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Abstract— We combine topological and geometric methods to
construct a multi-r esolution representation for functions over
two-dimensional domains. In a preprocessingstage, we create
the Morse-Smale complex of the function and progressvely
simplify its topology by canceling pairs of critical points. Based
on a simple notion of dependencyamong these cancellations
we construct a hierarchical data structur e supporting traversal
and reconstruction operations similarly to traditional geometry-
based representations. We use this data structure to extract
topologically valid approximations that satisfy error bounds
provided at run-time.

Index Terms— Critical point theory, Morse-Smale complex,
terrain data, simplification, multi-r esolution data structure.

I. INTRODUCTION

HE efficient constructionof topologically and geomet-

rically simplified modelsis a central problemin visu-
alization. This paper describesa hierarchicaldata structure
representinghe topology of a continuousfunction on a trian-
gulatedsurface.An exampleof suchdatais the distribution of
the electrostaticpotentialon a molecularsurfaceor elevation
data on a sphere(e.g., the Earth). The complete topology
of the function is computedand encodedin a hierarchythat
providesfastandconsistentccesso adaptie topologicalsim-
plifications.Additionally, the hierarchyincludesgeometrically
consistenapproximation®f thefunctioncorrespondingo ary
topologicalrefinementlin the specialcaseof a planardomain,
the function can be thoughtof as elevation and the graph of
the function as a surfacein three-dimensionaspace.In this
caseour framawork createsa topology-basedhierarchyof the
geometryof this surface.

A. Motivation

Scientific dataoften consistsof measurementever a geo-
metricdomainor spaceWe canthink of it asa discretesample
of a continuousfunction over the space We are interestedn
the casein which the spaceis a triangulatedsurface (with or
without boundary).

A hierarchical representatioris crucial for efficient and
preferablyinteractve exploration of scientific data. The tra-
ditional approachto constructingsuch a representationis
basedon progressie datasimplificationdrivenby a numerical
measuremerdf the error. Alternatively, we maydrive the sim-
plification processwith measurementsf topologicalfeatures.
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Such an approachis appropriateif topological featuresand
their spatial relationshipsare more essentialthan geometric
errorboundgto understandhe phenomenanderinvestigation.
An exampleis waterflow overaterrain,whichis influencedy
possiblysubtleslopes.Small but critical changesn elevation
mayresultin catastrophichangesn waterflow andaccumula-
tion. Thus,our approachs distinctly differentfrom onethatis
purelydrivenby numericalapproximatiorerror. It ensureghat
topology of a functionis presered aslong aspossibleduring
a simplificationprocesswhich is not necessarilfhe casewith
simplification methodsdriven by approximationerror.

Thereareapplicationdbeyondtheanalysisof measurediata.
For example,we may artificially createa continuousfunction
over a surfaceandusethatfunction to guidethe sggmentation
of the surfaceinto patches.

B. Relatedwork

The topological analysis of scalar valued scientific data
hasbeena long standingresearcHocus.Morse-theory-related
methodshave alreadybeendevelopedin the 19th century[1],
[2], long before Morse theory itself was formulated,and hi-
erarchicalrepresentationkave beenproposed3], [4] without
making use of the mathematicalframevork developed by
Morseandothers[5], [6]. However, mostof this researctwas
lost and has beenrediscaovered only recently Most modern
researchn the areaof multi-resolutionstructuress geometric
and mary techniqueshave been developed during the last
decade The mostsuccessfuhlgorithmsdevelopedin that era
are basedon edgecontractionasthe fundamentakimplifying
operation[7], [8] and accumulatedsquaredistancesto plane
constraintsasthe error measurd9], [10]. This work focused
on triangulatedsurfacesembeddedn three-dimensionaEu-
clideanspacewhich we denoteasR®. We find a similar focus
in the successie attemptsto include the capabilityto change
the topologicaltype [11], [12].

In the field of flow visualizationtopological analysisand
topology basedsimplification are basedon the work by Hel-
manandHesselink[13]. They proposeda structuresimilar to
the Morse complex to analysisvectorfields andlater methods
to simplify this complex have beendeveloped[14], [15], [16].
Unfortunately computingsucha complex relieson numerical
integrationalonginherentlyunstableregionsof the vectorfield
and is thereforelimited to relatively small and clean data
sets.For the simpler caseof piece-wiselinear scalarvalued
functions(whosegradientsdefinea piece-wiseconstantflow-
field) we computethe topology in a symbolic mannerwhich
is robustevenin degeneratecasesTherefore we cancompute
Morse complexes for data sets with tens of thousandsof



critical pointscomparedo hundredof critical pointsin com-
monly usedvector fields [14], [15], [16]. Unlike the method
in [14] we maintaina consistentgeometricapproximationof
thetopologyanddo not createhigherordercriticalities asit is
donein [15]. Additionally, our error boundis directly linked
to the approximatiorerror, seeSectionV-A, andwe provide a
multi-resolutionhierarchyratherthana simplificationstrateyy.

To remove (spurious)topological featuresfrom all level
sets simultaneously we interpret the critical points of the
function as the culprits responsiblefor topological features
thatappeain thelevel setg[17], [18]. While sweepinghrough
the level setswe seethat critical pointsindeedstartand end
suchfeatures,and we may usethe length of the interval over
which a feature exists as a measureof its importance.For
the specialcaseof two-dimensionaheightfields this measure
was first proposedby Horman [19] and later adopted by
Mark [20]. We use the more generalconceptof persistence
introducedin [21], where the Morse-Smalecomplex of the
function domainoccupiesa central position. Its construction
and simplification is studiedfor 2-manifoldsin [22] and for
3-manifoldsin [23].

