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Summary. We present a highly adaptive hierarchical representation of the topology of func-
tions defined over two-manifold domains. Guided by the theory of Morse-Smale complexes,
we encode dependencies between cancellations of critical points using two independent struc-
tures: a traditional mesh hierarchy to store connectivity information and a new structure called
extrema tree to encode the configuration of critical points. Extrema trees provide a powerful
method to increase adaptivity while using a simple, easy-to-implement data structure. The
resulting hierarchy is significantly more flexible than the one previously reported [4]. In par-
ticular, the resulting hierarchy is guaranteed to be of logarithmic height.

1 Introduction

Topology-based methods used for visualization and analysis of scientific data are
becoming increasingly popular. Their main advantage lies in the capability to provide
a concise description of the overall structure of a scientific data set. Subtle features
can easily be missed when using “traditional” visualization methods like volume
rendering or iso-contouring, unless “correct” transfer functions and isovalues are
chosen. On the other hand, the presence of a large number of small features creates
a “noisy visualization,” in which larger features can be overlooked. By visualizing
topology directly, one can guarantee that no feature is missed. Furthermore, one can
use sound mathematical principles to simplify a topological structure. The topology
of functions is also often used for feature detection and segmentation (e.g., in surface
segmentation based on curvature).

However, for topology-based data analysis one needs flexible, hierarchical mod-
els able to adaptively remove noise or features not relevant for a particular segmen-
tation. In practice, the simplification/refinement should be fast (possibly interactive)
and highly adaptive in order to be useful in a large variety of situations. Requir-
ing interactivity inadvertently leads to the use of hierarchical encodings rather than
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simplification schemes. Hierarchical models often reduce the adaptivity of a repre-
sentation to gain the ability to preform incremental changes for varying queries.

We address the need for adaptive topology-based data exploration by improving
significantly the topological hierarchy proposed in [4]. Creating two largely inde-
pendent hierarchies, we show how one can remove many of the dependencies in the
original hierarchy, making the structure simpler, more compact, and more adaptive
than the original one.

1.1 Related Work

The topological structure of a scalar field can be described partially by its contour
tree [17, 5, 18], which describes the relations between the connected components
of its level sets. This structure provides a user with a compact representation of the
topology [1] and can be used to accelerate the computation of isosurfaces [24]. How-
ever, the contour tree provides little information about the embedding of the level
sets and therefore remains somewhat abstract. Morse theory [16, 15], on the other
hand, provides methods to analyze the complete topology of a function over a man-
ifold as well as its embedding. Early approaches for the bivariate case are provided
in [6, 14, 19]. More recently, the Morse-Smale complex was introduced by Edels-
brunner et al. [9, 8] as a description of the topology of scalar-valued functions over
two- and three-dimensional manifolds. Applications of this theory vary from implicit
geometry modeling [21] to shape description [13]. Related concepts are also used in
flow visualization. Helman and Hesselink [12] showed how to find and classify criti-
cal points in flow fields and propose a structure similar to the Morse-Smale complex
for vector fields. Later, methods to analyze and simplify this complex were proposed
by de Leeuw and van Liere [7] and Tricoche et al. [22, 23].

The first multi-resolution encoding of a Morse-Smale complex we are aware of
was proposed by Pfaltz [20], which has been improved and extended by Edelsbrunner
et al. [9] and Bremer et al. [3, 4]. More recent hierarchical structures are based on the
concept of persistence [10], which relates the difference in function value of critical
point pairs to the importance of a topological feature. Given a Morse-Smale complex,
we

1. provide an improved hierarchical encoding of the Morse-Smale complex;
2. prove that the resulting hierarchy is of logarithmic height; and
3. demonstrate our methods for various data sets.

We first review necessary concepts from Morse theory and the construction of a
Morse-Smale complex (Section 2). In Section 3, we describe extrema trees and the
resulting hierarchy in Section 4. We conclude with results and possibilities for future
research (Section 5).
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2 Morse-Smale Complex

We base our algorithms on intuitions derived from the study of smooth functions.
We review key aspects from Morse theory [16, 15] for smooth functions and discuss
how these can be used in the piecewise linear case.

