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Abstract—We describe a specialized methodology for segmenting 2D microscopy digital images of freshwater green microalgae. The
goal is to obtain representative algae shapes to extract morphological features to be employed in a posterior step of taxonomical
classification of the species. The proposed methodology relies on the seeded region growing principle and on a fine-tuned filtering
preprocessing stage to smooth the input image. A contrast enhancement process then takes place to highlight algae regions on a
binary pre-segmentation image. This binary image is also employed to determine where to place the seed points and to estimate the
statistical probability distributions that characterize the target regions, i.e., the algae areas and the background, respectively. These
preliminary stages produce the required information to set the homogeneity criterion for region growing. We evaluate the proposed
methodology by comparing its resulting segmentations with a set of corresponding ground-truth segmentations (provided by an expert
biologist) and also with segmentations obtained with existing strategies. The experimental results show that our solution achieves
highly accurate segmentation rates with greater efficiency, as compared with the performance of standard segmentation approaches
and with an alternative previous solution, based on level-sets, also specialized to handle this particular problem.

Index Terms—Seeded region growing, freshwater green microalgae, image segmentation, Gaussian distribution
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1 INTRODUCTION

Algae are a food source and primordial oxygen producers in
aquatic environments, thus affecting water properties such
as color, odour and taste [1]. Due to their sensitivity to
environmental changes, these microorganisms act as effec-
tive indicators of water quality and ecological conditions.
Researchers have been studying the potential of microalgae
as biomass [2] or protein sources [3], in chemical processes
[4], in oil production [5], and in medicine [6].

There exists a large number of microalgae species and
families worldwide, and their taxonomical classification is
a highly relevant problem in phycology. Recent taxonom-
ical studies of freshwater green microalgae revealed an
unknown diversity, especially in the Selenastraceae family,
already acknowledged as possessing a highly problematic
taxonomy [7] [8]. Findings on the real diversity of Selenas-
traceae resulted from phylogenetic studies on the sequencing
data of the genes coding for 18S rDNA [8]. Traditional taxo-
nomical classification that relies on analyzing morphological
characteristics of specimens collected “in the field” is highly
problematic, due to the subjective nature of the features
considered and the wide morphological variety of algae
shapes, which may be revealed only in cultured strains. For

• Vinicius R. P. Borges and Maria Cristina F. de Oliveira are with the
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example, the presence of the pyrenoid, a feature considered
for differentiating among species, sometimes can only be
observed through electron microscopy. In some cases it may
appear or not in a particular species depending on the
conditions of the culture. The genomical studies indicated
that morphologically similar strains may be molecularly
very distinct, and also the opposite, with molecularly similar
strains showing diverse morphology. Experts recognize that
current knowledge on the specific diversity and ecology
of the Selenastraceae on a worldwide scale is limited. For
further genomical studies to be successful in clarifying the
many pending issues, it is important to establish a common
taxonomical basis using traditional approaches. Thus, it is
important to improve the effectiveness of current practices
adopted for analyzing morphological properties.

The taxonomical classification of freshwater green mi-
croalgae strains is often carried out manually by an ex-
pert. The procedure requires sampling algae cultures for
observation under a microscope and then categorizing the
observed organisms according to a predefined set of so-
called “identification keys” which essentially contemplate
their morphological features as their life cycle develops.
This is a highly complex and time consuming process,
demanding a detailed manual analysis of multiple images
in order to identify the distinguishing features of the various
species. Furthermore, the accuracy of a suggested taxonom-
ical classification is highly dependent on the taxonomist’s
training and expertise. Even for experts, the task may prove
difficult and error prone, as some algae species share similar
morphological features, rendering their proposed classifica-
tion inherently inaccurate.

There has been previous efforts towards developing
computational support for taxonomical classification of al-
gae species. Typically, the systems embed image processing
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and pattern recognition algorithms that capture the relevant
image properties and derive an appropriate representation
for further processing. Nonetheless, some systems [9] [10]
employ computationally expensive manual or user-guided
segmentation procedures that render them difficult to use
and unfeasible to handle larger image sets. Thus, the prob-
lem of how to extract representative information from green
algae images with minimum user effort and maximal accu-
racy is still open.

In this paper we address this problem, focusing on
strategies for automatically and accurately segmenting algae
regions from microscope images, a necessary initial step
to support the subsequent extraction of the shape features
required for further taxonomical classification tasks. Seg-
mentation must be highly precise, so that no fine detail is
missed that may be relevant to distinguish between species
in further classification stages. Algae cell structures, such
as mucilage and concavities are fundamental to recognize
specific algae species, and a highly accurate segmentation
favors representative feature extraction and more precise
taxonomical classification.

Image segmentation partitions a digital image into its
disjoint constituent regions that share homogeneous prop-
erties (color or texture) and are expected to characterize
the target objects [11] [12]. The problem is particularly chal-
lenging in images depicting samples from the Selenastraceae
green algae family, due to peculiarities resulting both from
the application domain and the image acquisition process
(detailed in Section 2.2).

From the wide diversity of image segmentation meth-
ods, thresholding, edge-based and region-based strategies
have been employed to segment biological images acquired
with a microscope, such as phytoplankton [13], diatoms
[14] and related algae genera [15]. Some authors adopted
edge-based methods which search for image discontinuities
characterized by abrupt intensity changes among regions
[16]. Generally, these approaches compute derivatives be-
tween neighboring points in the image domain and select
the higher responses, which are associated with edges. Con-
ventional edge operators such as Roberts, Sobel and Prewitt
[12] or the Canny edge detector [17] are popular choices.
However, edge-based methods are sensitive to noise and
require additional postprocessing steps to obtain regions
with closed contours.

Methods based on dynamic curves that evolve towards
image objects boundaries, such as Active Contours [18] and
Level Set [19] [20] have also been successfully applied in
this context. In a previous research, we combined a level
set approach with automatically extracted edge and region
information to guide the curve evolution towards the algae
region boundaries [21]. Although it achieves good segmen-
tation accuracy, the method suffers from a known limitation
of contour-based approaches in general: it requires numeri-
cally solving Partial Differential Equations (PDEs), yielding
a time consuming segmentation process unfeasible for real-
time applications [22]. Moreover, it does not perform well
on images of certain algae species with transparent areas.

Region-based methods, on the other hand, work by par-
titioning the image into multiple disjoint regions. A classical
example is the Seeded Region Growing (SRG) algorithm
proposed by Adams and Bischof [23]. The underlying ratio-

nale is, given a set of seeds (an image domain point or
subregion), to grow regions by merging points with their
nearest neighboring seeded region that satisfies a predefined
homogeneity criterion. A criterion is chosen by taking into
account the distinguishing characteristics of the multiple
image regions. Region growing is effective, fast, robust to
noise and requires no complex parameter tuning [24]. How-
ever, the suitable number of seed points, their placement
in the image domain and the homogeneity criteria that
characterize the image regions must be informed [11].