C. Results

We follow the approachtakenin [22], with somecrucial dif-
ferencesand extensions.Given a piecavise linear continuous
function over a triangulateddomain,we

1. constructa decompositiorof the domaininto monotonic

guadrangularegions by connectingcritical points with
lines of steepestiescent;
. simplify the decompositiorby performinga sequencef
cancellationsorderedby persistenceand
. turn the simplification procesdnto the constructionof a
hierarchicalmulti-resolutiondatastructurewhoselevels
correspondo simplified versionsof the function.
The first two stepsare discussedn [22], but the third stepis
new. Neverthelessthis papermakes original contributionsto
all threestepsandin the applicationof the datastructureto
concretescientific problems.Thesecontributions are

(i) a modificationof the algorithm of [22] that constructs
the Morse-Smalecomplex without the use of handle
slides;
the simplification of the complex by simultaneousap-
plication of independentancellations;

a numerical algorithm to approximatethe simplified
function;
a shallav multi-resolutiondatastructurecombiningthe
simplified versionsof the function into a single hierar
chy;
an algorithm for traversingthe datastructurethat com-
binesdifferentlevels of the hierarchyto constructadap-
tive simplifications;and

(vi) the applicationof our methodto variousdatasets.
The hallmark of our methodis the fusion of the geometric
andtopologicalapproacheto multi-resolutionrepresentations.
The entire processs controlledby topologicalconsiderations,
andthe geometricmethodis usedto realizemonotonicpaths
andpatchesThe latter playsa crucial but sub-ordinateole in
the overall algorithm.

(i)
(i)
(iv)

v)

I1. BACKGROUND

We describean essentiallycombinatorialalgorithm based
on intuitions provided by investigationsof smoothmaps.In
this section,we describethe necessarpackgroundjn Morse
theory[6], [24] andin combinatorialtopology [25], [26].

A. Morsefunctions

Throughoutthis paper M denotesa compact2-manifold
withoutboundaryand f : M — R denotesareal-valuedsmooth
function over M. Assuminga local coordinatesystemat a
point a € M, we computetwo partial derivatives and call a
critical whenboth are zero andregular otherwise.Examples
of critical points are maxima(f decreases all directions),
minima (f increasesn all directions),andsaddleqf switches
between decreasingand increasing four times around the
point).

Using the local coordinatesat a, we computethe Hessian
of f, which is the matrix of secondpartial derivatives. A
critical point is non-dgeneiate when the Hessianis non-
singular which is a property that is independentof the
coordinate system. According to the Morse Lemma, it is
possibleto constructa local coordinatesystemsuch that f
hasthe form f(x;,x,) = f(a) £x¢£x3 in a neighborhoodof
a non-deyeneratecritical point. The numberof minus signs
is the index of a and distinguishesthe different types of
critical points:minimahaveindex 0, saddleshave index 1, and
maximahave index 2. Technically f is a Morsefunctionwhen
all its critical points are non-dgyenerateand have pairwise
differentfunctionvalues.Most of the challengesn our method
arerootedin the needto enforcetheseconditionsfor given
functionsthat do not satisfy them originally.

B. Morse-Smaleomplees

Assuminga Riemannianmetric and an orthonormallocal
coordinatesystem,the gradient at a point a of the manifold
is the vector of partial derivatives. The gradientof f formsa
smoothvector field on M, with zeroesat the critical points.
At ary regular point we have a non-zerogradientvector and
when we follow that vector we trace out an integral line,
which startsat a critical point andendsat a critical point while
technicallynot containingeither of them. Sinceintegral lines
ascendmonotonically the two endpointscannotbe the same.
Becausef is smooth,two integral lines are either disjoint or
the same.The setof integral lines coversthe entire manifold,
exceptfor thecritical points. ThedescendingnanifoldD(a) of
a critical point a is the setof pointsthat flow toward a. More
formally, it is the union of a andall integral lines that endat
a. For example,the descendingnanifold of a maximumis an
opendisk, that of a saddleis an openinterval, andthat of a
minimumis the point itself. The collectionof stablemanifolds
is a complg, in the sensethat the boundaryof a cell is the
union of lowerdimensionalcells. Symmetrically we define
the ascendingmanifold A(a) of a asthe union of a and all
integral lines that startat a.

For the next definition, we need an additional non-
degenerag condition, namelythat ascendingand descending



manifolds that intersectdo so trans\ersally For example, if
an ascendingl-manifold intersectsa descendingl-manifold
thenthey cross.Due to the disjointnessof integral lines, this
implies that the crossingis a single point, namelythe saddle
commonto both. Assumingthat this transwersality property
is satisfied,we overlay the two compleces and obtain what
we call the Morse-Smalecomple, or MS complex, of f.
Its cells are the connectedcomponentsof the intersections
betweenascendingand descendingnanifolds.Its verticesare
the verticesof the two overlayed complexes, which are the
minimaandmaximaof f, togethemwith the crossingpointsof
ascendingand descendindl-manifolds,which are the saddles
of f. Eachl-manifoldis split at its saddle,thus contributing
two arcsto the MS complex. Eachsaddleis endpointof four
arcs,which alternatelyascendanddescendaroundthe saddle.
Finally, eachregion hasfour sides,namelytwo arcsemanating
from aminimumandendingat two saddlesandtwo additional
arcs continuing from the saddlesto a commonmaximum. It
is genericallypossiblethat the two saddlesare the same,in
which casetwo of the four arcsmerge into one. The region
lies on both sides of the memged arc so it makes senseto
double-countand to maintainthat the region hasfour sides.
An exampleis showvn in Fig. 1.
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Fig. 1. A sampleMS comple.

