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Abstract— We combine topological and geometric methods to
construct a multi-r esolution representation for functions over
two-dimensional domains. In a preprocessingstage, we create
the Morse-Smale complex of the function and progressively
simplify its topology by canceling pairs of critical points. Based
on a simple notion of dependency among these cancellations
we construct a hierarchical data structur e supporting traversal
and reconstruction operations similarly to traditional geometry-
based representations. We use this data structur e to extract
topologically valid approximations that satisfy error bounds
provided at run-time.

Index Terms— Critical point theory, Morse-Smale complex,
terrain data, simplification, multi-r esolution data structur e.

I . INTRODUCTION

T HE efficient constructionof topologically and geomet-
rically simplified models is a central problem in visu-

alization. This paper describesa hierarchicaldata structure
representingthe topologyof a continuousfunction on a trian-
gulatedsurface.An exampleof suchdatais thedistribution of
the electrostaticpotentialon a molecularsurfaceor elevation
data on a sphere(e.g., the Earth). The complete topology
of the function is computedand encodedin a hierarchythat
providesfastandconsistentaccessto adaptivetopologicalsim-
plifications.Additionally, thehierarchyincludesgeometrically
consistentapproximationsof thefunctioncorrespondingto any
topologicalrefinement.In thespecialcaseof a planardomain,
the function can be thoughtof as elevation and the graphof
the function as a surface in three-dimensionalspace.In this
caseour framework createsa topology-basedhierarchyof the
geometryof this surface.

A. Motivation

Scientific dataoften consistsof measurementsover a geo-
metricdomainor space.We canthink of it asadiscretesample
of a continuousfunction over the space.We are interestedin
the casein which the spaceis a triangulatedsurface(with or
without boundary).

A hierarchical representationis crucial for efficient and
preferably interactive exploration of scientific data.The tra-
ditional approachto constructing such a representationis
basedon progressive datasimplificationdrivenby a numerical
measurementof theerror. Alternatively, we maydrive thesim-
plification processwith measurementsof topologicalfeatures.
�
Centerfor Image Processingand IntegratedComputing,Departmentof

ComputerScience,University of California, Davis, CA 95616-8562
†Departmentof ComputerScience,Duke University, Durham,NC 27708

andRaindropGeomagic,ResearchTrianglePark, NC 27709
‡Centerfor Applied Scientific Computing,LawrenceLivermoreNational

Laboratory, Livermore,CA 94551

Such an approachis appropriateif topological featuresand
their spatial relationshipsare more essentialthan geometric
errorboundsto understandthephenomenaunderinvestigation.
An exampleis waterflow overa terrain,which is influencedby
possiblysubtleslopes.Small but critical changesin elevation
mayresultin catastrophicchangesin waterflow andaccumula-
tion. Thus,our approachis distinctly differentfrom onethat is
purelydrivenby numericalapproximationerror. It ensuresthat
topologyof a function is preservedaslong aspossibleduring
a simplificationprocess,which is not necessarilythecasewith
simplificationmethodsdriven by approximationerror.

Thereareapplicationsbeyondtheanalysisof measureddata.
For example,we may artificially createa continuousfunction
over a surfaceandusethat function to guidethesegmentation
of the surfaceinto patches.

B. Relatedwork

The topological analysis of scalar valued scientific data
hasbeena long standingresearchfocus.Morse-theory-related
methodshave alreadybeendevelopedin the 19th century[1],
[2], long beforeMorse theory itself was formulated,and hi-
erarchicalrepresentationshave beenproposed[3], [4] without
making use of the mathematicalframework developed by
Morseandothers[5], [6]. However, mostof this researchwas
lost and has beenrediscovered only recently. Most modern
researchin theareaof multi-resolutionstructuresis geometric
and many techniqueshave been developed during the last
decade.The mostsuccessfulalgorithmsdevelopedin that era
arebasedon edgecontractionasthe fundamentalsimplifying
operation[7], [8] and accumulatedsquaredistancesto plane
constraintsas the error measure[9], [10]. This work focused
on triangulatedsurfacesembeddedin three-dimensionalEu-
clideanspace,which we denoteas

� 3. We find a similar focus
in the successive attemptsto include the capability to change
the topologicaltype [11], [12].

In the field of flow visualizationtopological analysisand
topology basedsimplification are basedon the work by Hel-
manandHesselink[13]. They proposeda structuresimilar to
theMorsecomplex to analysisvectorfieldsandlatermethods
to simplify this complex have beendeveloped[14], [15], [16].
Unfortunately, computingsucha complex relieson numerical
integrationalonginherentlyunstableregionsof thevectorfield
and is therefore limited to relatively small and clean data
sets.For the simpler caseof piece-wiselinear scalarvalued
functions(whosegradientsdefinea piece-wiseconstantflow-
field) we computethe topology in a symbolic mannerwhich
is robustevenin degeneratecases.Therefore,we cancompute
Morse complexes for data sets with tens of thousandsof
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critical pointscomparedto hundredsof critical pointsin com-
monly usedvector fields [14], [15], [16]. Unlike the method
in [14] we maintaina consistentgeometricapproximationof
thetopologyanddo not createhigher-ordercriticalitiesasit is
donein [15]. Additionally, our error boundis directly linked
to theapproximationerror, seeSectionV-A, andwe provide a
multi-resolutionhierarchyratherthana simplificationstrategy.

To remove (spurious) topological featuresfrom all level
sets simultaneously, we interpret the critical points of the
function as the culprits responsiblefor topological features
thatappearin thelevel sets[17], [18]. While sweepingthrough
the level setswe seethat critical points indeedstart and end
suchfeatures,andwe may usethe lengthof the interval over
which a featureexists as a measureof its importance.For
the specialcaseof two-dimensionalheightfields this measure
was first proposedby Horman [19] and later adoptedby
Mark [20]. We use the more generalconceptof persistence
introducedin [21], where the Morse-Smalecomplex of the
function domainoccupiesa centralposition. Its construction
and simplification is studiedfor 2-manifoldsin [22] and for
3-manifoldsin [23].