We exploit the region growing principle and a homo-
geneity criterion of image regions to introduce a specialized
methodology to handle the described segmentation prob-
lem. Images are initially preprocessed for noise supression
and then transformed to the Hue-Saturation-Value (HSV)
space in order to reduce the intensity variation in their
regions. After that, we perform a contrast enhancement in
the hue channel using an equalized version of the value
channel. A pre-segmentation image is automatically gener-
ated from the original RGB image that enables to define
the proper number of seed points, avoiding undesirable
situations of missing relevant regions or placing multiple
seeds in a single region. The pre-segmentation image is
also used to sample intensities of the algae and background
regions in order to estimate their associated Gaussian distri-
butions. The region homogeneity criterion to guide region
growth is set by performing likelihood tests on the estimated
Gaussian distributions. Finally, algae regions are smoothed
with a morphological operation based on the rolling ball
operator [25]. These steps compose a highly accurate and
efficient technique for segmenting green algae images.

This paper is organized as follows: Section 2 presents
similar region-based approaches for segmenting algae and
biological images and establishes the motivation for this
work. Section 3 describes the preprocessing steps for con-
trast enhancement and image smoothing. Section 4 details
the proposed method, including the computation of the pre-
segmentation image used in the sampling procedure and to
obtain the seed points. Section 5 presents experimental re-
sults obtained by applying the proposed strategy to a set of
green algae images. Finally, Section 6 provides conclusions
and discusses possible future research.

2 RELATED WORK AND MOTIVATION

The quality of segmentation directly affects the ability of
successfully performing feature extraction from images.
Defining an appropriate segmentation technique is a highly
application dependent problem that requires a solid knowl-
edge about specific image properties such as brightness,
noise, texture and contrast. In the next sections we review
related work from the literature and their limitations in face
of the challenges identified for the green algae images, and
describe the specific issues involved when segmenting algae
images of the Selenastraceae family.

2.1 Previous work on microalgae segmentation

Over the last two decades many approaches have been
introduced to identify or explicitly segment cells, objects
or regions of interest in biological images. Most techniques
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reported in the literature also detail preprocessing and post-
segmentation procedures, since raw biological images are
naturally noisy or present low contrast.

Edge-based segmentation methods based on identifying
abrupt intensity changes are often employed in this context.
Differential operators such as Sobel, Canny and Laplacian
of Gaussian are typically combined with thresholding or the
Wathershed transform [26] [27] to improve the accuracy of
edge detection. Jalba et al. [28], for example, introduced a
hybrid strategy that combines edge and region information
to automatically segment diatoms. Their solution combines
the Watershed transform and a mathematical morphology
operation to select markers (small groupings of pixels). In
order to avoid over-segmentation, a known drawback of
the watershed method, a specific case of the Image Foresting
Transform (IFT) is employed to change the image homotype.
A final segmentation is obtained by extracting the external
contour of the diatoms in the resulting watershed image.
The method by Jalba et al. produced up to 98% correct con-
tours. The failure cases were registered on diatom images
with low contrast or blurred objects due to low resolution.

Mosleh et al. [29] developed a computer-based system
to automatically detect, recognize, and identify specific mi-
croalgae species. Segmentation is based on detecting region
boundaries with the Canny filter. However, the approach
requires performing an edge linking in the resulting binary
images for a correct identification of the algae’s external
closed contours. Then, essential morphological operations
such as image border removal, boundary area filling and
exclusion of small regions are performed on the binary
images to preserve the algae regions only.

Promdaen et al. [30] proposed an automated methodology
for microalgae classification which also includes prepro-
cessing, segmentation and feature extraction steps. Specif-
ically, segmentation can be performed in a single or in
a multiresolution fashion, according to the morphological
characteristics of the algae, determined during the process.
The single approach is useful for algae shapes with subtle
details and it is based on edge detection by the Canny filter.
The multi-resolution part consists of running the single
approach several times and incorporating additional steps
to smooth the region boundaries.

Accurate segmentation based on edge detection requires
object boundaries to be closed, otherwise further processing
procedures are necessary, such as edge-linking. Contour-
based approaches [18] [31] [21] based on dynamic curves
can minimize such limitations, but depend on computing
numerical solutions and on the convergence of an optimiza-
tion process. In our previous research [21] we developed
a specialized level set methodology that considers a statis-
tical description of the algae and the background regions
by means of Gaussian distributions. Although it achieves
good segmentation accuracy, the method is computation-
ally expensive, since it depends on the convergence of an
optimization process. Another weakness of that method is
related to the preservation of certain peculiar structures that
appear in some specific algae species, such as mucilage.

Alternatively, region-based approaches rely on grouping
neighboring pixels into regions according to a similarity
criterion. Region growing algorithms have been applied to
blood cell images [32], digital mammography [33], retinal

vessel segmentation [34] and remote sensing [35]. Some
authors have focused on developing application-specific
approaches for automatic seed placement and the similarity
decision strategy.

A marine phytoplankton identification system devel-
oped by Cuiping et al. [36] segments algae cells with a
region-growing algorithm. First a Canny edge detector is
applied to the original image to detect algae boundaries, fol-
lowed by a morphological operator to remove small regions.
Thresholding with Otsu’s method is then applied to obtain
a background patch for which a mean intensity value is
estimated. The region-growing method uses intensities from
a coarse background as a stopping criterion to automatically
distribute the seeds through the image domain.

Tan et al. [37] proposed an automated system for marine
algae identification which comprises the steps of filter-
ing, segmentation, feature extraction and classification of
species. First, a preprocessing step is required to highlight
the presence of algae, due to the low contrast of the original
images. A histogram of the corresponding HSV model is
analyzed to decide whether to use green or white color for
the threshold-based binarization. After the segmentation, a
morphological operation attempts to fill holes and remove
isolated microregions.

Schulze et al. [38] devised an automated system for
phytoplankton recognition named PlanktoVision, which in-
tegrates image acquisition, segmentation, feature extraction
and the classification process. Preprocessing consists of con-
trast adjustment by means of histogram normalization and
boundary enhancement with the Sobel operator to handle
transparency. Segmentation is based on region growing,
in which the seeds are computed and placed through the
background region using a rough segmentation obtained
with the Watershed Transform. The mode values of each
area in this segmentation are computed and the differences
in their standard deviations are used to determine whether
to merge similar regions.