C. Piecawiselinear functions

Functions occurring in scientific applications are rarely
smooth and mostly known only at a finite set of points
spreadout over a manifold. It is corvenientto assumethat
the function haspairwisedifferentvaluesat thesepoints. We
assumethat the points are the verticesof a triangulationK
of M, andwe extendthe function valuesby piecavise linear
interpolationappliedto the edgesandtrianglesof K. The star
of a vertex u consistsof all simplices (vertices,edgesand
triangles)that containu, andthe link consistsof all facesof
simplicesin the starthataredisjoint from u. Sincethe surface
definedby K is a 2-manifold, the link of every vertex is a
topological circle. The lower star containsall simplicesin
the starfor which u is the highestvertex, and the lower link
containsall simplicesin the link whoseendpointsare lower
thanu. Notethatthelower link is the subsebf simplicesin the
link thatarefacesof simplicesin thelower star Topologically,
the lower link is a subsebf a circle. We definewhatwe mean
by a critical point of a piecawvise linear function basedon
the lower link. As illustratedin Fig. 2, the lower link of a
maximumis the entire link andthat of a minimumis empty
In all other cases;the lower link of u consistsof k+1>1
connectegiecesgachbeinganarcor possiblya singlevertex.
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Fig. 2. Classificationof a vertex basedon relatve heightof verticesin its

link. The lower link is marked black.

The vertex u is regular if k=0 anda k-fold saddleif k> 1.
As illustratedin Fig. 2 for k=2, a k-fold saddlecanbe split
into k simple or 1-fold saddles.

D. Persistence

We requireanumericalmeasuref theimportanceof critical
points that can be usedto drive the simplification of a MS
comple. For this purposewe pair up critical pointsanduse
the absolutedifferencebetweentheir heights as importance
measure.To constructthe critical point pairs, we imagine
sweepingthe 2-manifold M in the direction of increasing
height.This view is equivalentto sortingthe verticesby height
and incrementallyconstructingthe triangulationK of M one
lower starat a time. The topology of the partial triangulation
changeswhenerer we add a critical vertex, and it remains
unchangedvheneer we adda regularvertex. Exceptfor some
exceptionalcaseshat have to do with the surfacetype of M,
eachchangeeither createsa componentor an annulusor it
destoys a component(by meming two) or an annulus(by
filling the hole). We pair a vertex v that destrys with the
vertex u that createdwhat v destrys. The persistenceof u
andof v is the delaybetweerthe two events:p = f(v) — f(u).
An algebraiqustificationof this definitionanda fastalgorithm
for constructingthe pairs canbe found in [21].

I1l. MORSE-SMALE COMPLEX

We introducean algorithmfor computingthe MS complex
of afunction f definedoveratriangulationK. In particular we
computethe ascendingand descendind -manifolds(paths)of
f startingfrom the saddlesand usethemto partition K into
guadrangularegionswhich definethe MS complex.

A. Path construction

Startingfrom eachsaddle we constructwo lines of steepest
ascentand two lines of steepestdescent.We do not adopt
the original algorithm proposedin [22] and follow actual
lines of maximal slope insteadof edgesof K. In particular
we split trianglesto create new edgesin the direction of
the gradient.We modify this basic stratgy to avoid regions
with disconnectedhterior andregionswhoseinterior doesnot
touchboth saddlesWithout the modificationsuchregionsmay
be createdbecausef is not smooth and integral lines can
meige. Fig. 3(a) shavs one suchcase,where pathsmerge at
junctionsanddisconnecthe interior of a region into two. The
modificationthat eliminatesthe two undesiredconfigurations
consistsof disalloving two pathsto memge if they are of
different type; seeFig. 3(b). Two pathsare still allowed to
meirge if they are both ascendingor both descendinglf two
paths are not allowed to meige we split one edge of the



triangulationand introducea new samplewith function value
that preseres the structureof the MS complex but locally
avoids the junction. Fig. 4 shavs the repeatedapplication
of this strateyy to avoid a junction. Practically this situation
rarely occursandit canbe shavn thatin the worst casethe
numberof trianglesintroduceds linearin the sizeof themesh.

¢ saddle
© minimum
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Fig. 3. Portionof the MS complex of a piecavise linear function. Sincethe
gradientis not continuous,(solid) ascendingand (dotted) descendingoaths
canmeetin junctionsandsharesggments.(Left) Complex with no restrictions
on sharingsegments.The greenregion touchesonly one saddle,and the red
oneis disconnected(Right) Only pathof the sametype canmeet.Theinterior
of eachregion is connectedand touchesboth saddles.

Fig. 4. Triangle split to keeptwo pathsseparatedSolid red lines indicate
two portionsof pathsalreadycomputed.(Left) The red circle is the current
extremumof a paththat would follow the red dottedline. (Middle) The path
is extendedsplitting a first triangle. (Right) Sincethe two pathswould still
intersect,a secondtriangleis split.

After computingall paths,we partitionK into quadrangular
regions forming the cells of the MS complex. Specifically
we grow eachquadrangldrom a triangleincidentto a saddle
without ever crossinga path.

In degenerateareasof M, whereseveral verticesmay have
the samefunction value, the greedychoicesof local steepest
ascent/descentay not work consistently We addressthis
problemusingthe simulationof simplicity, or (SoS)[27]. We
orient eachedgeof K in the direction of ascendingunction
value.Vertex indicesare usedto breakties on flat edgessuch
that the resulting directed graph has no cycles. Using these
orientations,the searchfor the steepespath is transformed
to a weighted-graptsearchand function valuesare only used
as preferencesThus, our algorithmis robust even for highly
degeneratedatasetsas the one shown in Fig. 5.

(@)
MS compl of degeneratedataset. The “volcano” is createdby
a sin() function that is flat both inside the “crater” and at the foot of the
mountain.(a) Originally computedMS comple. A large numberof critical
pointsis createdby eliminatingflat regionsusingsimulationof simplicity. (b)
The samecomple after removal of “topological noise’

(b)

Fig. 5.

Let T = {F,E,V} be the triangulationof M;

initialize the MS comple, M = 0;

initialize the setsof pathsandcells,P=C = 0;

initialize SoSto directthe edgesof T;

S=FINDSADDLES(T);

S=SPLITMULTIPLESADDLES(T);

SORTBYHEIGHT(S);

forall se Sin ascendingrderdo
COMPUTEASCENDINGPATH(P)

endf or;

forall se Sin descendingrderdo
COMPUTEDESCENDINGPATH(P)

endf or ;

whi | e thereexists untouchedf € F do
GROWREGION(f7 p07 p17 p27 p3)v
CREATEMORSECELL(C, py, Py, Py P3)

endwhi | e;

M = CONNECTMORSECELLS(C).