2.1 Morse Theory

Given a smooth function f :M→ R, a point a ∈M is called critical when its gra-
dient 5 f (a) = (δ f/δx,δ f/δy) vanishes; it is called regular otherwise. For two-
manifolds, (non-degenerate) critical points are maxima ( f decreases in all direc-
tions), minima ( f increases in all directions), or saddles ( f switches between de-
creasing and increasing four times around the point). Using a local coordinate frame
at a, we compute the Hessian H of f , which is the matrix of second partial deriva-
tives. If H is non-singular we can construct a local coordinate system such that f has
the form f (x1,x2) = f (a)± x2

1± x2
2 in a neighborhood of a. The number of minus

signs is the index of a and distinguishes the different types of critical points: minima
have index 0, saddles have index 1, and maxima have index 2.

At any regular point, the gradient (vector) is non-zero, and when we follow the
gradient we trace out an integral line, which starts at a critical point and ends at a
critical point, while technically not containing either of them. Since f is smooth,
two integral lines are either disjoint or the same. The descending manifold D(a) of a
critical point a is the set of points that flow toward a. More formally, it is the union
of a and all integral lines that end at a. The collection of descending manifolds is a
complex in the sense that the boundary of a cell is the union of lower-dimensional
cells. Symmetrically, we define the ascending manifold A(a) of a as the union of
a and all integral lines that start at a. When neglecting certain degenerate cases,
see [9], we can overlay these two complexes and obtain what we call the Morse-
Smale complex, or MS complex, of f . Its vertices are the vertices of the two overlayed
complexes, which are the minima, maxima, and saddles of f . Its cells are four-sided
regions bounded by parts of integral lines between saddles and extrema. An example
is shown in Figure 1.

minimum
maximum
saddle

Fig. 1. Morse-Smale complex.
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Using the insight gained from smooth Morse theory when applied to piecewise
linear functions, we follow the concepts described in [3]. We identify and classify
critical points based on their local neighborhood, see [2, 9]. If all vertices that are
edge-connected to a point u have function values below that of u, we call it a max-
imum; if all are above u, then we call it a minimum etc., see Figure 2. In general,
there can exist saddles with high multiplicity that we split into simple ones, as shown
on the far right in Figure 2.

minimum saddle maximumregular point

v v v v v v

splitting of two−fold saddle

Fig. 2. Classification of a vertex v based on relative height of its edge-connected neighbors,
where light vertices/edges mark higher neighbors and solid vertices/edges lower neighbors.

2.2 Persistence

As a numerical measure of the importance of critical points we define pairs of critical
points and use the absolute difference between their height/function values. The un-
derlying intuition is the following: We imagine sweeping the two-manifoldM in the
direction of increasing height (w.r.t. the scalar field value.) The topology of the part
ofM below the sweep line changes whenever we add a critical vertex, and it remains
unchanged whenever we add a regular vertex. Except for some special cases, each
change either creates a component or it destroys a component. We pair a vertex v that
creates a component with the vertex u that destroys the component. The persistence
of u and of v is the “delay” between the two events: p = f (v)− f (u), see [10].

2.3 Construction

In practice, we construct the MS complex by successively computing its edges, start-
ing from the saddles, see [3]. Starting from each saddle, we compute two lines of
steepest ascent and two lines of steepest descent connecting the saddle to two max-
ima and two minima. We call these lines ascending or descending paths. Two paths
in the same direction (ascending or descending) can merge; two paths with different
direction must remain separate. Once two paths have been merged they never split.
Following these rules, we are guaranteed to produce a non-degenerate MS complex.
A more detailed analysis can be found in [3]. Having computed all paths, we partition
the surface into four-sided regions forming the cells of the MS complex. Specifically,
we grow each quadrangle from a triangle incident to a saddle without ever crossing
a path.
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2.4 Simplification

To simplify an MS complex locally we use a cancellation that eliminates two critical
points. The inverse operation to refine the complex is called an anti-cancellation.
Only two critical points adjacent in an MS complex can be canceled. The possible
configurations are a minimum and a saddle or a saddle and a maximum. Since the two
cases are symmetric we limit our discussion to the second case, which is illustrated
in Figure 3.