Despite being successful on the applications to which
they have been designed, the above methods cannot handle
the specific challenges faced in the segmentation of images
depicting algae from the Selenastraceae family, as detailed in
the next section.

2.2 Problem characteristics

The images available to us confirm that the algae species
from the Selenastraceae family are of diverse shapes, e.g.,
from round-shaped single cells, as illustrated in Figure 1(a),
to the elongated organisms shown in Figure 1(b). Further-
more, the morphology of the algae may change along their
life cycle. Some species remain solitary, others form colonies
(grouped cells) which may also be very diversely shaped, as
depicted in Figures 1(c) and 1(d).

Such natural diversity in addition to other peculiar im-
age characteristics resulting from the acquisition process
render the automatic segmentation of these images a very
difficult task. Thus, a segmentation method which is shown
to be effective on these samples is likely to perform well also
on other samples depicting less complex microalgae fami-
lies, providing an essential tool for further developments in
the computational support to the taxonomical classification
task.
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(a) (b)

(c) (d)

Fig. 1. Examples of green microalgae images: (a) image characterized
by the presence of noise, artifacts and small objects; (b) elongated
single algae image characterized by the mucilage in its bottom corner;
(c) image depicting colonies where multiple algae cells overlap; (d) a
colony of multiple elongated cells.

The images are acquired in the microscope with a res-
olution of 600 × 800 and are quantized in 8 bits per color
channel. Each image depicts one or multiple algae regions,
but they are all from a single species, as the image cap-
tures an observation of a specific cultured strain under the
microscope. Notice how the intensities in the background
regions of the multiple images in Figure 1 differ, and how
each image shows a slight and smooth variation in its
background. Moreover, although algae cells are generally
green, they sometimes present brighter regions near corners
(see Figures 1(c) and 1(d)) due to the algae’s movement
under the microscope lens.

The images also present noise and artifacts, for example,
the image in Figure 1(a) shows some dark particles and an
artifact in the bottom area. In Figure 1(b) we notice a trans-
parent dead cell membrane touching the algae, surrounded
by bright pixels, which will likely affect a shape detection
procedure. Figure 1(c) presents round-shaped objects with
bright interior and dark boundaries. Thus, the proposed
segmentation methodology must be robust to noise and to
the presence of artifacts.

To further illustrate the complexity of the segmentation
task in this case, Figure 2 shows some segmentation results
obtained with standard approaches from the literature that
have been previously applied to biological images. We per-
formed a binarization on the green channel of the original
RGB image shown in Figure 1(d), using a threshold value
computed with Otsu’s method [39], which produced the
image shown in Figure 2(a). The poor segmentation results
are due to the wide range of intensities found in the interior
of algae regions.

Alternatively, applying the Canny Edge detector to the
green channel of the image in Figure 1(d) generates the
binary image shown in Figure 2(b). Noticeably, the contours
detected are not closed. The abrupt changes in intensities in
the algae regions prevent the method from obtaining closed

and regular contours.
In Figure 2(c) we present a segmentation result obtained

with the Watershed Transform applied to the smooth image
shown in Figure 2(a), in which we selected manually the
area corresponding to the algae region in the watershed
image. This result is affected by the smooth intensity varia-
tion in the background and the transparencies in the algae
corners, which lead to poor segmentation because some
algae areas could not be correctly recognized.

Figure 2(d) shows the segmentation produced by the
level set approach introduced in our previous work [21],
which did not manage to group some colony cells due to
the presence of transparent areas, specifically in the regions
where the algae cells meet. Thus, the diffusion process, in-
herent to the level set equation and responsible for smooth-
ing the image, was not capable of suppressing the noise and
handling the transparent regions, due to limitations of the
RGB color model.

In the next sections we detail our novel approach to
handle the segmentation. By changing the image repre-
sentation to the HSV model and applying an appropriate
contrast enhancement to highlight the critical areas we can
improve segmentation accuracy and preserve the intricate
shape properties of these microalgae species.

(a) (b)

(c) (d)

Fig. 2. Conventional approaches for segmenting biological images: (a)
result obtained with binarization using Otsu’s threshold; (b) result ob-
tained with edge detection using the Canny algorithm; (c) result obtained
with the Watershed Transform; (d) result obtained by an approach based
on level set [21].

3 PREPROCESSING STEPS

Some preprocessing steps are executed to improve image
quality before applying the region growing algorithm. The
first step smooths the original RGB image prior to obtaining
its corresponding HSV representation. Further processing
is applied to the Hue channel of the HSV representation,
which provides sufficient contrast to distinguish between
the algae and the background regions. A contrast enhance-
ment is then applied to generate a smooth image with
highlighted algae regions.
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3.1 Image Smoothing

The original RGB image is initially filtered to suppress
noise and artifacts observed in regions describing both algae
cells and background. Smoothing is also important because
the curves defining the algae cell boundaries are naturally
rough and the pixel values in their internal regions are
considerably heterogeneous, with colors varying from green
to white.

In order to obtain smoother images in which both back-
ground and algae regions present homogeneous intensities,
from a wide diversity of possible image filtering techniques
we chose to apply the anisotropic diffusion filter (ADF) in-
troduced by Barcelos et al. [40], because its smoothing process
blurs the internal regions of the image while preserving
boundary information.

Let Ω ⊂ R
2 be the image domain and I : Ω → R

3

the function designed to describe a digital color image. The
mathematical model for the ADF filter is given by:

ut = g|∇u|div
(
∇u
|∇u|

)
− λ(1− g)(u− I), (1)

in which div is the divergence operator, I = I(x) is the
image to be filtered and u = u(x, t) is a smooth version of I
at a time step t > 0, where u(x, 0) = I(x). The parameter λ
balances the smoothness of the region boundaries – the goal
is to smooth the boundary whilst preserving the important
shape properties. g is a positive boundary potential, usually
chosen as a decreasing function of the image gradient. This
function must satisfy lims→∞ g(r) = 1, so that the diffusion
process is reduced on the boundaries. Thus, a usual choice
for g is given by:

g(r) =
1

1 + |∇r|2 . (2)

Eq. (1) is solved numerically by computing the Euler-
Lagrange equations associated with a gradient descent
scheme [41]. The partial differential equations obtained are
discretized using the Finite Difference Scheme [42]. In order
to compute the numerical solution for u, the parameters
in Equations (1) and (2) were set to λ = 0.01 and t = 20
time iterations. These values were determined after exper-
imenting with multiple combinations of parameter values,
picking those values which yielded the best segmentation
accuracy rates on a test data set. In the subsequent steps we
shall denote the filtered image IADF as the final u.