Fig. 6. Sequenceof high-level operationsusedto createan MS comple.
Whenwe grow a cell from atriangle f we encountethe four boundarypaths.

P, to ps, which arethenincorporatedinto a half-edgerepresentatiorof the
cell

B. Diagonalsand diamonds

The central element of our data structure for the MS
comple is the neighborhoodof a simple saddleor, equiva-
lently, the halves of the quadrangleghat sharethe saddleas
one of their vertices.To be more specific aboutthe halves,
recall that in the smooth case each quadrangleconsistsof
integral lines that emanatefrom its minimum and end at its
maximum.Any one of theseintegral lines can be chosenas
diagonalto decomposehe quadranglénto two triangles.The
triangles sharinga given saddleform the diamond centered
at the saddle.As illustrated in Fig. 8(a), each diamond is
a quadranglewhose vertices alternatebetweenminima and
maximaaroundthe saddlein its center It is possiblethat two
verticesarethe sameandthe boundaryof the diamondis glued
to itself alongtwo consecutie diagonals.

C. Thealgorithm

We computethe descendingpathsstartingfrom the highest
saddleandthe ascendingpathsstartingfrom the lowestsaddle.
Thus, when two pathsaim for the sameextremum, the one
with higher persistencgimportance)is computedfirst. The
boundaryof the datasetis artificially taggedas a path. The
completealgorithmis summarizedn Fig. 6.

IV. HIERARCHY

Our main objectve is the design of a hierarchical data
structurethat supportsadaptve coarseningand refinementof
the data.In this section,we describesucha datastructureand
discusshow to useit.

A. Cancellations

We useonly oneatomicoperationto simplify the MS com-
plex of a function, namelya cancellationthat eliminatestwo
critical points. The inverseoperationthat createstwo critical



pointsis referredto asan anti-cancellation In orderto cancel
two critical pointsthey mustbe adjacentin the MS complex.

Only two possible combinationsarise: a minimum and a

saddleor a saddleand a maximum. The two configurations
are symmetric,and we canlimit the discussiorto the second
case,which is illustratedin Fig. 7.

4

Portion of the graph of a function before (left) and after (right)
cancellationof a maximum(red) and a saddle(green).

Fig. 7.

Let u be the saddleand v the maximum of the canceled
pair, and let w be the other maximum connectedto u. We
requirew # v and f(w) > f(v); otherwise,we prohibit the
cancellationof u andv. We view the cancellationas meging
threecritical pointsinto one,namelyu, v, w into w. All paths
endingat eitheru,v, or w areremoved and we adaptthe local
geometryto the new topology as describedin SectionV.
Subsequenthall pathsthatwereconnectedo eithermaximum
are recomputedIn otherwords, we connectevery saddleon
theboundaryof the geometricallyadaptedegionto theunique
maximumwithin theregion. To avoid excessve splitting of the
triangulationwe restrictthe re-computedathsto shareedges
of the triangulation. There are several reasonsfor requiring
f(w) > f(v): it implies that all recomputedpaths remain
monotonicandensureghatwe do not eliminateary level sets,
exceptthatthe onesbetweenf (u) and f (v) aresimplified. We
may think of a cancellationas deleting the two descending
pathsof u and contractingthe two ascendingpathsof u.

B. Noderemaoval

We constructhe multi-resolutiondatastructurefrom bottom
to top. Thebottomlayerstoresthe MS complex of thefunction
f, or, to be more precise the correspondinglecompositiorof
the 2-manifold into diamonds.Fig. 8(b) illustratesthis layer

(b)
(a) The (dotted) portion of an MS complex and the (solid) portion
of the correspondingdecompositioninto diamonds.(b) Portion of the data
structure(solid) representinghe piece of the decompositioninto diamonds
(dotted). (c) Cancellationgraph (solid) of the decompositioninto diamonds
(dotted).

Fig. 8.

by shaving each diamond as a node with arcs connecting
it to neighboringdiamonds.Each node has degree four, but
there can be loops starting and ending at the samenode. A
cancellatiorcorrespond$o removing anodeandre-connecting

its neighbors.When this node is sharedby four different
arcs we can connectthe neighborsin two different ways.
As illustrated in Fig. 9, this operation correspondsto the
two different cancellationsmeming the saddlewith the two
adjacentmaximaor the two adjacentminima. Thereis only
oneway to remove a nodesharedoy aloop andtwo otherarcs,
namelyto deletethe loop and connectthe two neighbors.

b) . . . « (©
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Fig. 9. The four-sideddiamond(a) canbe zippedup in two ways: from top
to bottom (b) or from left to right (c). A folded diamond(A) canbe zipped
up in only oneway (B).

To constructthe hierarchy by repeatedcancellationswe
use the algorithm in [21] to match critical pointsin pairs
(81:V1),(8,V0), - .-, (S, V), With persistencencreasingfrom
left to right. Let Q; be the MS complex obtainedafter thefirst
j cancellationsfor 0 < j < k. We obtain Qj+1 by modifying
Qj and storing sufficient information so we can recover Qj
from Qj41- The hierarchyis completewhen we reach Q,.
We call eachQ; a layer in the hierarchy and representit
by activating its diamondsas well as neighborand vertex
pointers and de-actvating all other diamondsand pointers.
To ascendin the hierarchy(coarsenthe quadrangulationjve
de-actvate the diamondof s; ;; to descendn the hierarchy
(refine the quadrangulationjve activate the diamondof Sj_1:
Activating and de-actvating a diamond requiresupdating of
only a constantnumberof pointers.