C. Results

We follow theapproachtakenin [22], with somecrucialdif-
ferencesandextensions.Given a piecewise linear continuous
function over a triangulateddomain,we

1. constructa decompositionof thedomaininto monotonic
quadrangularregionsby connectingcritical points with
lines of steepestdescent;

2. simplify thedecompositionby performinga sequenceof
cancellationsorderedby persistence;and

3. turn the simplificationprocessinto the constructionof a
hierarchicalmulti-resolutiondatastructurewhoselevels
correspondto simplified versionsof the function.

The first two stepsarediscussedin [22], but the third stepis
new. Nevertheless,this papermakes original contributions to
all threestepsand in the applicationof the datastructureto
concretescientificproblems.Thesecontributionsare

(i) a modificationof the algorithm of [22] that constructs
the Morse-Smalecomplex without the use of handle
slides;

(ii) the simplification of the complex by simultaneousap-
plication of independentcancellations;

(iii) a numerical algorithm to approximatethe simplified
function;

(iv) a shallow multi-resolutiondatastructurecombiningthe
simplified versionsof the function into a single hierar-
chy;

(v) an algorithm for traversingthe datastructurethat com-
binesdifferentlevelsof the hierarchyto constructadap-
tive simplifications;and

(vi) the applicationof our methodto variousdatasets.
The hallmark of our methodis the fusion of the geometric
andtopologicalapproachesto multi-resolutionrepresentations.
Theentireprocessis controlledby topologicalconsiderations,
and the geometricmethodis usedto realizemonotonicpaths
andpatches.The latterplaysa crucialbut sub-ordinaterole in
the overall algorithm.

I I . BACKGROUND

We describean essentiallycombinatorialalgorithm based
on intuitions provided by investigationsof smoothmaps.In
this section,we describethe necessarybackground,in Morse
theory [6], [24] and in combinatorialtopology [25], [26].

A. Morse functions

Throughoutthis paper, � denotesa compact2-manifold
without boundaryand f : ��� �

denotesa real-valuedsmooth
function over � . Assuming a local coordinatesystemat a
point a ��� , we computetwo partial derivatives and call a
critical when both are zero and regular otherwise.Examples
of critical points are maxima( f decreasesin all directions),
minima( f increasesin all directions),andsaddles( f switches
between decreasingand increasing four times around the
point).

Using the local coordinatesat a, we computethe Hessian
of f , which is the matrix of secondpartial derivatives. A
critical point is non-degenerate when the Hessianis non-
singular, which is a property that is independentof the
coordinatesystem. According to the Morse Lemma, it is
possibleto constructa local coordinatesystemsuch that f
hasthe form f � x1 	 x2 
�� f � a
� x2

1  x2
2 in a neighborhoodof

a non-degeneratecritical point. The numberof minus signs
is the index of a and distinguishesthe different types of
critical points:minimahave index 0, saddleshave index 1, and
maximahave index 2. Technically, f is a Morsefunctionwhen
all its critical points are non-degenerateand have pairwise
differentfunctionvalues.Mostof thechallengesin ourmethod
are rooted in the needto enforcetheseconditionsfor given
functionsthat do not satisfy themoriginally.

B. Morse-Smalecomplexes

Assuminga Riemannianmetric and an orthonormallocal
coordinatesystem,the gradient at a point a of the manifold
is the vectorof partial derivatives.The gradientof f forms a
smoothvector field on � , with zeroesat the critical points.
At any regular point we have a non-zerogradientvector, and
when we follow that vector we trace out an integral line,
which startsat a critical point andendsat a critical point while
technicallynot containingeitherof them.Sinceintegral lines
ascendmonotonically, the two endpointscannotbe the same.
Becausef is smooth,two integral lines areeither disjoint or
the same.The setof integral lines coversthe entiremanifold,
exceptfor thecritical points.ThedescendingmanifoldD � a
 of
a critical point a is the setof pointsthat flow toward a. More
formally, it is the union of a andall integral lines that endat
a. For example,the descendingmanifold of a maximumis an
opendisk, that of a saddleis an openinterval, and that of a
minimumis thepoint itself. Thecollectionof stablemanifolds
is a complex, in the sensethat the boundaryof a cell is the
union of lower-dimensionalcells. Symmetrically, we define
the ascendingmanifold A � a
 of a as the union of a and all
integral lines that startat a.

For the next definition, we need an additional non-
degeneracy condition,namelythat ascendingand descending
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manifolds that intersectdo so transversally. For example, if
an ascending1-manifold intersectsa descending1-manifold
then they cross.Due to the disjointnessof integral lines, this
implies that the crossingis a single point, namelythe saddle
commonto both. Assumingthat this transversality property
is satisfied,we overlay the two complexes and obtain what
we call the Morse-Smalecomplex, or MS complex, of f .
Its cells are the connectedcomponentsof the intersections
betweenascendinganddescendingmanifolds.Its verticesare
the verticesof the two overlayedcomplexes, which are the
minimaandmaximaof f , togetherwith thecrossingpointsof
ascendinganddescending1-manifolds,which arethe saddles
of f . Each1-manifold is split at its saddle,thus contributing
two arcsto the MS complex. Eachsaddleis endpointof four
arcs,which alternatelyascendanddescendaroundthe saddle.
Finally, eachregion hasfour sides,namelytwo arcsemanating
from a minimumandendingat two saddlesandtwo additional
arcscontinuingfrom the saddlesto a commonmaximum.It
is genericallypossiblethat the two saddlesare the same,in
which casetwo of the four arcsmerge into one. The region
lies on both sides of the merged arc so it makes senseto
double-countand to maintain that the region has four sides.
An exampleis shown in Fig. 1.

minimum

maximum

saddle

Fig. 1. A sampleMS complex.