Figure 3 illustrates this filtering process applied to an
original green algae image, shown in Figure 3(a). The image
smoothing result is presented in Figure 3(b), in which algae
and background regions are more homogeneous as their
edge information are preserved.

3.2 Obtaining the pre-segmentation image

In this step, we compute a pre-segmentation image using
the eigenvalues of the covariance matrix of the filtered RGB
image. This binary image provides a mask useful to identify
the target foreground and background regions, which is
necessary to compute the region seeds in the image domain
and to delimit the region of interest for the enhancement
process.

(a) (b)

Fig. 3. Anisotropic diffusion filtering: (a) original RGB image; (b) smooth
image IADF .

First, we compute the local mean values μL relative to
each point in the image domain x ∈ Ω:

μL(x) =
1

|Ω|
∫
Ω
I(x− y)dy. (3)

A(x) = I(x)− μL(x). (4)

Then a local covariance matrix C(x) of the color channels
relative to each domain point is computed, given by:

C(x) = A(x)TA(x). (5)

Finally, the eigenvalues and eigenvectors of the covariance
matrix C(x) are computed:

V −1C(x)V = D, (6)

in which V is the matrix of eigenvectors and D is a di-
agonal matrix of the eigenvalues of C(x), given by v =
{D1,1, ..., Dm,m}. The eigenvalues, which are computed
for each pixel, can be represented as m images, each one
capturing the image properties from a different perspective.
An inspection of these eigenvalue images substantiated our
choice of picking the third eigenvalue image (the green
channel), which was the most effective to capture the algae
characteristics.

It is possible to obtain a binary mask BM that flags the
pixels as associated with either algae or background regions
by thresholding the third eigenvalue image using its mean
intensity value. As a result, the algae-related pixels are one-
valued in BM , whereas the background pixels are assigned
zero values. Finally, an erosion morphological operation is
performed in BM aiming to remove false responses that
might arise on the background.

Figure 4 illustrates the process of obtaining the binary
mask BM departing from the smooth image depicted in
Figure 3(b). Figures 4(a), 4(b) and 4(c) depict the images
constructed from the first, second and third eigenvalues of
each image domain point. After selecting the third eigen-
value image and thresholding it by its mean intensity value,
the binary mask BM shown in Figure 4(d) is obtained.

The pre-segmentation image BM is then used in some
further stages of the proposed methodology: in the region
sampling procedure, to determine the seed points for each
target region and to delimit the regions of interest for the
enhancement process.
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(a) (b)

(c) (d)

Fig. 4. Illustration of the steps in the computation of the binary mask:
(a-b-c) the images representing the computed eigenvalues; (d) the pre-
segmentation image obtained after thresholding the third eigenvalue
image by its mean intensity value.

3.3 HSV Model

We chose to work with the HSV representation of the filtered
RGB image IADF , which is more effective in capturing the
contrast between the algae cells and the background.

The corresponding HSV model of a given RGB input
image may be computed using the equations given in
[12]. Figure 5 illustrates the results of the conversion for
a particular green algae image. Figure 5(a) presents the
original RGB image, whereas Figures 5 (b), (c) and (d) show
the Hue (H), Saturation (S) and Value (V) channels of the
corresponding HSV image. It is noticeable in the image
showing the Hue channel, depicted in Figure 5(b), that the
algae cells are characterized by a uniform gray intensity,
whilst the background is noisy - it is possible to observe the
lighting variation in the background areas. The saturation
channel, shown in Figure 5(c), presents the algae regions
in brighter intensities with blurred boundaries and it is
discarded in the subsequent steps. The V channel image
depicted in Figure 5(d) is simply a grayscale image, and is
used in the following step responsible for the Hue contrast
enhancement.

3.4 Image Enhancement

A contrast enhancement procedure is applied to the Hue
channel in order to enable a more accurate identification
of the algae regions. The procedure considers the intensity
information registered in the Value channel, since the Hue
channel alone may not disclose sufficient information. The
rationale is to perform a histogram equalization in the Value
channel that makes possible the analysis of the intensity
variation of the background pixels and then identifying
those intensity levels most likely associated with algae
pixels. Such intensities are determined by thresholding the
equalized image, thus generating a binary image that is used
to weight and highlight the algae pixels in the Hue channel.

The histogram equalization generates a new image by
quantizing the intensities in the Value channel to a prede-
fined number of discrete gray levels. The pixel values are
roughly uniformly distributed across the quantized gray

(a) (b)

(c) (d)

Fig. 5. Green algae image transformed to the HSV representation: (a)
original RGB image; (b) Hue channel; (c) Saturation channel; (d) Value
channel.

level bins in image IEQ, such that the resulting histogram is
approximately flat. We chose to transform the value channel
to 64 intensities for better discrimination of algae-related
pixels, obtaining the equalized image IEQ.

The algae regions are generally associated with the lower
intensities in the histogram of image IEQ. As the idea is
to obtain a binary image that flags the algae-related pixels
for enhancement, the threshold value τ is determined by
considering the associated intensities in the histogram and
the perimeter of the candidate algae regions in the pre-
segmentation image. A histogram analysis revealed that the
histogram of IEQ has non-zero values at levels 1, 5, 9 and
12. However, gray level frequencies are highly dependent
on the number of pixels that belong to algae regions. Thus,
we binarize the equalized image IEQ accordingly using the
larger perimeter p from the candidate algae regions in the
pre-segmentation image. The value of τ is determined as:

τ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if p ≤ 500

5, if p ≤ 1000

9, if p ≤ 1500

12, otherwise.

(7)

Once τ is obtained, the binary image BEQ is computed
as:

BEQ(x) =

{
1, if IEQ(x) ≥ τ

0, otherwise,
(8)

where BEQ is the binary mask image flagging the algae-
related pixels. The image enhancement will weight such
pixels to emphasize their intensities, while preserving back-
ground patterns. This operation takes into account the
perimeter p, since for images containing small or thin al-
gae the Hue channel has typically low contrast due to an
unbalanced amount of background pixels. Eq. (9) describes
the enhancement process for algae images with p > 250,
which doubles the intensities of the background pixels in
the Hue channel Ihue:
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IH(x) =

{
2Ihue, if BEQ(x) = 1

Ihue, otherwise.
(9)

When p < 250, we set IH = Ihue + BEQ once the Hue
channel does not present a high contrast between algae and
background regions.