C. Independentancellations

We generalizethe notion of a layer in the hierarchyto
permit view-dependensimplifications. The key concepthere
is the possibility to interchangingtwo cancellations.The
most severe limitation to interchangingcancellationsderives
from the assignmenbf extremaas verticesof the diamonds
and from re-draving the pathsending at theseextrema. To
understandhis limitation, we introducethe cancellationgraph
whoseverticesare the minima and maxima.Fig. 8(c) showvs
anexampleof sucha graph.For eachdiamond thereexists an
edgeconnectinghe two minima andanotheredgeconnecting
the two maxima.Thereare no loops andthereforesometimes
only oneedgeperdiamond Zipping up a diamondcorresponds
to contractingone of the edgesand deleting the other, if it



exists. One endpointof the edgeremainsas a vertex andthe
other disappearsimplying that the diamondsthat sharethe
secondendpointreceive a new vertex. A specialcasearises
when a diamondsharesboth endpoints:the connectingedge
that would turn into a loop is deleted.

Two cancellationsin a (possibly simplified) MS complex
are interchangeablewheniit is irrelevant in which order the
two operationsare appliedto the datastructure.For example,
the two cancellationszipping up the samediamondare not
interchangeablsinceone preemptshe other In general two
cancellationsare interchangeablevhen their diamondsshare
no verte, a conditionwe refer to asbeingindependentNote
thattwo interchangeableancellation@renot necessarilynde-
pendentEventhoughindependences the morelimiting of the
two conceptsijt offers sufficient flexibility in choosinglayers
to supportthe adaptationof the representatiorto external
constraintssuchasthe biasedview of the data.

Whenwe canperformarelatively large numberof indepen-
dent cancellationswe have more freedom generatinglayers
in the multi-resolutiondata structure.ldeally, we would like
to identify a large independentet and iterateto constructa
shallav hierarchy However, in the worst case,every pair of
cancellationss dependentywhich makesthe constructionof a
shallov hierarchyimpossible As illustratedin Fig. 11(a),such
a configurationexists evenfor the sphereandfor ary arbitrary
number of vertices. Nevertheless,worst-casesituations are
unlikely to arise as they require a large number of folded
diamonds.Specifically it is possibleto prove that every MS
comple without folded diamondsimplies a linear numberof
independentancellations.

V. GEOMETRIC APPROXIMATION

After eachcancellationwe createor changethe geometry
thatlocally definesf. We pursuethreeobjectives:the approx-
imation mustagreewith the given topology the error should
be small, and the approximationshouldbe smooth.

A. Error bounds

We measurethe error as the differencebetweenfunction
values at a point. It is corvenient to think of the graph
of f asthe geometryand this differenceas the (vertical)
distance betweenthe original and the simplified geometry
at the location of the point. The persistenceof the critical
points involved in a cancellationimplies a lower bound on
the local error We illustrate this connectionfor the one-
dimensionakasein Fig. 10(a).Recallthatthe persistence of
the maximum-minimumpair is the differencein their function
values.Any monotonicapproximationof the curve between
the two critical points hasan error of at least p/2. We can
achieseanerrorof p/2, but only if we acceptaflat sggmentfor
this portion of the curve, seetheredcurvein Fig. 10(a). When
it is allowedto exceedp/2, smootherapproximationsvithout
flat segmentsarepossible suchasthe greencurve in the same
figure. Note that the above describesonly the error between
the two functions before and after the one cancellation.The
error causeddy the compositionof two or more cancellations
is more difficult to analyzeand will not be discussedn this
paper

(b)

Fig. 10. Geometryfitting for paths:(a) One-dimensionatancellationand
several monotonic approximations.(b) Local averaging usedto construct
smoothly varying monotonic approximations.Slopesof neighboringedges
are combinedwith the original slope, and the function valuesare adjusted
accordingly(edgenormalsare shawvn).

B. Data fitting
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Fig.11. (a) MS complex onthespherewith pairwisedependentancellations.
(b) One-dimensionasmoothingwith (blue) error constraintsand prescribed
endpointderiatives. (Left) Initial configuration;(right) Constructedsolution.
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We know that monotonic patchesexist, provided we are
tolerant to errors. Our goal is thereforeto find monotonic
patchesthat minimize some error measure.A large body
of literature deals with the more general topic of shape-
constrainedapproximation[28], [29]. The generalproblem
is to constructthe smoothestinterpolantto a set of input
data while observingsome shapeconstraints(e.g., corvex-
ity, monotonicity and boundaryconditions). However, most
publishedwork usespenalty functionsinsteadof tight error
bounds.Additionally, the techniquesare typically described
for tensorproductsetting,andthe definitionsof monotonicity
for the bivariate casevary and differ from the onewe use.

We did not adapt standardtechniquesfor our purposes.
Instead,we decidedto usea multi-stageiterative approachto
constructhe geometrythatspecifieshe simplified representa-
tion of f. It providesa smoothC!-continuousapproximation
within a specifiederror bound along the boundariesof the
guadrangulapatchesanda similar approximationbut without
observingan error boundin the interior of the patches.The
pathsare constructediteratively by smoothingthe gradients
along the edgesand post-fitting the function values,as illus-
tratedin Fig. 10(b). During eachiteration, we first compute
the new gradientof an edgeas a corvex combinationof its
gradientand the gradientsof the adjacentedges.We then
adjustthe function valuesat the verticesto realize the new
gradients.During an iteration, we maintain the error bound
at the vertices and make sure that the completed path is
monotonic.In addition, the gradientat the critical points is
setto zero.

The techniqueperformswell in practice althoughit con-
vergesslowly. Sampleresultsare shavn in Fig. 11(b). The



interior of the quadrangulapatchesare modified by applying
standardLaplacian smoothingto the function values [30].
During eachiteration, the value at a vertex is averagedwith
those of its neighbors.Since the boundariesare monotonic,
this procedurecorverges to a monotonic solution for the
patchinterior. We summarizethe stepsof the geometryfitting
process:
1. Find all pathsaffectedby a cancellation;
2. usethe gradientsmoothingto geometricallyremove the
canceleccritical points;
3. smooththe old regionsuntil they are monotonic;
4. erasethe pathsandre-computenew pathsusingthe new
geometry;
5. use one-dimensionalgradient smoothingto force the
new pathsto comply with the constraintsand
6. smooththe new regionsuntil all pointsareregular.