C. Piecewiselinear functions

Functions occurring in scientific applications are rarely
smooth and mostly known only at a finite set of points
spreadout over a manifold. It is convenient to assumethat
the function haspairwisedifferentvaluesat thesepoints.We
assumethat the points are the verticesof a triangulationK
of � , andwe extend the function valuesby piecewise linear
interpolationappliedto the edgesandtrianglesof K. The star
of a vertex u consistsof all simplices (vertices,edgesand
triangles)that containu, and the link consistsof all facesof
simplicesin thestarthataredisjoint from u. Sincethesurface
definedby K is a 2-manifold, the link of every vertex is a
topological circle. The lower star containsall simplices in
the star for which u is the highestvertex, and the lower link
containsall simplicesin the link whoseendpointsare lower
thanu. Notethatthelower link is thesubsetof simplicesin the
link thatarefacesof simplicesin thelower star. Topologically,
the lower link is a subsetof a circle. We definewhatwe mean
by a critical point of a piecewise linear function basedon
the lower link. As illustrated in Fig. 2, the lower link of a
maximumis the entire link and that of a minimumis empty.
In all other cases,the lower link of u consistsof k � 1 � 1
connectedpieces,eachbeinganarcor possiblya singlevertex.

minimum saddle maximum splitting of 2−fold saddleregular point

Fig. 2. Classificationof a vertex basedon relative heightof verticesin its
link. The lower link is marked black.

The vertex u is regular if k � 0 anda k-fold saddleif k � 1.
As illustratedin Fig. 2 for k � 2, a k-fold saddlecanbe split
into k simpleor 1-fold saddles.

D. Persistence

Werequireanumericalmeasureof theimportanceof critical
points that can be usedto drive the simplification of a MS
complex. For this purpose,we pair up critical pointsanduse
the absolutedifferencebetweentheir heightsas importance
measure.To construct the critical point pairs, we imagine
sweepingthe 2-manifold � in the direction of increasing
height.This view is equivalentto sortingtheverticesby height
and incrementallyconstructingthe triangulationK of � one
lower starat a time. The topologyof the partial triangulation
changeswhenever we add a critical vertex, and it remains
unchangedwheneverwe adda regularvertex. Exceptfor some
exceptionalcasesthat have to do with the surfacetype of � ,
eachchangeeither createsa componentor an annulusor it
destroys a component(by merging two) or an annulus(by
filling the hole). We pair a vertex v that destroys with the
vertex u that createdwhat v destroys. The persistenceof u
andof v is thedelaybetweenthe two events:p � f � v
�� f � u
 .
An algebraicjustificationof this definitionanda fastalgorithm
for constructingthe pairscanbe found in [21].

I I I . MORSE-SMALE COMPLEX

We introducean algorithmfor computingthe MS complex
of a function f definedovera triangulationK. In particular, we
computethe ascendinganddescending1-manifolds(paths)of
f startingfrom the saddles,and usethemto partition K into
quadrangularregionswhich definethe MS complex.

A. Path construction

Startingfrom eachsaddle,weconstructtwo linesof steepest
ascentand two lines of steepestdescent.We do not adopt
the original algorithm proposedin [22] and follow actual
lines of maximal slope insteadof edgesof K. In particular,
we split triangles to create new edgesin the direction of
the gradient.We modify this basicstrategy to avoid regions
with disconnectedinterior andregionswhoseinterior doesnot
touchbothsaddles.Without themodificationsuchregionsmay
be createdbecausef is not smooth and integral lines can
merge. Fig. 3(a) shows one suchcase,wherepathsmerge at
junctionsanddisconnectthe interior of a region into two. The
modificationthat eliminatesthe two undesiredconfigurations
consistsof disallowing two paths to merge if they are of
different type; seeFig. 3(b). Two pathsare still allowed to
merge if they are both ascendingor both descending.If two
paths are not allowed to merge we split one edge of the
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triangulationandintroducea new samplewith function value
that preserves the structureof the MS complex but locally
avoids the junction. Fig. 4 shows the repeatedapplication
of this strategy to avoid a junction. Practically, this situation
rarely occursand it can be shown that in the worst casethe
numberof trianglesintroducedis linearin thesizeof themesh.

maximumminimum

saddle junction

Fig. 3. Portionof the MS complex of a piecewise linear function.Sincethe
gradientis not continuous,(solid) ascendingand (dotted)descendingpaths
canmeetin junctionsandsharesegments.(Left) Complex with no restrictions
on sharingsegments.The greenregion touchesonly onesaddle,and the red
oneis disconnected.(Right) Only pathof thesametypecanmeet.Theinterior
of eachregion is connectedand touchesboth saddles.

Fig. 4. Triangle split to keeptwo pathsseparated.Solid red lines indicate
two portionsof pathsalreadycomputed.(Left) The red circle is the current
extremumof a paththat would follow the red dottedline. (Middle) The path
is extendedsplitting a first triangle. (Right) Sincethe two pathswould still
intersect,a secondtriangle is split.

After computingall paths,we partitionK into quadrangular
regions forming the cells of the MS complex. Specifically,
we grow eachquadranglefrom a triangle incident to a saddle
without ever crossinga path.

In degenerateareasof � , whereseveral verticesmay have
the samefunction value, the greedychoicesof local steepest
ascent/descentmay not work consistently. We addressthis
problemusingthe simulationof simplicity, or (SoS)[27]. We
orient eachedgeof K in the direction of ascendingfunction
value.Vertex indicesareusedto breakties on flat edgessuch
that the resulting directedgraph has no cycles. Using these
orientations,the searchfor the steepestpath is transformed
to a weighted-graphsearchandfunction valuesareonly used
as preferences.Thus,our algorithm is robust even for highly
degeneratedatasetsas the oneshown in Fig. 5.

(a) (b)
Fig. 5. MS complex of degeneratedata set. The “volcano” is createdby
a sin() function that is flat both inside the “crater” and at the foot of the
mountain.(a) Originally computedMS complex. A large numberof critical
pointsis createdby eliminatingflat regionsusingsimulationof simplicity. (b)
The samecomplex after removal of “topological noise.”