The intermediate image IH in the above equation refers
to the updated Hue channel with the algae regions high-
lighted. Finally, IH is normalized to [0, 1] resulting in the
final enhanced image IEN , which displays a better visual
contrast between the algae and the background regions, as
compared to the original hue channel. The steps of the en-
hancement procedure are illustrated in Figure 6. Figure 6(a)
shows the original Hue channel image. Figure 6(b) presents
IEQ, the Value channel image after histogram equalization,
in which the pixels associated with the algae cells have the
lowest intensities. Figure 6(c) shows the weighted image
BEQ that indicates which pixels must be enhanced in the
Hue channel. Finally, Figure 6(d) depicts the final enhanced
Hue channel image, in which the algae regions are notice-
ably emphasized whereas the intensity patterns have been
preserved.

(a) (b)

(c) (d)

Fig. 6. Image enhancement: (a) the hue channel image Ihue; (b) the
equalized Value channel image IEQ; (c) the binary image BEQ; (d) the
enhanced Hue channel image IEN .

Once the preprocessing steps are finished, we obtain an
appropriate Hue channel IEN for the upcoming segmenta-
tion process, in which algae cells have distinct intensities
relative to the background pixels.

4 SEEDED REGION GROWING

The seeded region growing algorithm, or simply region
growing algorithm, operates by grouping (i.e., growing)
pixels or subregions into larger regions based on a prede-
fined similarity criterion [12]. Some seed pixels are initially
selected based on some criterion (e.g. color, intensity, or tex-
ture). Once the initial seeds are placed, the growth process
seeks to obtain homogeneous image regions, i.e., it tries to
find an accurate segmentation of the image into regions with
the property that each connected component of a region
contains exactly one of the initial seeds. The presence of
noise may result in oversegmentation, which is typically

handled with a subsequent region merging process.
Two major concerns must be handled when performing

a segmentation based on region growing: where to place the
initial seeds in the image domain and which homogeneity
criterion should be adopted to characterize the image re-
gions. As for the seed placement problem, it is expected that
segmentation of an image composed by N relevant target
objects should start with N initial seeds, one located at each
object. As for the region growing, the homogeneity criterion
must capture the properties of the target objects.

For our specific problem, each relevant algae region
(either a single cell or a colony) would require a seed rep-
resentative. Thus, we devised an approach to automatically
determine where to place the seed points, guaranteeing that
one single seed will be placed in the interior of each algae
region. The seed placement relies on a pre-segmentation
image obtained from the filtered RGB image IADF (detailed
in Section 3.2), which provides a binary mask useful to
determine the seed points.

The homogeneity criterion and the conditional test to
drive the region growth must account for the intensity vari-
ations of the algae pixels in the Hue channel. We chose to
characterize the image regions (algae cells and background)
by the Gaussian distributions of their intensities, described
by their mean and standard deviation. These parameters
are computed by automatically sampling a sub-set of pixels
from each region. All the algae regions can be modeled with
a single probability distribution, as the pixels associated
with algae have the lowest intensities (darker regions) in
the Hue channel.

Region Sampling

(a) (b)

Fig. 7. Illustration of the region sampling procedure: (a) the red patches
depict the algae region, while the green patch refers to the background
region; (b) the estimated Gaussian distributions of the intensities in the
algae (red line) and in the background (green line) regions.

The foreground and background regions in the image
may be characterized by their intensity probability model
distributions. The parameters characterizing the respec-
tive distributions may be estimated by sampling the fore-
ground and background regions as identified in the pre-
segmentation image BM in the enhanced Hue image. The
quality of the probability distribution estimation depends
on an effective sampling procedure.

The sampling procedure is exemplified in Figure 7. Fig-
ure 7(a) illustrates the patches used to sample the target re-
gions, namely the algae (shown in red) and the background
(in green). For performance reasons, it is sufficient to sample
only 10% of the background pixels. Figure 7(b) presents the
estimated Gaussian distributions estimated for algae and
background, given by their mean and standard deviations
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as computed from the sampled intensities in their respective
regions.

Setting the seeds

The pre-segmentation image possibly includes multiple al-
gae regions, and it is necessary to determine manually a
single pixel in each representative algae region. Artifacts
characterized by small areas with less than 150 pixels may
be found in these images, which must be disregarded. The
principle is thus to consider individually each region (with
area greater than 150 pixels) of BM and select a contour
point from an eroded version of BM , thus making sure that
the seed points are placed inside the target shapes.

Computing the seed points thus requires the following
steps:

1) In an iterative process, perform successive morpho-
logical erosion operations on image BM using a
structuring element of size 1 until all regions com-
pletely shrink. Let nI be the number of iterations
performed.

2) Erode image BM using a structuring element of size
nI

2 , producing a new image BEr.
3) Discard any regions in BEr with perimeter smaller

than 150 pixels.
4) Pick the top-leftmost pixel from the external contour

of each region i in BGr as the respective region seed
(si,1, si,2).

The above methodology guarantees that one seed is
placed inside each algae region. The size of the structuring
element was manually set by taking into account the image
resolution and the algae area sizes. This process generates a
set of seeds S = {(s1,1, s1,2); ...; (sN,1, sN,2)} placed in the
image domain for the region growing process.

(a) (b)

Fig. 8. Determining the seeds: (a) the image BEr ; (b) the seed point
placed over the algae region (shown in red).

Figure 8 illustrates the strategy for computing the seed
points. Figure 8(a) shows the image BEr resulting from
executing Step 2 of the seed placement method. Figure 8(b)
shows the seed point computed (shown in red) placed over
the enhanced Hue channel image IEN .

4.1 Homogeneity criterion

The homogeneity criterion defines whether a candidate
pixel should be incorporated into a specific region. As such,
it must consider the statistically relevant patterns of the
different image regions, such as color, texture or intensity.
Thus, a criterion must be chosen that captures the intensity
patterns of the algae and the background regions.

In this case, the Gaussian distributions of the pixel in-
tensities are effective to characterize the algae and the back-
ground regions in the Hue channel. First, the distributions
parameters θ1 = {μ1, σ1} and θ2 = {μ2, σ2} are estimated,
taking as parameters the means μi and the standard de-
viations σi computed from the algae and the background
region samples, respectively, in the enhanced Hue image
IEN . Distributions P1 and P2 are thus computed as:

Pi(I(x)|{μi, σi}) = 1

σi

√
2π

exp

(
− ||I(x)− μi||2

2σ2
i

)
(10)

in which ||.|| refers to the Euclidean norm. The distinctive
Gaussian distributions of both regions are clearly depicted
in the corresponding plots shown in Figure 7(b).

