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ABSTRACT
We present an approach to hierarchically encode the topology of
functions over triangulated surfaces. The topology of a function
is described by its Morse-Smale complex, a well known structure
in computational topology. Following concepts of Morse theory,
a Morse-Smale complex (and therefore a function’s topology) can
be simplified by successively canceling pairs of critical points. We
demonstrate how cancellations can be effectively encoded to pro-
duce a highly adaptive topology-based multi-resolution representa-
tion of a given function. Contrary to the approach of [4] we avoid
encoding the complete complex in a traditional mesh hierarchy. In-
stead, the information is split into a new structure we call acancel-
lation forestand a traditional dependency graph. The combination
of this new structure with a traditional mesh hierarchy proofs to be
significantly more flexible than the one previously reported[4]. In
particular, we can create hierarchies that are guaranteed to be of
logarithmic height.

1. INTRODUCTION
Topology-based methods used for visualization and analysis of sci-
entific data are becoming increasingly popular. Their main advan-
tage lies in the capability to provide a concise descriptionof the
overall structure of a scientific data set. Subtle features can eas-
ily be missed when using “traditional” visualization methods like
volume rendering or contouring, unless “correct” transferfunctions
and isovalues are chosen. On the other hand, the presence of alarge
number of small features creates a “noisy visualization,” in which
larger features can be overlooked. By visualizing topologydirectly,
one can guarantee that no feature is missed. Furthermore, one can
use sound mathematical principles to simplify a topological struc-
ture. The topology of functions is also often used for feature de-
tection and segmentation (e.g., in surface segmentation based on
curvature).

However, for topology-based data analysis one needs flexible,
hierarchical models able to adaptively remove noise or features not
relevant for a particular segmentation. In practice, the simplifi-
cation/refinement should be fast (possibly interactive) and highly
adaptive in order to be useful for a large variety of situations. Re-
quiring interactivity inadvertently leads to the use of hierarchical
encodings rather than simplification schemes. Hierarchical models
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often reduce the adaptivity of a representation to gain the ability to
preform incremental changes for varying queries.

We address the need for adaptive topology-based data explo-
ration by improving significantly the topological hierarchy described
in [4]. By storing the hierarchy in two different but connected data
structures, we show how one can remove many of the dependen-
cies in the original hierarchy, making the structure simpler, more
compact, and more adaptive than the original one.

1.1 Related Work
The topological structure of a scalar field can be described partially
by its contour tree [21, 5, 22], which describes the relations be-
tween the connected components of its level sets. This structure
provides a user with a compact representation of the topology [1]
and can be used to accelerate the computation of isosurfaces[31].
However, the contour tree provides only limited information about
the embedding of the level sets and therefore remains somewhat
abstract. Morse theory [20, 19], on the other hand, providesmeth-
ods to analyze the complete topology of a function over a man-
ifold as well as its embedding. Early approaches for the bivari-
ate case are discussed in [6, 18, 23]. More recently, the Morse-
Smale complex was introduced by Edelsbrunner et al. [10, 9] as
a description of the topology of scalar-valued functions over two-
and three-dimensional manifolds. Applications of this theory vary
from implicit geometry modeling [27] to shape description [15].
Related concepts are also used in flow visualization. Helmanand
Hesselink [14] showed how to find and classify critical points in
flow fields and proposed a structure similar to the Morse-Smale
complex for vector fields. Later, methods to analyze and simplify
this complex were proposed by de Leeuw and van Liere [8] and
Tricoche et al. [29, 30].

A large amount of research has been devoted to the construc-
tion of multi-resolution representations for meshes. Evena partial
overview of the related work is beyond the scope of this paper.
Conceptually, the hierarchy for the reduced Morse-Smale complex
is related to concepts from [25, 13, 26, 16, 17], as it is created
by successive vertex removal. For more references and a discus-
sion on a general theory of multi-resolution modeling we refer the
reader to [12]. Nevertheless, the complete Morse-Smale complex
incorporates many topological constraints, and its structure (and
multi-resolution encoding) is quite different from those of tradi-
tional meshes. The first multi-resolution encoding of a Morse-
Smale complex we are aware of was proposed by Pfaltz [24], which
has been improved and extended by Edelsbrunner et al. [10] and
Bremer et al. [3, 4]. The more recent hierarchical structures are
based on the concept ofpersistence[11], which relates the differ-
ence in function value of critical point pairs to the importance of a
topological feature.