The reasonfor repeatinggradientsmoothingin Step5 is this

one: The pathsconstructedin Step 4 are not guaranteedo

satisfytherequirederrorboundsIn practice we do not smooth
until the geometrycorverges, insteadperform a predefined
numberof stepsor smoothuntil all constraing(monotonicity
anderror bounds)are met (whichever takeslonger).Basedon

our experimentsthe constrainsaretypically easilysatisfiedin

which casea constanhumberof smoothingstepsis performed
after eachcancellation.Currently the geometricfitting is the

computationalbottleneckof the algorithm. However, we are
not aware of fastermethodsto createtopologically correct
approximations.

VI. REMESHING

While traversing the hierarchy we want to interactiely
display geometrythat agreeswith the currenttopology of the
graphof f. Thus,we mustdeterminea triangularmeshwithin
eachquadrangularegion. The triangulationfor eachregion
shouldbe independenbf all otherregionsto allow usto use
topology other than that encounteredduring the creation of
the hierarchy

A. Path smoothing

We first examine the geometricdatawe want to approxi-
mate. Without modificationsthe algorithmsusedto compute
paths tend to create “non-smooth” paths, see Fig. 12(a).
Theseare visually not pleasingand difficult to approximate.
Therefore,we modify the data slightly in order to create
smootherpaths.We smoothpath vertices,except the critical
points,in M (in the caseof heightfields the xy-plane)without
flipping triangleswhile preservingheirfunctionvalue.Again,
we use Laplacian smoothingthat is modified at junctions,
seeFig. 12(b). Here, we first averageall incoming vertices
(basedon the direction of the paths)andall outgoingvertices
separatelyThe averagesare usedto updatethe junction. This
stratgy reduceghe changein directionbetweertheincoming
and outgoing edgesrather than minimizing the change of
directions betweenall edges.The result is a more “flow-
like” structure,as shavn in Fig. 12(c). No vertex can leave
its original triangle strip, and, assuminga sufiiciently dense
basemesh,the overall changen positionis minor andcritical

pointsare never moved. In practice,one or two iterationsare
sufficient to significantly improve path shape.

e original position

N o new position ,// \ /
} y / , intermediate averages of /~ } / / / /
VA O A aaran incoming/outgoing positio /S A
(a) (b) (©)
Fig. 12. Path smoothing:(a) A typical path structurewithout smoothing.

(b) Smoothingappliedat junctions.All incoming and outgoing verticesare
averagedseparately The averagesare usedto updatethe position of the
junction. (c) The path structureof (a) after two smoothingsteps.

B. Parametrization

To enablefastandversatilerenderingof the dataandreduce
memory requirementswe remesheach quadrangularegion
usinga regular structure For this purposewe usemean-alue
coordinatesas proposedn [31]. We mapthe boundaryof the
region to the boundaryof one or multiple unit squaresin the
interior of the region (which, at this point, is representedsa
portionof thetriangulationK), we usethefactthateachvertex
can be expressedas a corvex combinationof its neighbors.
The coeficients in this combination can be computed by
solving a sparsdinear system.Given the parametrizatioron
theboundarywe usethesecoeficientsto mapinterior vertices
to the parametespace thus completingthe parametrization.

Next, we samplethe parametespaceon a uniform grid and
useits preimageon M asa new meshfor theregion. The grid
resolutionis chosenbasedon a given error bound evaluated
along boundary paths, which, by construction, follow the
direction of maximumchangein function value. Specifically
we refineeachpathuntil it satisfiegheerrorboundandchoose
the grid resolutionto matchthe maximumresolutionalongthe
four boundarypaths.

C. Boundaryparametrization

The parametewvaluesof the interior verticesare uniquely
defined by the parametervalues assignedto the boundary
vertices.Therefore,the overall quality of the parametrization
relieson a favorableboundaryparametrizationThe boundary
of a region consistsof critical points, junctions,and standard
path vertices. Independentlyof the current approximation,
the triangulationof a region must always containits critical
pointsandjunctions.The critical pointsrepresenthe extremal
function values of a region and therefore carry maximal
information. Junctionsare createdwhen two pathsthat flow
toward the sameextremum meige. Therefore,eachjunction
replacesa critical point for the region sharingboththesepaths.
To avoid cracksin the meshall adjacentregions mustcontain
the junction as well.

To remeshthe path sggmentsbetweentheseextraordinary
points (minima maxima, saddles,and junctions) we apply
midpoint subdvision basedon arclength. To further avoid
resolutiondependenciebetweenmeshesof differentregions



we permit T-junctions (hangingnodes)along boundaries.in
other words, our representatioris not a globally conforming
triangulation of M but rather a collection of patches.Each
patchis triangulatedwith a regular, conformingmesh.We call
the collectioncradk-freewhenthe meshesagreegeometrically
alongboundariesNeverthelesspixel-wide cracksmay appear
during renderingas polygonsare rasterizedat fixed precision.
A possiblesolutionis to “fill-in” the cracksduring rendering
as describedby Balazset al. [32]. Unfortunately we cannot
use continuoussurfacerepresentationghat allow T-junctions
suchasthe methodin [33], sincethey cannotbe guaranteed
to presere the topology

Fig. 13.
region and local coordinatesystemdefinedby PCA of all boundaryvertices.
(Top-right) The verticesare transformednto the PCA coordinatesystem.In
this example,we usea single unit squareas baseshapein parametesspace.
The cornersare definedby the maximal projectediengthonto the linesy = x
andy = —x. (Bottom-left) The regular meshafter the first level of recursvely
fitting the junctions.(Bottom-right) Final remesh.