4.2 Region growth process

This process can be interpreted as a pixel labeling procedure
in which all pixels belonging to a homogeneous region will
be assigned the same label. The seed pixel is compared with
its neighboring pixels, and they are grouped into a single
region if the homogeneity criterion is satisfied. The region
growing finishes once all pixels have been assigned a region
label, which does not require a merging process.

Our implementation follows the region growing formu-
lation described by Gonzalez et al. [12]. Let S be the set
of seed points, in which si ∈ Ω, and let P1 (P2) be the
probability distribution associated with all the algae regions
(background). Considering an 8-connectivity neighborhood,
each image pixel is tested to verify whether it satisfies the
criterion for inclusion in an algae region:

1) IF P1(IEN (x)|{μ1, σ1}) < P2(IEN (x)|{μ2, σ2})
2) THEN x belongs to an algae region;
3) ELSE x belongs to the background;

A binary image is obtained, where pixels that satisfy
the conditional (domain points likely to belong to an algae
region) are assigned a value 1, otherwise pixels are assigned
a value 0. The next step relies on appending to each seed
point in S all the one-valued points in the binary image
which are 8-connected to it, resulting in an image with
connected components corresponding to each algae cell,
colony and background areas. In this process, we compute
the probabilities of each neighbor pixel y and the region
associated with a seed s:

d(y) = |P1(IEN (y)|{μ1, σ1})−P1(IEN (s)|{μ1, σ1})|. (11)

Then y is grouped to the region associated to a seed s when
condition d(y) < D0 is satisfied. D0 is the average value of
d(y), that are the one-valued pixels in the pre-segmentation
image BM . Finally, each connected component receives a
distinct region label, so that each algae region is uniquely
identified. Additionally, a binary image BRG is generated
by keeping only the algae regions (as one-valued intensities)
which are associated seed points.

Figure 9 illustrates the region growing process using the
enhanced Hue channel image IEN as input and the seed
points indicated by the red marker in Figure 8(b). The result
is shown in Figure 9(a), in which the white areas correspond
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to pixels that are similar to the respective algae regions in
terms of hue intensity.

(a) (b)

Fig. 9. Post-segmentation: (a) result of the region growing process for a
particular image; (b) binary image representing the final segmentation,
after applying the rolling ball.

4.3 Rolling ball transformation

The algae movement during the image acquisition leads
to blurred corners and/or some transparent parts in the
algae cells. As a result, in some cases the segmented algae
shapes in BRG might present small concavities and holes,
as observed in the image depicted in Figures 9(a) and
10(a). This problem is handled by applying a rolling ball
transformation to fill in any undesirable holes or concavities
in the shapes obtained with the region growing process. The
rolling ball operation produces another binary image ISEG

that denotes the final segmentation.

(a) (b)

Fig. 10. Rolling ball: (a) binary image resulting from the region growth
process; (b) result obtained by the rolling ball.

The rolling ball transformation [43] can be described as
a morphological closing of the target region, followed by a
hole filling operation. A hole is a set of background pixels
that cannot be reached by filling in the background from the
edge of the image. In the rolling-ball transformation, a disk
structuring element with a predefined radius is applied to
the binary images.

Determining the size of the disk radius is difficult, since
the algae shapes differ a lot in size and complexity. Setting
a single radius size to handle all shapes would likely result
in some poor quality segmentations.

We compute the radius size automatically for each case,
taking into account the perimeter of the algae contours and
some prior knowledge on their shapes. First, small algae
do not require large disks for the rolling ball, because it is
important to preserve their characteristic concavities. On the
other hand, for algae colonies it is better to adopt medium-
sized radii sizes, since the junctions between cells must be
preserved. Finally, larger radius can be used on elongated
algae shapes, which often present blurred corners and the
rolling ball operation will not affect the shape essence, in

this case.
Shape complexity is determined by identifying the num-

ber of peaks in its corresponding Curvature Scale Space (CSS)
map [44]. The CSS descriptor captures the key local shape
features by representing the shape boundary curvatures in a
scale space which describes the locations of convex (or con-
cave) segments and also detects the degree of convexity (or
concavity) of such segments. The scale space representation
of a shape is created by tracking the position of inflection
points in a shape boundary filtered by low-pass Gaussian
filters of variable widths. As the width of the Gaussian
filter increases, negligible inflections are removed from the
boundary and the shape becomes smoother. The remaining
inflection points in the representation are likely to describe
relevant object characteristics.

The result of this multi-scale smoothing process is a
map depicting an interval tree formed by several inflection
points. The shape contours have been subsampled to 200
points. Figures 11(a) and 11(b) show the CSS maps of the
algae shapes depicted in Figures 9(a) and 10(a), respectively,
in which the red points are the maxima. The x−axis presents
the arc length of the algae contour after subsampling to 200
points. The y−axis refers to the width of the Gaussian low-
pass filtering in the contour. It is noticeable that maps of
colonies have more points of maximum than maps of single
algae.

(a) (b)

Fig. 11. Curvature Scale Space maps: (a) map of the algae colony shape
depicted in Figure 9; (b) map of the single algae shape depicted in
Figure 10(b).

The number of peaks is identified by thresholding the
CSS map at the Gaussian width 7, indicated in Figure 11 by
the dashed red lines. Defining NCSS as the number of peaks
and p the shape perimeter, the disk radius is computed as:

1) IF p > 250 AND NCSS ≤ 3
2) THEN radius← 6;
3) ELSE radius← 2.
4) END IF

Figure 10(b) shows the result of applying the rolling
ball operator to the binary image in Figure 10(a), in which
holes and concavities were filled. Figure 9(b) presents the
final segmentation result after the rolling ball transform
produced smoother algae regions when comparing with the
output image of the region growing, shown in Figure 9(a).

4.4 Segmentation pipeline

We can finally summarize the steps of the proposed segmen-
tation framework:

• Preprocessing
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1) The original RGB image I is filtered with
the anisotropic diffusion filter, producing a
filtered image IADF ;

2) The RGB image IADF is converted into its
HSV representation, yielding the Hue, Satu-
ration and Value channels;

3) The eigenvalue and eigenvectors of IADF are
computed and a binary mask image BM is
composed;

4) An enhanced Hue channel image IEN is ob-
tained with contrast enhancement using BM

for the intensities adjustment;

• Region growing process

5) The binary mask BM is used to place the
seeds S = {s1, ..., sN} in IEN ;

6) Pixel intensities from both the algae and back-
ground regions in IEN are sampled using the
binary mask BM ;

7) The Gaussian probability distributions pa-
rameters θ1 = {μ1, σ1} and θ2 = {μ2, σ2} are
estimated from the algae and the background
region samples, respectively.