We first review necessary concepts from Morse theory and the
construction of a Morse-Smale complex (Section 2). In Section 3,
we describe the cancellation forest, and we discuss the resulting



hierarchy in Section 4. We conclude with results and possibilities
for future research (Section 5).

2. MORSE-SMALE COMPLEX
We base our algorithms on intuitions derived from the study of
smooth functions. We review key aspects from Morse theory [20,
19] for smooth functions and discuss how these can be used in the
piecewise linear case.

2.1 Morse Theory
Throughout this paperM denotes a smooth 2-manifold. Given a
smooth functionf : M → R, a pointa∈ M is calledcritical when
its gradient▽ f (a) = (δ f /δx,δ f /δy) vanishes; it is calledregular
otherwise. For two-manifolds, (non-degenerate) criticalpoints are
maxima (f decreases in all directions), minima (f increases in all
directions), or saddles (f switches between decreasing and increas-
ing four times around the point). Using a local coordinate frame at
a, we compute theHessian Hof f , which is the matrix of second
partial derivatives. IfH is non-singular we can construct a local
coordinate system such thatf has the formf (x,y) = f (a)±x2±y2

in a neighborhood of a. The number of minus signs is theindex
of a and distinguishes the different types of critical points: minima
have index 0, saddles have index 1, and maxima have index 2.

At any regular point, the gradient (vector) is non-zero, andwhen
we follow the gradient we trace out anintegral line, which starts
at a critical point and ends at a critical point, while technically not
containing either of them. Sincef is smooth, two integral lines are
either disjoint or the same. Thedescending manifold D(a) of a crit-
ical pointa is the set of points that flow towarda. More formally, it
is the union ofa and all integral lines that end ata. The collection of
descending manifolds is a complex in the sense that the boundary
of a cell is the union of lower-dimensional cells. Symmetrically,
we define theascending manifold A(a) of a as the union ofa and
all integral lines that start ata. When neglecting certain degener-
ate cases, see [10], we can overlay these two complexes and obtain
what we call theMorse-Smale complex, or MS complex, of f . Its
verticesare the vertices are the minima, maxima, and saddles off .
Its edgesare integral lines between saddles and extrema that bound
four-sidedfaces. An example is shown in Figure 1.

minimum

maximum

saddle

Figure 1: Morse-Smale complex: descending one-manifolds
shown as dotted and ascending one-manifolds as solid lines.

Using the insight gained from smooth Morse theory when ap-
plied to piecewise linear functions, we follow the conceptsde-
scribed in [3]. We identify and classify critical points based on
their local neighborhood, see [2, 10]. If all neighboring vertices of
a pointv have function values below that ofv, we call it a maxi-
mum; if all are abovev, then we call it a minimum etc., see Fig-
ure 2. In general, there can exist saddles with multiplicitygreater
than one that we split into simple ones, as shown on the far right in
Figure 2.

2.2 Cancellations
To simplify an MS complex we remove connected pairs of crit-
ical points. The two possible cases are a maximum-saddle or a

minimum saddle maximumregular point

v v v v v v

splitting of two−fold saddle

Figure 2: Classification of a vertexv based on relative height
of its neighbors, where light vertices/edges mark higher-value
neighbors and solid vertices/edges lower-value neighbors.

minimum-saddle pair. Since all saddles have valence four (have
four incident edges) each maximum(minimum)-saddle pair uniquely
defines another maximum(minimum) connected to the same sad-
dle. We refer to such a triple as apass.

Following [10] and [4] we usecancellationsof passes to simplify
an MS complex, see Figure. 3.

w wu v

(a) (b)

Figure 3: MS complex before (a) and after (b) the cancellation
of the pair (u,v).