Creatinga parametrizatiorfor the boundary (Top-left) Original

What is left to defineare the parametewaluesfor special
points and the base shapein parameterspace.An example
is shavn in Fig. 13. We perform a principal component
analysis(PCA) stepin xy-spaceusing all boundaryvertices.
The distribution ratio betweenthe two principal directions
definesthe number of consecutie unit squareswe use as
parametedomain.For arationof 1: 2 we usetwo unit square,
for 1: 3 threeetc. Next, we transformthe coordinatesof all
boundaryverticesinto the PCA coordinateframe using their
centroidasorigin andthe two (normalized)PCA eigervectors
asbasisvectors.n the caseof asingleunit squareasparameter
space,we computefor all extraordinaryverticesv;, = (X,Y;)
(in the PCA coordinateframe)the scalarproductp, = (x;,Y;) *
(—1,-1). (For two unit squaresas baseshapewe would use
(—2,—1) etc..) We assignthe lower-left cornerin parameter
spaceg(parametewalueP(0,0)) to thevertex v | with maximal
projectediength p;: LL = max(p;), P(v, ) = (0,0). Similarly,
we assignthe other three cornersin parameterspaceusing
projectionsonto (1,1), (1,-1), and (—1,1). However, we
guaranteethat all cornersare mappedto different vertices.
The remaining special vertices are recursvely fitted using
arc-lengthparametrizationOncethe parametewaluesfor all
specialverticesare known the parametetvaluesof the path
verticesare assignedusingtheir arc-lengthvalues.

D. Data layout and rendering

Ratherthan storing a meshfor eachquadranglesxplicitly,
we useregular grids. This approachallows us to usemethods
like the one describedin [34] for rendering purposes.By
storing each grid in what Lindstrom and Pascucci called
interleaved embeddedquadtreeswe avoid having to store
connectvity information, while maintaining high flexibility
during rendering.This framavork can be extendedeasily to
adaptve, view-dependentendering,as well as efficient view
frustum culling and geomorphing.One disadwantageof this
data layout is a 33% memory overhead.Another important
aspectis the definition of local error coeficients. As we are
working with mary smallergrids, ratherthan a single high-
resolutionone, we must ensurea consistentrenderingacross
boundariesSincewe enforcethat sampleson grid boundaries
aresharedheir respectie errortermsagree Independenthof
the error term, a region must always renderall its junctions
which we guaranteey settingtheir errorsto infinity.

VIl. RESULTS

We have appliedour algorithmto severaldatasetsincluding
terrain data corverted from digital elevation modelg, two-
dimensional simulation data, and isosurfices from various
scientificdatasets.The PugetSounddatasetwith a resolution
of 1025-by-1025s representedly two-byteintegers.The other
threeterraindatasetsarethe Needles,Yakima,andDalles(see
Fig. 14) datasets,all of 1201-by-120Iresolutionwith single-
byte integer heightvalues.We have also usedsimulationdata
of the autoignitionof a spatiallynon-homogeneousydrogen-
air mixture, courtesyof Echekkiand Chen[35], at resolution
512-by-512with temperaturealuesrepresentedly single-byte
unsignedinteger values. Additionally, we applied our tech-
niguesto threescientific datasetswith multiple scalarfields.
In particular we useas manifold domainM an isosurfice of
onescalarfield andasfunction f thevaluesof the secondield
on M. The first dataset, seeFig. 20, representsaa methane
molecule with M being an isosurfice of the electrostatic
potentialand f the correspondingran der Waalsenegy. The
seconddataset, seeFig. 21, describeghe interactionenegy
betweena ligand (glucose)and a receptor(ethane)underthe
threetranslationaldegreesof freedom.The domainM is also
an isosurfice of the electrostaticpotentialwith f being the
van der Waalsenegy. The third example,seeFig. 22, shovs
a groundremediationprocessafter an oil spill contamination.
The domain M is an isosurfice of the oil concentrationin
the soil (groundlevel at the top). The superimposegseudo-
coloredfunctionshaows the concentratiorof microbesconsum-
ing the oil and performingthe remediationprocess.

The most basic application of our algorithm is removal
of topological noise without smoothing. This functionality
does not dependon the hierarchy and is implementedby
repeatectancellatiorof critical pointswith lowestpersistence.
Our experiencesuggestghat this noise removal step should
always be applied at leastto remove the artifacts causedby
symbolic perturbationWe defineall featureswith persistence
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belon 0.1% of the total datarangeasnoise.Fig. 14 illustrates
this procedurefor The Dalles data set. Remaing the noise

reducesthe numberof critical points from 24,617to 2,144.

As oneof the main problemin topologicaldataanalysisis the

large numberof spurioustopologicalfeaturesthis (symbolic)

clean-upis avaluablepre-processingtepfor mary techniques
proposedn recentyears.

TABLE |
HIERARCHY STATISTICSFOR DIFFERENT CANCELLATION STRATEGIES.
MAXIMAL AND AVERAGE DEPTH (DISTANCE FROM THE ROOT) ARE
SHOWN IN THE FIRST TWO COLUMNS. THE LAST THREE COLUMNSLIST
THE MAXIMUM NUMBER OF PARENTS AND CHILDREN AND THE AVERAGE
DEGREE FOR A NODE.

[ [[ depth T avgdep [ max#p [ max#c [ avg deg |

Fig. 14. (Left) Original The Dallesdatasetcontaining24,617critical points.
(Right) Samedatawith 2,144 critical points after remaoving all topological
featureswith persistencdessthan0.1% of heightrange.

We have testedseveral stratgjiesfor creatingthe hierarchy
Thefirst strateyy is basedon performingcancellationsn order
of increasingpersistenceThe secondstrateyy is basedon
performing simplification in “batches” of maximal indepen-
dentsetsof cancellationsEachbatchis createdby canceling
iteratively the critical point pair with smallestpersistencend
marking ary dependentancellationas “not-allowed” Once
no more cancellationscan be performedall cancellationsare
resetto be “permitted” and the processs repeated.