Let T ��� F 	 E 	 V � be the triangulationof � ;
initialize the MS complex, M � /0;
initialize the setsof pathsandcells, P � C � /0;
initialize SoSto direct the edgesof T;
S � FINDSADDLES � T 
 ;
S � SPLITMULTIPLESADDLES� T 
 ;
SORTBYHEIGHT � S
 ;
forall s � S in ascendingorderdo

COMPUTEASCENDINGPATH � P

endfor;
forall s � S in descendingorderdo

COMPUTEDESCENDINGPATH � P

endfor;
while thereexists untouchedf � F do

GROWREGION � f 	 p0 	 p1 	 p2 	 p3 
 ;
CREATEMORSECELL � C 	 p0 	 p1 	 p2 	 p3 


endwhile;
M � CONNECTMORSECELLS � C 
 .

Fig. 6. Sequenceof high-level operationsusedto createan MS complex.
Whenwe grow a cell from a triangle f we encounterthefour boundarypaths.
p0 to p3, which are then incorporatedinto a half-edgerepresentationof the
cell

B. Diagonalsand diamonds

The central element of our data structure for the MS
complex is the neighborhoodof a simple saddleor, equiva-
lently, the halves of the quadranglesthat sharethe saddleas
one of their vertices.To be more specific about the halves,
recall that in the smooth caseeach quadrangleconsistsof
integral lines that emanatefrom its minimum and end at its
maximum.Any one of theseintegral lines can be chosenas
diagonal to decomposethequadrangleinto two triangles.The
trianglessharinga given saddleform the diamondcentered
at the saddle.As illustrated in Fig. 8(a), each diamond is
a quadranglewhose verticesalternatebetweenminima and
maximaaroundthe saddlein its center. It is possiblethat two
verticesarethesameandtheboundaryof thediamondis glued
to itself alongtwo consecutive diagonals.

C. Thealgorithm

We computethe descendingpathsstartingfrom the highest
saddleandtheascendingpathsstartingfrom thelowestsaddle.
Thus, when two pathsaim for the sameextremum, the one
with higher persistence(importance)is computedfirst. The
boundaryof the dataset is artificially taggedas a path. The
completealgorithmis summarizedin Fig. 6.

IV. HIERARCHY

Our main objective is the design of a hierarchical data
structurethat supportsadaptive coarseningand refinementof
thedata.In this section,we describesucha datastructureand
discusshow to useit.

A. Cancellations

We useonly oneatomicoperationto simplify theMS com-
plex of a function, namelya cancellationthat eliminatestwo
critical points.The inverseoperationthat createstwo critical
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pointsis referredto asananti-cancellation. In orderto cancel
two critical points they mustbe adjacentin the MS complex.
Only two possible combinationsarise: a minimum and a
saddleor a saddleand a maximum.The two configurations
aresymmetric,andwe can limit the discussionto the second
case,which is illustratedin Fig. 7.

Fig. 7. Portion of the graph of a function before (left) and after (right)
cancellationof a maximum(red) anda saddle(green).

Let u be the saddleand v the maximum of the canceled
pair, and let w be the other maximum connectedto u. We
require w �� v and f � w
�� f � v
 ; otherwise,we prohibit the
cancellationof u andv. We view the cancellationasmerging
threecritical points into one,namelyu, v, w into w. All paths
endingat eitheru,v, or w areremovedandwe adaptthe local
geometry to the new topology, as describedin Section V.
Subsequently, all pathsthatwereconnectedto eithermaximum
are recomputed.In other words,we connectevery saddleon
theboundaryof thegeometricallyadaptedregion to theunique
maximumwithin theregion.To avoid excessivesplittingof the
triangulationwe restrict the re-computedpathsto shareedges
of the triangulation.There are several reasonsfor requiring
f � w
�� f � v
 : it implies that all recomputedpaths remain
monotonicandensuresthatwe do not eliminateany level sets,
exceptthat theonesbetweenf � u
 and f � v
 aresimplified.We
may think of a cancellationas deleting the two descending
pathsof u andcontractingthe two ascendingpathsof u.

B. Noderemoval

Weconstructthemulti-resolutiondatastructurefrom bottom
to top.ThebottomlayerstorestheMS complex of thefunction
f , or, to be moreprecise,the correspondingdecompositionof
the 2-manifold into diamonds.Fig. 8(b) illustratesthis layer

(a) (b) (c)

Fig. 8. (a) The (dotted)portion of an MS complex and the (solid) portion
of the correspondingdecompositioninto diamonds.(b) Portion of the data
structure(solid) representingthe pieceof the decompositioninto diamonds
(dotted).(c) Cancellationgraph(solid) of the decompositioninto diamonds
(dotted).

by showing each diamond as a node with arcs connecting
it to neighboringdiamonds.Each node has degree four, but
there can be loops starting and ending at the samenode.A
cancellationcorrespondsto removing anodeandre-connecting

its neighbors.When this node is sharedby four different
arcs we can connect the neighborsin two different ways.
As illustrated in Fig. 9, this operation correspondsto the
two different cancellationsmerging the saddlewith the two
adjacentmaximaor the two adjacentminima. There is only
oneway to removea nodesharedby a loopandtwo otherarcs,
namelyto deletethe loop andconnectthe two neighbors.

(A) (B)

(a)

(b) (c)

Fig. 9. The four-sideddiamond(a) canbe zippedup in two ways: from top
to bottom (b) or from left to right (c). A folded diamond(A) canbe zipped
up in only oneway (B).

To constructthe hierarchy by repeatedcancellations,we
use the algorithm in [21] to match critical points in pairs
� s1 	 v1 
�	 � s2 	 v2 
�	�������	 � sk 	 vk 
 , with persistenceincreasingfrom
left to right. Let Q j betheMS complex obtainedafter thefirst
j cancellations,for 0 � j � k. We obtain Q j  1 by modifying
Q j and storing sufficient information so we can recover Q j
from Q j  1. The hierarchy is completewhen we reach Qk.
We call each Q j a layer in the hierarchy and representit
by activating its diamondsas well as neighbor and vertex
pointers and de-activating all other diamondsand pointers.
To ascendin the hierarchy(coarsenthe quadrangulation)we
de-activate the diamondof sj  1; to descendin the hierarchy
(refinethe quadrangulation)we activate the diamondof sj ! 1.
Activating and de-activating a diamondrequiresupdatingof
only a constantnumberof pointers.