(a) (b)

Fig. 3. Graph of a function before (a) and after (b) cancellation of pair u,v.

Let v be the saddle and u the maximum of the canceled pair, and let w be the other
maximum connected to v. We require that u 6= w and f (w) > f (v); otherwise, we
prohibit the cancellation of u and v. In particular, a cancellation or anti-cancellation
must always maintain a valid MS complex. An MS complex is called valid, if all
cells have four (not necessarily distinct) corners and every path between a saddle
and maximum/minimum is ascending/descending. Alternatively, an adaptively re-
fined MS complex is valid if it can be created from the highest resolution one using
a sequence of cancellations.

3 Extrema Trees

The information an MS complex provides can be separated into the critical points
and their connectivity. The critical points information includes position, type, and
function value and we refer to this as critical point configuration (CPC). The con-
nectivity encodes which paths (edges) define a Morse cell and the neighboring infor-
mation between cells. As with most mesh encoding schemes the CPC provides most
(but not all) information about the MS complex. Especially during simplification, the
connectivity of the MS complex can often be infered from the CPC. For example, in
Figure 3 after u and v have been removed all saddles that were connected to u are
now connected to w.

When encoding a cancellation the separation between CPC and connectivity is
very intuitive. The top row of Figure 4 shows three consecutive cancellations C1, C2,
and C3 of minima. To reverse any of these cancellations one first needs to know how
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the connectivity of the MS complex changes. For example, in Figure 4(d) m4 must
be created on the left of m3 (not on its right.) This information is provided by the
neighborhood relations between Morse cells, see Section 4. However, knowing the
appropriate connectivity is still leaving ambiguity. Reversing C1 seems to result in
the structure of Figure 4(e). Nevertheless, the MS complex drawn in (f) has the same
connectivity but a different CPC.

C2

C3

C1
m0

m3
m4

s1

s2s3
s4

m0

m3
m4

s2s3
s4

m0

m2
m3

m4

s1

s2s3
s4

s0 m1

m2

(a) (b) (c)

C1−1 C1−1

C3

m0

m3 s2s3

m0

m3 s2s3

s0

m2

m0

m3 s2s3

s0 m1

(d) (e) (f)

Fig. 4. MS complex (a) shown after three successive cancellations (b), (c), and (d). The con-
figurations in (e) and (f) have the same connectivity but a different critical point configuration.

The straightforward solution to encoding the CPC is to link it directly to each can-
cellation. If a cancellation removed the critical point pair u,v then the corresponding
anti-cancellation would introduce u,v. However, this imposes restrictions on the or-
der of cancellations and anti-cancellations. Figure 5 shows the example of Figure 4
enhanced by labeling some critical points with function values. In this situation the
configuration after reversing C1 must be the one shown in Figure 5(c) and 4(f), re-
spectively. The saddle s2 cannot be connected to m0 since the resulting path could
not be descending from saddle to minimum. However, C1 removed s0,m1 and link-
ing the CPC directly to each cancellation would create an invalid MS complex. The
algorithm proposed in [4] avoids these complications by imposing additional restric-
tions on the order of operations, see Section 4.

We propose a different strategy that allows us to store connectivity and CPC in-
dependently of each other using a simple data structure. The core idea is to view the
cancellation shown in Figure 3 not as removing u and v but as merging the triple u,
v, and w into w. After a sequence of cancellations we think of every extremum as
the representative of itself plus all extrema merged with it. Maxima only merge with
maxima and minima only with minima. We keep track of these merges by creating
a graph for every extremum. Initially, each extremum is represented by itself as a
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(a) (b) (c)

Fig. 5. MS complex of Figure 5 with function values. (a) Original complex. (b) Invalid critical
point configuration (the path marked in red cannot be descending.) (c) Valid critical point
configuration requires anti-cancellation C1−1 to create m2 rather than m1.

graph with a single node. During each cancellation an edge is added between the
corresponding graphs merging them into one. Since no extremum can merge with it-
self these graphs are trees, called extrema trees. Figure 6 shows several cancellations
and the resulting extrema trees. Figure 13(a) shows the extrema trees of a typical
terrain data set.