8) The Gaussian distributions P1 and P2 of those
regions are computed according to Eq. (10).

9) Region growing is applied to image IEN us-
ing the set of seeds S, the probability distribu-
tions P1 and P2, resulting in a binary image
BRG composed by the set of algae regions and
background;

• Post-segmentation

10) The binary image BRG is used as input to
the rolling ball morphological operation to
obtain the image ISEG, which is the final
segmentation.

In Section 5 we present results obtained from applying
the above method and others from the literature on a partic-
ular set of green algae images.

5 EXPERIMENTAL RESULTS

We evaluated the performance and the effectiveness of
the proposed method on a set of 40 green algae images
depicting different species of the Selenastraceae algae family
complex. The experiments have been performed in a Intel(R)
Core(TM) i7 2.40GHz and the MATLAB code is available for
download 1. For the sake of performance, in our imple-
mentation we analyse the green algae images considering
individually each region of interest (algae regions identified
by the seed points) in the region growing process.

The accuracy of the segmentation results obtained with
our strategy and with methods from the literature are com-
pared with manual segmentations of the images provided
by the expert biologist, referred to as ground-truth (GT)
images. For that purpose, region accuracy is measured with
the Jaccard coefficient [45] and the F-Measure [46]. The F-
Measure (F1) is defined in terms of the precision (Pr) and
the recall (Rc):

1. https://github.com/viniciusrpb/regiongrowing

F1 = 2
Pr Rc

Pr +Rc
. (12)

Precision measures the percentage of region pixels in the
automatic segmentation that correspond to region pixels in
the ground-truth, being sensitive to over-segmentation. Re-
call measures the percentage of region pixels in the ground-
truth that were detected via automatic segmentation, and is
sensitive to under-segmentation. These measures are com-
puted as:

Pr =
TP

TP + FP
Rc =

TP

TP + FN
, (13)

where TP (true positive) refers to the pixels labeled as
belonging to algae regions in both segmentation and GT.
FP (false positive) refers to the pixels labeled as belonging
to algae regions in the segmentation, but as non-algae pixels
in GT. TN (true negative) refers to the pixels labeled as
non-algae in both segmentation and in the GT. FN (false
negative) refers to the pixels labeled as non-algae in the
segmentation, but are actually pixels belonging to algae
regions in the GT image. The F-Measure is the weighted
average between precision and recall, in which F1 values
close to 1 indicate a high segmentation accuracy and 0
indicates lowest-possible segmentation accuracy.

The Jaccard coefficient (Jc) is defined as:

Jc =
|IS ∩ IGT |
|IS ∪ IGT | , (14)

in which | · | is the cardinality operator, IS is the segmented
image (binary image) and IGT is the ground-truth image.
The value of Jc = 1 when there is an exact match between
the segmentation and GT, and Jc = 0 when a complete
mismatch is observed. For both Jaccard coefficient and F-
Measure, we compute the average accuracy for an image set
by averaging the accuracy values computed for each image.

The proposed segmentation strategy is initially com-
pared with three possible approaches: two of them are
techniques commonly employed for segmenting biolog-
ical images, namely the thresholding-based binarization
with Otsu’s automatic method for computing the threshold
value, and the Watershed transform. The third technique is
a specialized level set implementation targeted at the same
problem of segmenting green algae images [21].

To ensure a meaningful comparison, the input images to
the four segmentation approaches are the smoothed original
images, resulting from applying the ADF filter with the
same parameter settings and the rolling ball transformation
in all cases to the initial segmentation results. The segmenta-
tions obtained with the Watershed transform required some
additional postprocessing, as the method outputs multiple
subareas. The relevant algae region is selected from the set of
subareas by determining the seed points with the approach
described in Section 4 and identifying the subareas that
include the seed points.

Table 1 presents the computed mean accuracy rates
and the standard deviations (std) for our method and the
comparison techniques for the test image set. Moreover, the
average running times (in seconds) are presented to com-
pare the practical performance against the previous segmen-
tation solution based on the level set approach. The Region
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Growing framework introduced in this paper yielded higher
accuracy rates. This is mainly due to the appropriate design
of the preprocessing and postsegmentation steps, as well as
the usage of Gaussian distributions to characterize the target
regions. The standard deviation (std) rates also suggest that
it is more consistent, obtaining satisfactory segmentations in
most test cases. We also observed that the segmented algae
shapes are highly similar to the ground truth images.

TABLE 1
Average accuracy rates and execution times.

Segmentation techniques Jc F1 time (s)
1. Region Growing framework 0.77 0.88 49.0
2. Specialized level set [21] 0.72 0.82 253.2
3. Binarization using Otsu’s threshold 0.44 0.55 1.2
4. Watershed transform 0.53 0.61 22.1

The running times in seconds (s) of each technique
(shown in Table 1) indicate that the level set based approach
requires more time to obtain the final segmentation. This
can be explained by the underlying optimization process
required to compute the numerical solution of the PDEs
associated to the level set equation. In general, if a level
set curve converges after k iterations, the overall algorithm
complexity is denoted according to the big-O notation by
O(mnk), in which m and n are the dimensions of the input
image. On the other hand, as the region growing method-
ology follows the implementation proposed by Gonzalez et
al. [12], the complexity of the growing process is O(Nmn),
in which N is the number of seeds. As k is likely to be
higher than N , the complexity of the level set approach is
higher when compared to the adopted implementation of
the region growing algorithm.

In the following analysis we detail the method’s perfor-
mance for some complex segmentation cases. We show the
initial RGB image, the segmented image and also the im-
ages output by the preprocessing and the postsegmentation
steps, due to their relevance to the process. In each case,
the difficulties faced when segmenting such images are also
discussed and visually illustrated.

The image in Figure 12 shows an algae colony, which
poses a particular challenging segmentation case. Because
the organisms are typically moving when the digital image
is captured, the color intensity of algae cells vary consid-
erably. The original image is shown in Figure 12(a); notice
how the areas where the different cells meet are nearly trans-
parent. Figure 12(b) shows the equalized image obtained
during the contrast improvement of the hue channel. The
enhacement process produces the new Hue channel shown
in Figure 12(c). The image resulting from the region growing
algorithm is presented in Figure 12(d), and Figure 12(e)
shows the final segmentation, in which several holes were
successfully filled by the rolling ball operator. Figure 12(f)
depicts the associated ground-truth. The “star” shape of the
colony has been very well preserved in the segmentation,
which attained accuracy rates F1 = 0.85 and Jc = 0.74.