C. Independentcancellations

We generalizethe notion of a layer in the hierarchy to
permit view-dependentsimplifications.The key concepthere
is the possibility to interchangingtwo cancellations.The
most severe limitation to interchangingcancellationsderives
from the assignmentof extremaas verticesof the diamonds
and from re-drawing the pathsending at theseextrema. To
understandthis limitation, we introducethecancellationgraph
whoseverticesare the minima and maxima.Fig. 8(c) shows
anexampleof sucha graph.For eachdiamond,thereexistsan
edgeconnectingthe two minimaandanotheredgeconnecting
the two maxima.Thereareno loopsandthereforesometimes
only oneedgeperdiamond.Zippingupadiamondcorresponds
to contractingone of the edgesand deleting the other, if it
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exists. Oneendpointof the edgeremainsasa vertex and the
other disappears,implying that the diamondsthat sharethe
secondendpointreceive a new vertex. A specialcasearises
when a diamondsharesboth endpoints:the connectingedge
that would turn into a loop is deleted.

Two cancellationsin a (possibly simplified) MS complex
are interchangeablewhen it is irrelevant in which order the
two operationsareappliedto the datastructure.For example,
the two cancellationszipping up the samediamondare not
interchangeablesinceonepreemptsthe other. In general,two
cancellationsare interchangeablewhen their diamondsshare
no vertex, a conditionwe refer to asbeing independent. Note
thattwo interchangeablecancellationsarenotnecessarilyinde-
pendent.Eventhoughindependenceis themorelimiting of the
two concepts,it offers sufficient flexibility in choosinglayers
to support the adaptationof the representationto external
constraints,suchas the biasedview of the data.

Whenwe canperforma relatively largenumberof indepen-
dent cancellationswe have more freedomgeneratinglayers
in the multi-resolutiondatastructure.Ideally, we would like
to identify a large independentset and iterate to constructa
shallow hierarchy. However, in the worst case,every pair of
cancellationsis dependent,which makesthe constructionof a
shallow hierarchyimpossible.As illustratedin Fig. 11(a),such
a configurationexistsevenfor thesphereandfor any arbitrary
number of vertices. Nevertheless,worst-casesituations are
unlikely to arise as they require a large number of folded
diamonds.Specifically, it is possibleto prove that every MS
complex without folded diamondsimplies a linear numberof
independentcancellations.

V. GEOMETRIC APPROXIMATION

After eachcancellation,we createor changethe geometry
that locally definesf . We pursuethreeobjectives:the approx-
imation must agreewith the given topology, the error should
be small, and the approximationshouldbe smooth.

A. Error bounds

We measurethe error as the differencebetweenfunction
values at a point. It is convenient to think of the graph
of f as the geometry and this differenceas the (vertical)
distancebetweenthe original and the simplified geometry
at the location of the point. The persistenceof the critical
points involved in a cancellationimplies a lower bound on
the local error. We illustrate this connectionfor the one-
dimensionalcasein Fig. 10(a).Recallthat thepersistencep of
themaximum-minimumpair is thedifferencein their function
values.Any monotonicapproximationof the curve between
the two critical points has an error of at least p" 2. We can
achieveanerrorof p " 2, but only if weacceptaflat segmentfor
this portionof thecurve,seetheredcurve in Fig. 10(a).When
it is allowed to exceedp" 2, smootherapproximationswithout
flat segmentsarepossible,suchasthegreencurve in thesame
figure. Note that the above describesonly the error between
the two functionsbeforeand after the one cancellation.The
error causedby the compositionof two or morecancellations
is more difficult to analyzeand will not be discussedin this
paper.

#$ %&%'()

*&*+
,&,&,&,&,&,&,&,&,,&,&,&,&,&,&,&,&,,&,&,&,&,&,&,&,&,,&,&,&,&,&,&,&,&,-&-&-&-&-&-&-&--&-&-&-&-&-&-&--&-&-&-&-&-&-&--&-&-&-&-&-&-&-{p

(a) (b)
Fig. 10. Geometryfitting for paths:(a) One-dimensionalcancellationand
several monotonic approximations.(b) Local averaging used to construct
smoothly varying monotonic approximations.Slopesof neighboringedges
are combinedwith the original slope,and the function valuesare adjusted
accordingly(edgenormalsareshown).

B. Data fitting

...
...

(a) (b)

Fig. 11. (a)MS complex on thespherewith pairwisedependentcancellations.
(b) One-dimensionalsmoothingwith (blue) error constraintsand prescribed
endpointderivatives. (Left) Initial configuration;(right) Constructedsolution.

We know that monotonic patchesexist, provided we are
tolerant to errors. Our goal is therefore to find monotonic
patchesthat minimize some error measure.A large body
of literature deals with the more general topic of shape-
constrainedapproximation[28], [29]. The generalproblem
is to construct the smoothestinterpolant to a set of input
data while observingsome shapeconstraints(e.g., convex-
ity, monotonicity, and boundaryconditions).However, most
publishedwork usespenalty functions insteadof tight error
bounds.Additionally, the techniquesare typically described
for tensorproductsetting,andthe definitionsof monotonicity
for the bivariatecasevary anddiffer from the onewe use.

We did not adapt standardtechniquesfor our purposes.
Instead,we decidedto usea multi-stageiterative approachto
constructthegeometrythatspecifiesthesimplifiedrepresenta-
tion of f . It providesa smoothC1-continuousapproximation
within a specifiederror bound along the boundariesof the
quadrangularpatchesanda similar approximationbut without
observingan error bound in the interior of the patches.The
pathsare constructediteratively by smoothingthe gradients
along the edgesand post-fitting the function values,as illus-
trated in Fig. 10(b). During eachiteration, we first compute
the new gradientof an edgeas a convex combinationof its
gradient and the gradientsof the adjacentedges.We then
adjust the function valuesat the verticesto realize the new
gradients.During an iteration, we maintain the error bound
at the vertices and make sure that the completedpath is
monotonic.In addition, the gradientat the critical points is
set to zero.