Thethird strateyy is a hybrid methodof thefirst two, which
builds maximal independentsets with a restrictedrange of
persistencevalues.In particular we constructthe independent
setsasusualbut stopif the next cancellationhas persistence
larger thantwice of the smallestin the sameset. In all three
methodswe never remove topology with persistencdarger
than 20% of the initial heightrange.

Tablel summarizestatisticsfor the hierarchiesonstructed
for our terrain data. As expected,a hierarchybecomesmore
shallov when cancelingcritical points in independentsets.
One problem s the presenceof nodeswith a high number
of parentsand children; this problemis the result of high-
valenceverticesin the MS comple. Fig. 15(a) shavs the
highest-resolutioMS comple of the Needlesdataset,where
eachpath is representedy a straightline from the saddle
to the extremumto betterhighlight the problem.As the data
set containsfew minima eachof themis incidentto a very
large numberof edges.Any cancellationinvolving one such
minimum hasa large numberof parentsand children. High-
valenceverticesare the causefor the uneven distribution of
nodesover the levels.

In Fig. 15(b), we shav the numberof nodesper level for
eachcancellationstrateyy for the PugetSounddataset. The
maximum independenset strateyy clearly producessuperior
resultsin termsof overall shapeof the hierarchy However,
this obsenation does not necessarilyimply better practical
behavior. Fig. 15(c) showns the numberof critical pointsin the
MS complex dependingon a uniform error. Equivalentgraphs

Puget Sound org. no. of CPs49185,no. of significantCPs17470
pure persistence 381 128 148 110 3.80
max. indep. set 157 118 131 112 4.28
indep. set-cut-of 238 105 147 106 3.94

Yakima org. no. of CPs21275,no. of significantCPs6082
pure persistence 119 56 73 32 3.60
max. indep. set 57 35 38 34 4.24
indep. set-cut-of 96 52 74 37 3.82

Dalles org. no. of CPs24617,no. of significantCPs2144
pure persistence 80 34 75 39 3.40
max. indep. set 54 31 82 43 3.88
indep. set-cut-of 73 33 63 57 3.52

Needles org. no. of CPs17375,no. of significantCPs3772
pure persistence 177 68 111 87 3.60
max. indep. set 113 70 87 87 3.88
indep. set-cut-of 149 62 124 101 3.68

for the other data setsare shavn in Figs. 16 and 17. Even
though the hierarchy createdby maximal independentsets
is the most shallav it producesa significantly densermesh.
The hybrid method producesnearly identical results during
traversalas the one basedon pure persistenceHowever, the
hybrid methodcreatesa more shallov hierarchyanda higher
branchingfactorandit is thereforethe methodof choice.

Fig. 18 shavs the PugetSounddataset. The original topol-
ogy has49,185critical points andis too denseto be printed.
Theupperleft pictureshavs the datawith 4,045critical points
obtainedafter removing the topological noise using a persis-
tencethresholdof 0.5% of the elevation range. The upper
right picture shaws the approximationof the datawith 2,025
critical pointsobtainedby increasinghe persistencehreshold
to 1.2%. The lower-left picture shavs a significantly coarser
MS complex containing289 critical points that remain after
increasingthe persistencehresholdto 20%. The differences
betweenthe resolutionsare most notable along the front-
facingboundary The pre-processingf the PugetSounddata
was donein aboutthree and a half hours, due to the slow
convergenceof the geometricfitting procedureThe traversal
of the hierarchyand renderingare fully interactve.

Thehierarchyalsosupportsadaptve refinementstwo exam-
plesareshowvn in Fig. 19. Fig. 19(a) shows a view-dependent
refinementof the Puget Sound data. The full resolutionis
presered inside the view frustum yielding a total of 1,070
critical points. Outsidethe view frustum, we have simplified
the data to the extent possible. One can obsere a quick
drop in resolution away from the view frustum. Reducing
thetopologyoutsidethe frustumnaturallyreduceghe number
of quadrangularegionsthat mustbe rendered(and therefore
the numberof triangles)and frustum culling can be perform
directly on the regionsculling large partsof the meshwithout
traversal. Fig. 19(c) shavs the comhustion data adaptvely
refinedto presere only maximawith a high function value.
Only maximaabore 90% of the maximal function value and
their ancestorsin the hierarchy are presered. Notice that
several lower maximahave completelydisappeared.
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Fig. 15. (left) HighestresolutionMS complex of Needlesdataset.(middle)Node distribution over the levels for different cancellationstrategies for Puget
Sounddataset. (right) Numberof critical pointsin MS complex during uniform refinementof PugetSounddataset.
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Fig. 16. Nodesdistribution over the levels for differentcancellationstratgies for the Yakima(left) , The Dalles(middle), andthe Needles(right) datasets.
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Fig. 17. Numberof critical pointsin MS comple for the Yakima (left), The Dalles (middle), and the Needles(right) datasets.

Fig. 18. (Left) PugetSounddataafter topologicalnoiseremoval. (Middle) Dataat persistencef 1.2% of the maximumheight. (Right) Data at persistence
20% of maximumbheight.
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Fig. 19. (Left) View-dependentefinementof PugetSounddata(purple:view frustum).(Middle) Comtustion dataafter topologicalnoiseremoval. (Right)
Adaptive refinementof comhustion databasedon function value. All maximaabaore 90% of the maximalfunction value are presered.

\3 -
Fig. 20. Electrostaticandvan der Waalspotentialsfor a methanemolecule.(Left) Isosurficeof the electrostatiqpotentialpseudo-coloredvith van der Waals
potential.(Middle) Full MS complex with 30 critical points. (Right) Simplified MS complex with 14 critical points highlighting the hydrogenatomsnearthe
maximaand the carbonatom nearthe minium at the center
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