M
M

M

M

M

M

M

M
M

M

M

M

M

M

M
M

M

M

M

M

M

Fig. 6. Example of extrema trees of maxima resulting from multiple cancellations. (Top) MS
complex with some cancellations indicated in red. (Bottom) Corresponding extrema trees of
all maxima.

Even though the data structure used for extrema trees is simple, it is also very
powerful due to two key properties. First, recall that during a cancellation always the
higher/lower maximum/minimum prevails in the MS complex. This fact implies that
the representative of a tree of maxima/minima is always the highest/lowest node of
the tree. Second, arcs of an extrema tree correspond to saddles and/or cancellations.
In fact, given some extrema trees, it is possible to derive a (nearly) complete MS
complex based only on a set of saddles. Assume one is given a highly simplified
MS complex and a set of extrema trees; furthermore, assume a (local) refinement of
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the MS complex is given by a set of saddles S = {s0, . . . ,sn} that must appear in the
refined complex. First, one removes all arcs corresponding to a saddle in S from the
extrema trees. Subsequently, one can reconstruct the MS complex in the following
manner: Each saddle si was initially connected to two maxima M0,M1 and two min-
ima m0,m1. All of these extrema are part of a tree, and the saddle is connected to the
four representatives of these trees. This defines the adaptive MS complex to the level
of the embedding of the paths. The saddles are given, the remaining critical points
are the representatives of the extrema trees, and the paths embedding can be derived
from concatenating original paths.

Fig. 7. Strangulation where two
Morse cells have the same corners.

Nevertheless, the connectivity between Morse
cells is not uniquely defined by the construction
described above. This is due to the fact that in an
MS complex paths are not uniquely defined by
their end points, see Figure 7. As a result, Morse
cells are not identified by their corners and the
connectivity must still be stored explicitly. Sec-
tion 4 describes how the connectivity as well as
the configuration of saddles can be stored hier-
archically. The extrema trees are used to complete the CPC.

Maintaining extrema trees is a constant-time operation during a cancellation and
involves a linear search during an anti-cancellation. In general, an extrema tree can
be split anywhere at any time. This prohibits the use of standard acceleration struc-
tures such as a union-find approach. While more sophisticated structures are possible
our experiments suggest that extrema trees have an overall low branching factor. This
diminishes any advantage of more complicated structures and would make the im-
plementation more difficult.

4 Hierarchy

Using extrema trees to maintain the CPC allows us to create a mesh hierarchy geared
completely towards connectivity. The main objective is to construct a hierarchy that
supports as many different configurations as possible. Similarly to traditional hier-
archies for polygonal meshes, (anti-)cancellations are stored in a dependency graph
representing a partial order among operations. All configurations that can be created
by observing the partial order should result in a valid MS complex.

4.1 Hierarchy Construction

Following the approach discussed in [4], we split each Morse cell into two Morse tri-
angles by introducing the diagonal connecting the minimum to the maximum into the
complex. As a result, the neighborhood around a saddle then consists of four triangles
that form the diamond around the saddle, as indicated in grey in Figure 8(a). Each
cancellation removes one diamond from the MS complex. We create a hierarchy in
a bottom-up fashion by successively canceling critical points. Two cancellations are
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wvu w

(a) (b)

Fig. 8. MS complex corresponding to Figure 3 (a) before and (b) after cancellation of pair u,v.
Diagonals indicating diamonds are shown as dotted lines.

called independent if it is irrelevant in what order they are performed and dependent
otherwise. The extended dependency graph contains a node for every cancellation
and an arc between dependent cancellations. The dependency graph is derived from
the extended one using path compression. The height of the dependency graph is
defined as the maximal distance from a root to a leaf. In practice, one is interested
in constructing a shallow graph with few edges since this implies the possibility of a
large number of different configurations.