Definition 1. Let (u,v,w) be a pass of the MS complexM such
that | f (u)− f (v)| < | f (w)− f (v)|. ThecancellationCu,v concate-
nates the edgesu− v−w to edges ending atu and removes the
remaining edges incident tov (merging the adjacent faces).

The importance of a pass is measured by the difference in func-
tion value (or height) between its first two vertices

Definition 2. Let (u,v,w) be a pass, then the difference in func-
tion valuep = | f (u)− f (v)| is called thevariation of (u,v,w).

2.3 Construction
The MS complex is constructed by successively computing itsedges,
starting from the saddles, see [3]. We compute two lines of steep-
est ascent and two lines of steepest descent connecting eachsad-
dle to two maxima and two minima. Two ascending (descending)
edges can merge; while ascending edges must remain separatefrom
descending edges. Once two edges have been merged they never
split. Following these rules, we are guaranteed to produce anon-
degenerate MS complex. A more detailed analysis can be found
in [4]. Having computed all edges, we partition the surface into
regions by growing each region from saddles without ever crossing
an edge.

3. SIMPLIFICATION
To create an efficient and flexible hierarchical encoding of an MS
complex one must be able to store and manipulated sequences of
cancellations. In this section we introduce a structure we call a
cancellation forestthat encodes a sequence of cancellations and
provides a simple way to implement a bottom-up simplification of
an MS complex.



3.1 Cancellation Forests
First we define a cancellation forest and discuss some of its prop-
erties

Definition 3. Given an MS complexQ and a sequenceT of can-
cellations of passes(u0,v0,w0), . . . ,(un,vn,wn) the cancellation
forrest corresponding toT is defined as a set of trees with theui ’s
andwi ’s as nodes and an arc for eachvi between its two incident
extrema of the same index asui (in Q). Eachcancellation treecon-
tains exactly one node which is not removed byT which is called
its root, see Figure 4.

(a) (b)

Figure 4: Constructing a cancellation forest: An MS com-
plex with cancellations (indicated by arrows) is shown on the
top, the corresponding cancellation forest on the bottom (roots
marked in grey).

Cancellation trees have several useful properties:

1. A cancellation tree consists of either only minima or only
maxima;

2. Sinceui 6= wi a tree cannot have a cycle;

3. Each arc in a tree uniquely identifies a cancellation or alter-
natively a saddle and two incident edges of the MS complex.

3.2 Bottom-up Simplification
Given the cancellation forestCF of a sequence of cancellationsT
it is straight forward to construct the corresponding simplified MS
complexM′. The algorithm is illustrated in Figure 5. The con-
nection between arcs of the forest and edges of the MS complex
provides a natural way to draw a forest embedded into its MS com-
plex. Once all cancellations ofT are performed all edges inM′ have
either not been changed or have been concatenated with edgescor-
responding to arcs of the forest. In the original MS complexM the
second type of edges were connected to extrema that are leafsof
CF. It is easy to see that edges ofM′ result from concatenating
the original edge with those edges encountered on the way from
the leafs ofCF to its roots. Therefore, a bottom-up simplification
algorithm for an MS complexM can be implemented as follows:

1. Construct a cancellation forest by choosing a sequence of
appropriate cancellations;

2. For each leaf in the forest compute a sequence of edges (of
M) that connects the leaf to its root; and

3. For each edgee of M either
a) do nothing, if its extremum has not been canceled; or
b) concatenatee with the sequence of edges that connects

its original extremum with the root of its tree.

Figure 5: Bottom-up sipmlification using a cancellation for-
est. (Upper-left) Original MS complex with the edges corre-
sponding to arcs highlighted. (Upper-right) MS complex after
removing all edges that will be removed during cancellations.
(Lower-left) Resulting simplified complex created by concate-
nating edges. (Bottom-right) The resulting MS complex draw
with “smoothed” edges to highlight the structure.