The techniqueperformswell in practicealthoughit con-
verges slowly. Sampleresultsare shown in Fig. 11(b). The
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interior of the quadrangularpatchesaremodifiedby applying
standardLaplacian smoothing to the function values [30].
During eachiteration, the value at a vertex is averagedwith
thoseof its neighbors.Since the boundariesare monotonic,
this procedureconverges to a monotonic solution for the
patchinterior. We summarizethe stepsof the geometryfitting
process:

1. Find all pathsaffectedby a cancellation;
2. usethe gradientsmoothingto geometricallyremove the

canceledcritical points;
3. smooththe old regionsuntil they aremonotonic;
4. erasethepathsandre-computenew pathsusingthenew

geometry;
5. use one-dimensionalgradient smoothing to force the

new pathsto comply with the constraints;and
6. smooththe new regionsuntil all pointsareregular.

The reasonfor repeatinggradientsmoothingin Step5 is this
one: The pathsconstructedin Step 4 are not guaranteedto
satisfytherequirederrorbounds.In practice,wedonotsmooth
until the geometryconverges, insteadperform a predefined
numberof stepsor smoothuntil all constrains(monotonicity
anderror bounds)aremet (whichever takeslonger).Basedon
our experiments,theconstrainsaretypically easilysatisfiedin
which casea constantnumberof smoothingstepsis performed
after eachcancellation.Currently, the geometricfitting is the
computationalbottleneckof the algorithm. However, we are
not aware of faster methodsto createtopologically correct
approximations.

VI . REMESHING

While traversing the hierarchy we want to interactively
displaygeometrythat agreeswith the currenttopologyof the
graphof f . Thus,we mustdeterminea triangularmeshwithin
eachquadrangularregion. The triangulationfor eachregion
shouldbe independentof all other regions to allow us to use
topology other than that encounteredduring the creationof
the hierarchy.

A. Path smoothing

We first examine the geometricdatawe want to approxi-
mate.Without modificationsthe algorithmsusedto compute
paths tend to create “non-smooth” paths, see Fig. 12(a).
Theseare visually not pleasingand difficult to approximate.
Therefore,we modify the data slightly in order to create
smootherpaths.We smoothpath vertices,except the critical
points,in � (in thecaseof heightfields thexy-plane)without
flipping triangles,while preservingtheir functionvalue.Again,
we use Laplacian smoothing that is modified at junctions,
seeFig. 12(b). Here, we first averageall incoming vertices
(basedon the directionof the paths)andall outgoingvertices
separately. The averagesareusedto updatethe junction.This
strategy reducesthechangein directionbetweenthe incoming
and outgoing edgesrather than minimizing the changeof
directions betweenall edges.The result is a more “flow-
like” structure,as shown in Fig. 12(c). No vertex can leave
its original triangle strip, and, assuminga sufficiently dense
basemesh,theoverall changein positionis minor andcritical

pointsarenever moved. In practice,oneor two iterationsare
sufficient to significantly improve pathshape.

./ 01
1/2

1/4
1/3

1/3

1/3
1/4 1/2

1/2

23
original position

incoming/outgoing positions
intermediate averages of all 
new position

(a) (b) (c)

Fig. 12. Path smoothing:(a) A typical path structurewithout smoothing.
(b) Smoothingappliedat junctions.All incoming and outgoingverticesare
averagedseparately. The averagesare used to update the position of the
junction. (c) The pathstructureof (a) after two smoothingsteps.

B. Parametrization

To enablefastandversatilerenderingof thedataandreduce
memory requirementswe remesheach quadrangularregion
usinga regularstructure.For this purpose,we usemean-value
coordinatesasproposedin [31]. We mapthe boundaryof the
region to the boundaryof oneor multiple unit squares.In the
interior of the region (which, at this point, is representedasa
portionof thetriangulationK), we usethefactthateachvertex
can be expressedas a convex combinationof its neighbors.
The coefficients in this combination can be computedby
solving a sparselinear system.Given the parametrizationon
theboundary, we usethesecoefficientsto mapinterior vertices
to the parameterspace,thuscompletingthe parametrization.

Next, we sampletheparameterspaceon a uniform grid and
useits preimageon � asa new meshfor the region. Thegrid
resolutionis chosenbasedon a given error boundevaluated
along boundary paths, which, by construction, follow the
directionof maximumchangein function value.Specifically,
werefineeachpathuntil it satisfiestheerrorboundandchoose
thegrid resolutionto matchthemaximumresolutionalongthe
four boundarypaths.

C. Boundaryparametrization

The parametervaluesof the interior verticesare uniquely
defined by the parametervalues assignedto the boundary
vertices.Therefore,the overall quality of the parametrization
relieson a favorableboundaryparametrization.The boundary
of a region consistsof critical points, junctions,andstandard
path vertices. Independentlyof the current approximation,
the triangulationof a region must always contain its critical
pointsandjunctions.Thecritical pointsrepresenttheextremal
function values of a region and therefore carry maximal
information. Junctionsare createdwhen two pathsthat flow
toward the sameextremum merge. Therefore,eachjunction
replacesa critical point for theregionsharingboththesepaths.
To avoid cracksin the meshall adjacentregionsmustcontain
the junction aswell.

To remeshthe path segmentsbetweentheseextraordinary
points (minima maxima, saddles,and junctions) we apply
midpoint subdivision basedon arclength.To further avoid
resolutiondependenciesbetweenmeshesof different regions
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we permit T-junctions (hangingnodes)along boundaries.In
other words,our representationis not a globally conforming
triangulation of � but rather a collection of patches.Each
patchis triangulatedwith a regular, conformingmesh.We call
thecollectioncrack-freewhenthemeshesagreegeometrically
alongboundaries.Nevertheless,pixel-widecracksmayappear
during renderingaspolygonsarerasterizedat fixed precision.
A possiblesolution is to “fill-in” the cracksduring rendering
as describedby Balázset al. [32]. Unfortunately, we cannot
usecontinuoussurfacerepresentationsthat allow T-junctions
suchas the methodin [33], sincethey cannotbe guaranteed
to preserve the topology.