Clearly, the definition of dependencies between cancellations determines the
shape of the dependency graph. In [4], the region of interference of the cancellation in
Figure 8 is defined as all Morse cells incident to either u, v, or w. Two cancellations
are defined as dependent if their regions of interference have a (true) intersection.
This large region of interference is necessary to avoid the problems discussed in
Section 3. Given the large region of interference, storing the hierarchy is straightfor-
ward. Each cancellation replaces Morse cells around three critical points by Morse
cells around the remaining one. The boundary of the region does not change and the
dependencies ensure that a (anti-)cancellation is only performed if the MS complex
is locally identical to the one encountered during construction. This can be viewed
as a special case of the concepts described for general multi-resolution structures
described, for example, by de Floriani et al. [11]. An example of several cancella-
tions and the resulting dependency graphs using the old hierarchy is shown in Fig-
ure 9. Due to the large regions of interference the final dependency graph (lower
right corner) is a line allowing no adaptations beyond the ones encountered during
construction.

Using extrema trees one can ignore the configuration of minima and maxima,
requiring us to encode only the connectivity and saddle configuration. Since each
cancellation removes the diamond around a saddle it is natural to link the saddle in-
formation directly to a diamond. Therefore, if we can store the diamond information
(the connectivity) hierarchically, extrema trees provide the remaining information.

To store the connectivity information we use the concepts from [11] but now
with a significantly smaller region of interference. Each cancellation removes one
diamond replacing eight triangles around a vertex by four. An anti-cancellation re-
introduces a diamond replacing four triangles by eight, introducing two vertices.
Some possible configurations are shown in Figure 10. The cancellation of a dia-
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C1
C1

C3
C1

C3

C2

C4

C1

C2

C1

C4
C3

C2 C2

Fig. 9. Hierarchy construction as described in [4]. Cancellations are indicated by arrows, the
corresponding region of interference is shaded in grey, and regions of overlap with previous
cancellations are shaded in red. The corresponding dependency graphs are shown next to the
MS complexes. After four cancellations the dependency graph is a line.
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Fig. 10. Three examples for encoding the connectivity during cancellations. The triangulation
before (top) and after (bottom) a cancellation is shown. The middle row shows how the neigh-
borhood structure for a cancellation. An anti-cancellation is stored as a list of triangle pairs
(-1 indicating a boundary edge).
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mond changes a reduced MS complex only for the neighboring (edge-connected)
diamonds. Therefore, the region of interference of a cancellation is defined as the
corresponding diamond plus its edge-connected neighbors. The smaller regions of
interference produce a smaller set of dependencies. In fact, one sees that the number
of ancestors and the number of children of each node in the dependency graph is
bounded (assuming path compression). One can Imagine a cancellation not remov-
ing a diamond but rather collapsing it into a diagonal pair. The next cancellation
involving either of these diagonals will become an ancestor, resulting in at most two
ancestors. Each cancellation has at most four children. Figure 11 shows the example
of Figure 9 using extrema trees.
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Fig. 11. The top two rows show the example of Figure 9 using extrema trees to encode the
hierarchy. The regions of interference are shaded in grey, and the corresponding extrema trees
are drawn on the right side of each figure. Using the reduced MS complex all cancellations are
independent. The bottom row shows the complex after the anti-cancellation of C1 (left) and
C2 (right). Note that C1−1 correctly creates M1 rather than M0 (M1 is higher than M0).

