The intersections of Tα with the boundaries

of the Voronoi cells are calculated performing clipping. The polygons of Tα, determined by the clipping algorithm,

are then used to determine polygons in the Euclidean coordinates of T in physical space, which represent the

material boundary in T .

4. DISCUSSION

The algorithm presented here is a generalization of the Nielson-Franke algorithm [10]. To duplicate this method,

each vertex is associated with exactly one material. In this case, our algorithm produces the same results produced

by the Nielson-Franke algorithm.

5. RESULTS

We have generated material interfaces for a variety of data sets. Figure 12 illustrates the material interfaces for a

data set consisting of three materials. The boundary of the region containing material 1 has a spherical shape, and

the other two material regions are formed as concentric layers around material 1 – forming two material interfaces.

The original grid is rectilinear-hexahedral, consisting of 64 × 64 × 64 cells. The dual grid was constructed, and

each dual cell was split into six tetrahedra, see Nielson [1], creating 1,572,864 tetrahedra. Approximately 30% of

the tetrahedra that contain material boundaries have two boundary surfaces and require the construction illustrated

in Figure 10c and 10d.

The algorithm generalizes to data sets having several concentric boundary layers. If we have n possible mate-

rials per cell, the algorithm can return up to n − 1 boundaries per cell.

Figure 13 shows the material interfaces for a three-material data set of a simulation of a ball striking a plate

consisting of two materials. The original data set is rectilinear-hexahedral and has a resolution of 53 × 23 × 23
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FIGURE 12: Boundary surfaces of three materials de£ned by two concentric spherical layers.

cells. Again, the dual grid was created, and each dual cell was split into six tetrahedra, creating 28,037 tetrahedra.

Four time-steps are shown.

Figure 14 illustrates the material interfaces for a human brain data set containing three materials. The original

grid is rectilinear-hexahedral containing 256× 256× 124 cells. Each cell contains a probability tuple de£ning the

probability that a material is present at the point: gray matter, white matter, background, or other material. The

resulting dual data set contains over eight million tetrahedra.

6. ERROR ANALYSIS

Given a data set and an extracted material interface, we can use the generated boundary to approximate material

fractions for each cell and compare them to the original fractions. Given an original cell C, and a point pC at

the center of the cell, then pC is the coordinates of a vertex must be the coordinates of a number of tetrahedra

that represent the dual grid. Let TC be the set of tetrahedra that contain pC as a vertex. Each tetrahedron of TC

is partitioned into a set of polyhedra, each polyhedron containing a single material. These polyhedra are clipped

against the boundaries of C, and the volumes of the clipped polyhedra are added to the volume fractions for C.

Normalizing by the volume of the cell, we obtain a set of volume fractions determined by the extracted material

interface. This procedure enables us to calculate the difference between the original volume fractions and volume

fractions implied by the extracted material interface. It is not accurate on the boundary of the data set since the

dual cells do not cover the original cells there.

Figures 15 and Figures 17 illustrate the errors calculated from the “thin shells” and the “brain” data sets, re-

spectively. Errors are reported as numbers of cells that fall into a certain error range (Dual cells that contained

only a single material are not reported.) The £rst error range is the interval (0, 0.05]. Figure 15 shows the errors

for the data set shown in Figure 12. There are 250, 047 cells total. The number of zero-error cells for materials

15



FIGURE 13: Time-dependent simulation of a ball striking a plate consisting of two materials. The sequence shows the boundary surfaces

as the ball penetrates the plate.

(a) (b)

FIGURE 14: Brain data set. Material boundary surfaces are shown in red, green, and yellow. The polygons de£ning the material

boundaries are clipped to show the interior of the data set. Two views of the material boundary surfaces, are shown in (a) and (b).
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FIGURE 15: Error analysis for ”thin-shells data set” shown in Figure 12.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.5205060 0.0276901 0.4518040

difference: 0.0049170 0.0002886 0.0046280

material 1 material 2 material 3

0.5155890 0.0279787 0.4564320

Thin Shells

FIGURE 16: Summing the total fractions.

1, 2 and 3 are 232, 975, 226, 275, and 233, 679, respectively. Figure 16 provides a comparison of the original and

new volume fractions. If we sum the volume fractions for the complete data set and compare it with the calculated

fractions, the error is actually quite low. This is evident from Figure 16.

Figure 17 shows the errors for the brain data set shown in Figure 14. The number of zero-error cells for materials

1, 2, and 3 are 6, 414, 488, 6, 973, 917, and 7, 172, 956, respectively. Figure 18 provides a comparison of original

and new volume fractions. In general, the approximation faithfully represents the material interface, with little

error.
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FIGURE 17: Error analysis for the brain data set in Figure 14.

Original volume fractions (summed over original mesh)

New volume fractions (summed over dual mesh)

0.1177090 0.0840189 0.7982720

difference: 0.0048540 0.0000359 0.0048890

material 1 material 2 material 3

0.1225630 0.0840548 0.7933830

Brain

FIGURE 18: Summing the total fractions.
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7. CONCLUSIONS

In this paper, we have presented an algorithm for material interface construction from data sets containing volume-

fraction information. A given grid is transformed to an unstructured representation of a dual grid, where each

vertex has an associated barycentric coordinate tuple that represents the fractions of each material. The material

interfaces are constructed by de£ning triangles (tetrahedra) in materials space and calculating the intersections

with the boundaries of Voronoi cells in material space. These intersection points are used to de£ne intersections

in the Euclidean coordinates of the original tetrahedron (triangle) space and triangulated to form the resulting

boundary surface approximation. The algorithm can treat any number of materials per cell.

In the future, we would like to add a “measure-and-adjust” feature to this algorithm. Once an initial boundary

surface approximation is calculated, (new) volume fractions can be calculated directly from this boundary surface

approximation, as shown in Section 6. It is then possible to adjust material interfaces to minimize volume fraction

deviations. It may also be possible to adjust the material interface within each simplex (or higher-level cell), to

“optimize” the material interface. If so, it will be possible to better preserve volume fractions on a per-simplex

(per-cell) basis.
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