Fig. 13. Creatinga parametrizationfor the boundary. (Top-left) Original
region and local coordinatesystemdefinedby PCA of all boundaryvertices.
(Top-right) The verticesare transformedinto the PCA coordinatesystem.In
this example,we usea single unit squareasbaseshapein parameterspace.
The cornersaredefinedby the maximalprojectedlengthonto the lines y 4 x
andy 4�5 x. (Bottom-left)The regular meshafter thefirst level of recursively
fitting the junctions.(Bottom-right)Final remesh.

What is left to defineare the parametervaluesfor special
points and the baseshapein parameterspace.An example
is shown in Fig. 13. We perform a principal component
analysis(PCA) step in xy-spaceusing all boundaryvertices.
The distribution ratio betweenthe two principal directions
defines the number of consecutive unit squareswe use as
parameterdomain.For a rationof 1 : 2 we usetwo unit square,
for 1 : 3 threeetc. Next, we transformthe coordinatesof all
boundaryverticesinto the PCA coordinateframe using their
centroidasorigin andthe two (normalized)PCA eigenvectors
asbasisvectors.In thecaseof asingleunit squareasparameter
space,we computefor all extraordinaryverticesvi � � xi 	 yi 

(in thePCA coordinateframe)thescalarproductpi � � xi 	 yi 
76� � 1 	�� 1
 . (For two unit squaresasbaseshapewe would use
� � 2 	�� 1
 etc..) We assignthe lower-left corner in parameter
space(parametervalueP � 0 	 0
 ) to thevertex vLL with maximal
projectedlength pi : LL � maxi � pi 
 , P � vLL 
8� � 0 	 0
 . Similarly,
we assignthe other three cornersin parameterspaceusing
projections onto � 1 	 1
 , � 1 	�� 1
 , and � � 1 	 1
 . However, we
guaranteethat all cornersare mappedto different vertices.
The remaining special vertices are recursively fitted using
arc-lengthparametrization.Oncethe parametervaluesfor all
specialverticesare known the parametervaluesof the path
verticesareassignedusing their arc-lengthvalues.

D. Data layout and rendering

Ratherthan storing a meshfor eachquadrangleexplicitly,
we useregulargrids.This approachallows us to usemethods
like the one describedin [34] for rendering purposes.By
storing each grid in what Lindstrom and Pascucci called
interleaved embeddedquadtreeswe avoid having to store
connectivity information, while maintaining high flexibility
during rendering.This framework can be extendedeasily to
adaptive, view-dependentrendering,as well as efficient view
frustum culling and geomorphing.One disadvantageof this
data layout is a 33% memory overhead.Another important
aspectis the definition of local error coefficients.As we are
working with many smallergrids, rather than a single high-
resolutionone,we must ensurea consistentrenderingacross
boundaries.Sincewe enforcethat sampleson grid boundaries
aresharedtheir respective error termsagree.Independentlyof
the error term, a region must always renderall its junctions
which we guaranteeby settingtheir errorsto infinity.

VI I . RESULTS

We have appliedour algorithmto severaldatasetsincluding
terrain data converted from digital elevation models1, two-
dimensionalsimulation data, and isosurfaces from various
scientificdatasets.ThePugetSounddatasetwith a resolution
of 1025-by-1025is representedby two-byteintegers.Theother
threeterraindatasetsaretheNeedles,Yakima,andDalles(see
Fig. 14) datasets,all of 1201-by-1201resolutionwith single-
byte integer heightvalues.We have alsousedsimulationdata
of the autoignitionof a spatiallynon-homogeneoushydrogen-
air mixture, courtesyof EchekkiandChen[35], at resolution
512-by-512with temperaturevaluesrepresentedby single-byte
unsignedinteger values.Additionally, we applied our tech-
niquesto threescientificdatasetswith multiple scalarfields.
In particular, we useasmanifold domain � an isosurfaceof
onescalarfield andasfunction f thevaluesof thesecondfield
on � . The first data set, seeFig. 20, representsa methane
molecule with � being an isosurface of the electrostatic
potentialand f the correspondingvan der Waalsenergy. The
seconddataset,seeFig. 21, describesthe interactionenergy
betweena ligand (glucose)anda receptor(ethane)underthe
threetranslationaldegreesof freedom.The domain � is also
an isosurface of the electrostaticpotential with f being the
van der Waalsenergy. The third example,seeFig. 22, shows
a groundremediationprocessafter an oil spill contamination.
The domain � is an isosurface of the oil concentrationin
the soil (groundlevel at the top). The superimposedpseudo-
coloredfunctionshows theconcentrationof microbesconsum-
ing the oil andperformingthe remediationprocess.

The most basic application of our algorithm is removal
of topological noise without smoothing. This functionality
does not dependon the hierarchy and is implementedby
repeatedcancellationof critical pointswith lowestpersistence.
Our experiencesuggeststhat this noise removal step should
always be appliedat least to remove the artifactscausedby
symbolicperturbation.We defineall featureswith persistence

1http://www.webgis.com



9

below 0.1%of the total datarangeasnoise.Fig. 14 illustrates
this procedurefor The Dalles data set. Removing the noise
reducesthe numberof critical points from 24,617to 2,144.
As oneof themainproblemin topologicaldataanalysisis the
large numberof spurioustopologicalfeaturesthis (symbolic)
clean-upis a valuablepre-processingstepfor many techniques
proposedin recentyears.

Fig. 14. (Left) Original TheDallesdatasetcontaining24,617critical points.
(Right) Samedata with 2,144 critical points after removing all topological
featureswith persistencelessthan0 9 1% of height range.

We have testedseveral strategiesfor creatingthe hierarchy.
Thefirst strategy is basedon performingcancellationsin order
of increasingpersistence.The secondstrategy is basedon
performing simplification in “batches” of maximal indepen-
dentsetsof cancellations.Eachbatchis createdby canceling
iteratively the critical point pair with smallestpersistenceand
marking any dependentcancellationas “not-allowed.” Once
no more cancellationscan be performedall cancellationsare
resetto be “permitted” and the processis repeated.

Thethird strategy is a hybrid methodof thefirst two, which
builds maximal independentsets with a restrictedrange of
persistencevalues.In particular, we constructthe independent
setsas usualbut stop if the next cancellationhaspersistence
larger than twice of the smallestin the sameset. In all three
methodswe never remove topology with persistencelarger
than20% of the initial height range.