We create a hierarchy by removing diamonds from the highest-resolution MS
complex in “batches” of independent cancellations. However, this strategy can re-
sult in cancellations of high persistence to be dependent on cancellations with much
lower persistence, which is undesirable for most applications. Therefore, we limit the
batches such that the largest persistence in a batch is not larger than twice the max-
imal persistence of the previous batch. Without this minor restriction, each batch
contains about one quarter of the remaining diamonds in the complex and therefore
creates a hierarchy of logarithmic height.
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5 Results

To compare the new hierarchy with the one proposed in [4] we have applied both
strategies to a 1201-by-1201 single-byte integer value terrain data set of the Grand
Canyon. Figure 16 shows a rendering (a) and the initial MS complex (b) of the Grand
Canyon data set with 11620 critical points. We assess quality via a fly-over compar-
ing the adaptivity of the cell-based hierarchy with the one using extrema trees. A
narrow view-frustum is defined where the topology is refined to the highest resolu-
tion. Outside the given view-frustum only dependent topology is used. Figures 17
and 18 show two frames of the fly-over for two distinct stages of the fly-over path.
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Fig. 12. Number of critical points used during a fly-over (Grand Canyon data set.)

Figure 12 shows the number of critical points in the adaptive MS complex during
the fly-over for both methods used for hierarchy construction. The hierarchy using
extrema trees is clearly superior to the original encoding. One explanation for the
large differences in quality is the presence of high-valency extrema in the MS com-
plex. Often, data sets (especially terrains) are biased to contain significantly more
maxima than minima (or the reverse), which consequently results in some extrema
of the MS complex with high valency values. Using the original large region of in-
terference, the hierarchy around a high-valency extremum degenerates into a linear
sequence.

The adaptive refinement and display of topology is useful for many areas. Fig-
ure 15 shows the oil pressure of an underground oil reservoir. (Oil is extracted by
pressing water into the reservoir at some sites and pumping oil at others. As more
water is forced into the reservoir the reservoir becomes increasingly saturated with
water, and at some point oil production ceases to be effective.) The figure shows an
isosurface of water saturation, pseudo-colored by oil pressure. The linear color map
used in Figure 15(c) provides little structural information. However, the seven oil
extraction sites are visible as local minima in the simplified MS complex.
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Figure 13(b) shows a rendering of the Yakima data set using 1201×1201 single-
byte integer values, and Figure 14 shows the corresponding MS complex with 17691
critical points and the same complex refined to preserve only features below a func-
tion value of 0.14 (with function values scaled to [0,1]) using 8063 critical points.
The density of the MS complex shows how the region around the canyons remains
highly refined.

6 Conclusions and Future Research

We have improved our original results discussed in [3] significantly in several dif-
ferent ways, moving towards the practical application of topology for data visual-
ization and analysis. Using extrema trees, the hierarchy is smaller, more adaptable,
and supports the use of larger, more complicated MS complexes. Further, extrema
trees are easy to implement and maintain during refinement. One disadvantage of
the new technique is that the hierarchy is so flexible that it becomes impossible to
precompute function values corresponding to all possible topological refinements.
Therefore, only the adapted topology, not the corresponding adapted function, can be
displayed interactively. We plan to develop new techniques computing high-quality
topological approximation on-the-fly.
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Fig. 13. (Left) Typical extrema trees of a terrain. Maxima are shown in red, minima in blue,
and arcs in green. Note the overall low branching factor. (Right) Rendering of original Yakima
data set.

Fig. 14. (Left) Original MS complex of the Yakima data set (17691 critical points); (right)
adaptively refined MS complex, where only features below function value of 0.14 are pre-
served (8063 critical points).

Fig. 15. Pseudo-colored rendering and simplified MS complex of oil-pressure data set.
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Fig. 16. Rendering of Grand Canyon data set; (b) original MS complex of (a) using 11620
critical points (minima shown in blue, maxima in red, and saddles in green.)
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Fig. 17. Global view of a fly-over of Grand Canyon data set. Inside the local view frustum
(yellow) the finest resolution topology is shown on the outside only dependent topology is
used. (Top) The results of the original hierarchy; (bottom) refinement using the improved
hierarchy introduced in this paper.
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Fig. 18. Another frame of the fly-over of the Grand Canyon data set. (Top) Using the original
hierarchy; (bottom) using extrema trees.