Another segmentation case concerns an elongated algae
cell which shows mucilage in the bottom corner. Handling
the mucilage correctly is difficult. Ideally, it should remain
connected to the algae cells, as it is characteristic of this kind
of algae. However, conventional segmentation approaches

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Segmentation of an algae colony: (a) original RGB image (seeds
denoted by the red points); (b) the equalized image IEQ determined dur-
ing the enhancement process; (c) enhanced Hue channel after contrast
enhancement; (d) output of the region growing algorithm; (e) result after
applying the rolling ball operator; (f) ground-truth image.

will very likely separate the structures. Figure 13 (a) depicts
the original RGB image with a single algae and the obtained
seed point (in red). Figure 13(b) shows the Hue channel,
which is pretty noisy in this case. The smoothing and the
enhancement processes produce an image with homoge-
neous regions and improved contrast between algae and
background, shown in Figure 13(c). The final segmentation
is presented in Figure 13(d), and the ground-truth is shown
in Figure 13(e). Again, the algae cell shape including its
particular mucilage was very well preserved, with segmen-
tation accuracy rates Jc = 0.85 and F1 = 0.92. Figure
13(f) presents the result of our previous level set approach,
which shows the algae organism without its distinguishing
mucilage structure.

We now analyze a particular case of the segmentation
results obtained with the method proposed in this paper in
comparison with those obtained with the Otsu’s threshold
binarization, the Watershed transform and our own previ-
ous attempt using a specialized level set approach [21]. The
original image, depicting a single algae with its computed
seed point (in red), is illustrated in Figure 14(a), whereas
Figure 14(b) shows the manual segmentation generated by
the biologist. Figure 14(c) replicates the segmentation result
obtained with our method. Figures 14(d), 14(e) and 14(f)
illustrate the results obtained, respectively, with the bina-
rization approach, the adapted the Watershed transform and
the specialized level set approach.

The segmentation obtained with the proposed region
growing strategy is clearly most similar to the ground-truth,
with segmentation accuracies given by F1 = 0.90 and Jc =
0.82. The segmentation obtained with the thresholding-
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(a) (b)

(c) (d)

(e) (f)

Fig. 13. Segmentation of an elongated algae cell: (a) original RGB image
and its seed (in red) overplaced to the cell; (b) original Hue channel; (c)
enhanced Hue channel; (d) segmentation after application of the rolling
ball operator; (e) ground-truth image; (f) obtained resulting using the
previous method [21].

based method deformed the original algae shape (accuracy
rates are F1 = 0.71 and Jc = 0.55). The Watershed based
method achieved accuracy rates F1 = 0.70 and Jc = 0.75
in this case, but the binary region presents a rough contour,
even though the shape properties are well preserved. The
specialized level set also output a highly accurate segmen-
tation (F1 = 0.88 and Jc = 0.79), but still inferior to the
region growing, besides being more time consuming.

In Figure 15 we illustrate that the proposed segmentation
methodology is also applicable to other types of digital
microalgae images that share similar characteristics to the
Selenestraceae images. Figure 15(a) presents the original RGB
image of Micrasterias pinnatifida algae, in which the obtained
seeds are shown by the red points. Figures 15(c) and 15(d)
show the original hue channel and the enhanced hue image
obtained with the same enhancement process applied to the
Selenastraceae images, respectively. Figure 15(d) depicts the
final binary image obtained after the region growing and
the rolling ball procedures. One notices that the proposed
method also works well on other types of algae images, but
target cells should be green.

As reported elsewhere [21], the Gaussian distributions
estimated using the HSV color space images can statistically
characterize the target image regions effectively. The figures
depicting the Hue channel images reveal target regions
with a wide variety of patterns, which are well captured
by the respective Gaussian distribution models. The pre-
segmentation image provides the input to the region sam-
pling procedure, ensuring a correct sampling of the rep-
resentative intensities of each target region. The proposed
solution also benefits from the pre-segmentation image both

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Comparing results from different segmentation techniques:
(a) original RGB image with seed (in red) overplaced to the cell; (b)
ground-truth image; (c) segmentation with the proposed region growing
method; (d) segmentation with thresholding; (e) segmentation with the
Watershed method; (f) segmentation with a specialized level set ap-
proach [21].

(a) (b)

(c) (d)

Fig. 15. Segmentation of Micrasterias pinnatifida in a microscopy image:
(a) original RGB image; (b) original hue channel; (c) enhanced hue
channel; (d) the final segmentation.

to determine a single seed point for each region and to
ensure that they are correctly placed inside algae regions.

Beyond its higher segmentation accuracy rates, the new
method can naturally handle noise and artifacts, and also
treat the variability observed in the hue channel and the pre-
segmentation images. Small noisy signals are disregarded
when computing the seed points, so that only the relevant
algae regions are kept in the final segmentation. This is a
major advantage over our previous results obtained on this
image collection with a modified level set approach [21],
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which departs from the assumption that any boundary
information potentially describes an algae region. Further-
more, the current method is computationally more efficient
than the level set approach, which depends on the conver-
gence of the dynamic contour.

A limitation that remains to be further investigated con-
cerns the detection of transparent algae cells, since neither
the pre-segmentation image nor the enhancement process
could correctly identify the algae shapes in these cases,
hampering the subsequent steps of intensity sampling and
seed point placement. In this situation, the intensities of
the algae regions and the background are very similar.
Thus, edge-based methods are likely to perform better, since
they can still detect the algae boundaries in these adverse
conditions.

6 CONCLUSION

In this paper we presented a methodology for segmenting
green microalgae images based on the region growing prin-
ciple and incorporating specific smoothing and contrast en-
hancement steps. The image regions, i.e., the algae cells and
the background, are described by Gaussian distributions
computed prior to the region growing, estimated by means
of region intensity samples. The rationale for generating this
representation is to capture the subtle intensity variations
observed in algae cells for accurate segmentation.

Segmentation is performed in the Hue channel, which
is effective in capturing the contrast between algae and
background regions. Each seed point for region growing is
associated with a specific region and the growth process
groups neighboring pixels that satisfy a predefined homo-
geneity criterion characterizing the image regions. We also
introduce a strategy for computing a binary image from
the original RGB, useful to automatically determine the
seed points and to obtain patches for the region sampling
procedure.

Experimental results have shown that the proposed
method achieves high segmentation accuracy when com-
pared with ground-truth segmentations provided by the bi-
ologists. Moreover, it also yielded better accuracy rates than
existing methods from the literature, such as segmentation
with the Watershed transform, binarization using Otsu’s
technique, and a specialized level set method devised for
green algae images.

Our next goal is to extract morphological features from
the green algae from the segmented shape properties, in
order to provide computational support for taxonomical
classification of these particularly challenging algae species.
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