TableI summarizesstatisticsfor thehierarchiesconstructed
for our terrain data.As expected,a hierarchybecomesmore
shallow when cancelingcritical points in independentsets.
One problem is the presenceof nodeswith a high number
of parentsand children; this problem is the result of high-
valencevertices in the MS complex. Fig. 15(a) shows the
highest-resolutionMS complex of theNeedlesdataset,where
eachpath is representedby a straight line from the saddle
to the extremumto betterhighlight the problem.As the data
set containsfew minima eachof them is incident to a very
large numberof edges.Any cancellationinvolving one such
minimum hasa large numberof parentsand children.High-
valenceverticesare the causefor the uneven distribution of
nodesover the levels.

In Fig. 15(b), we show the numberof nodesper level for
eachcancellationstrategy for the PugetSounddataset. The
maximumindependentset strategy clearly producessuperior
results in terms of overall shapeof the hierarchy. However,
this observation does not necessarilyimply better practical
behavior. Fig. 15(c)shows thenumberof critical pointsin the
MS complex dependingon a uniform error. Equivalentgraphs

TABLE I

HIERARCHY STATISTICS FOR DIFFERENT CANCELLATION STRATEGIES.

MAXIMAL AND AVERAGE DEPTH (DISTANCE FROM THE ROOT) ARE

SHOWN IN THE FIRST TWO COLUMNS. THE LAST THREE COLUMNS LIST

THE MAXIMUM NUMBER OF PARENTS AND CHILDREN AND THE AVERAGE

DEGREE FOR A NODE.

depth avg dep max #p max #c avg deg
Puget Sound org. no. of CPs49185,no. of significantCPs17470

purepersistence 381 128 148 110 3.80
max. indep.set 157 118 131 112 4.28

indep.set-cut-off 238 105 147 106 3.94
Yakima org. no. of CPs21275,no. of significantCPs6082

purepersistence 119 56 73 32 3.60
max. indep.set 57 35 38 34 4.24

indep.set-cut-off 96 52 74 37 3.82
Dalles org. no. of CPs24617,no. of significantCPs2144

purepersistence 80 34 75 39 3.40
max. indep.set 54 31 82 43 3.88

indep.set-cut-off 73 33 63 57 3.52
Needles org. no. of CPs17375,no. of significantCPs3772

purepersistence 177 68 111 87 3.60
max. indep.set 113 70 87 87 3.88

indep.set-cut-off 149 62 124 101 3.68

for the other data setsare shown in Figs. 16 and 17. Even
though the hierarchy createdby maximal independentsets
is the most shallow it producesa significantly densermesh.
The hybrid methodproducesnearly identical resultsduring
traversalas the one basedon pure persistence.However, the
hybrid methodcreatesa moreshallow hierarchyanda higher
branchingfactorand it is thereforethe methodof choice.

Fig. 18 shows thePugetSounddataset.Theoriginal topol-
ogy has49,185critical pointsand is too denseto be printed.
Theupper-left pictureshows thedatawith 4,045critical points
obtainedafter removing the topologicalnoiseusing a persis-
tencethresholdof 0 � 5% of the elevation range.The upper-
right pictureshows the approximationof the datawith 2,025
critical pointsobtainedby increasingthepersistencethreshold
to 1 � 2%. The lower-left picture shows a significantly coarser
MS complex containing289 critical points that remainafter
increasingthe persistencethresholdto 20%. The differences
betweenthe resolutionsare most notable along the front-
facingboundary. The pre-processingof the PugetSounddata
was done in about three and a half hours, due to the slow
convergenceof the geometricfitting procedure.The traversal
of the hierarchyandrenderingare fully interactive.

Thehierarchyalsosupportsadaptiverefinements,two exam-
plesareshown in Fig. 19. Fig. 19(a)shows a view-dependent
refinementof the Puget Sound data. The full resolution is
preserved inside the view frustum yielding a total of 1,070
critical points.Outsidethe view frustum,we have simplified
the data to the extent possible.One can observe a quick
drop in resolution away from the view frustum. Reducing
thetopologyoutsidethe frustumnaturallyreducesthenumber
of quadrangularregions that mustbe rendered(and therefore
the numberof triangles)and frustum culling can be perform
directly on the regionsculling largepartsof themeshwithout
traversal. Fig. 19(c) shows the combustion data adaptively
refinedto preserve only maximawith a high function value.
Only maximaabove 90% of the maximal function valueand
their ancestorsin the hierarchy are preserved. Notice that
several lower maximahave completelydisappeared.
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Fig. 18. (Left) PugetSounddataafter topologicalnoiseremoval. (Middle) Dataat persistenceof 1 9 2% of the maximumheight.(Right) Dataat persistence
20% of maximumheight.
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Fig. 19. (Left) View-dependentrefinementof PugetSounddata(purple: view frustum).(Middle) Combustiondataafter topologicalnoiseremoval. (Right)
Adaptive refinementof combustiondatabasedon function value.All maximaabove 90% of the maximal function value arepreserved.

Fig. 20. Electrostaticandvander Waalspotentialsfor a methanemolecule.(Left) Isosurfaceof the electrostaticpotentialpseudo-coloredwith van derWaals
potential.(Middle) Full MS complex with 30 critical points.(Right) Simplified MS complex with 14 critical pointshighlighting the hydrogenatomsnearthe
maximaandthe carbonatomnearthe minium at the center.

VII I . CONCLUSIONS

We have describeda new topology-basedmulti-resolution
datastructurefor functionsover a planardomainanddemon-
stratedits usefor two-dimensionalheightfields.Thehierarchy
allows one to extract geometryadaptively for a given topo-
logical error. Due to its robustnessin the presenceof noise
andits well-definedsimplificationprocedures,theapproachis
appealingfor applicationsbasedon topologicalanalysis,for
example,datasegmentationandfeaturedetectionandtracking
in medical imaging or simulatedflow field datasets.Future
work will be concernedwith fitting the completegeometry
within a given error bound and the extensionto volumetric
data.
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