4. HIERARCHY
Bottom-up simplification as described above by definition always
starts from the original MS complex and reconstructs each simpli-
fied complex from scratch. This is impractical for large complexes
and likely to be slow even for medium sized ones. Instead, one
should aim for an iterative construction in which each simplifica-
tion is adapted from the one before. In this section we describe the
data structure we use to store an MS complex hierarchically,how
this structure is create, and how it is used at run-time.

4.1 Data Structure
The data structure to hierarchical encode an MS complex con-

sists of two interconnected parts: One particular cancellation forest
and a dependency graph of arcs of the forest.

Rather than trying got encode all possible cancellation forests of
an MS complexM we focus on only one forest which is created
based on different metrics depending on the application, see below.
This master forestis stored as a doubly connected tree meaning
each node contains a list of parents and a list of children. However,
the master forest can be adapted by activating and deactivating arcs
which creates a set ofsub-forests. As discussed in Section 3, each
sub-forest represents a particular simplification ofM.

Changing one simplification, one sub-forest, into another requires
to deactivate some arcs of the master forest and to activate others.
This corresponds to performing some anti-cancellations (deactiva-
tions) and cancellations (activations) inM. The second part of the
data structure is to store arcs (representing cancellations) of the
master forest in adependency graph. The dependency graph en-
codes a partial order among arcs in which each arca has a set of
predecessors that must be active beforea can be active and a set of
successors that can only be active ifa is active. As usual, we store
the partial order between arcs as a directed graph.

4.2 Construction
First, we describe how the data structure is build given a specific se-
quence of cancellationsT. Second, we discuss different objectives
in how to chooseT and explain the algorithm used for all examples
in this paper.

The construction mostly follows standard concepts, see, for ex-
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Figure 6: Hierarchy construction: The successively simplified MS complex is shown on top with cancellations indicated by arrows
and regions of interferences shaded. On the bottom the resulting cancellation forest is shown on the left and the dependency graph
of arcs on the right.

ample, [12]. Theregion of interference, RoI, of cancellationCu,v is
defined as all cells incident tov. Then for every cancellationCui ,vi

of T we:

1. Create a new arcai in the master forest;

2. For all Cuj ,v j whoseRoI intersects the cells incident tovi
makea j a predecessor ofai andai a sucessor ofa j ; and

3. Cancel(ui ,vi) as discussed in Section 2.2

Finally, we use path compression [28] to reduce the number ofarcs
in the dependency graph. In practice, most of the path compression
is done implicitly during step 2. by removing trivial shortcuts in
the dependency graph. An example is shown in Figure 6.

To choose a particularT one must analyze the effects of differ-
ent sequences. The set of cancellations (independent of theorder)
defines the master forest. Only extrema connected by an arc can
be canceled. The order among the cancellations determines the de-
pendency graph. Because, arcs can only be activated if all their
predecessors are activated, the order among cancellationsis locally
(within the RoIs) preserved for all possible cancellations. There
exist two main objectives: Passes with small variation should be
canceled first. This ensures that the master forest allows the most
unimportant passes to be canceled. Second, the order shouldcreate
a “shallow” dependency graph meaning short distances from any
leaf (node with no predecessor) to its root(s). It is well known that
a shallow dependency graph translates into a large number ofdif-
ferent configuration. This translates into a large number ofpossible
simplifications encoded in the hierarchy.

The first objective can be optimized by always choosing the can-
cellation with minimal global variation. However, it is possible,
that theRoIs of each successive pair of cancellation overlap in
which case the dependency graph degenerates into a line withonly
a linear number of possible configurations. The second objective is
optimized by choosing maximal sets of independent cancellations
(non-intersectionRoIs). Nevertheless, cancellations with small vari-
ation can become dependent on ones with large variation which is
undesirable in most applications. We choose a compromise, by
creating large “badges” of independent cancellation constructed by
successively adding cancellations with minimal variationamong
the set of still independent cancellations. Furthermore, we restrict
the maximal variation in each badge to be no more than twice that
of the previous badge.

4.3 Analysis
Before a cancellation the region of interference consists of at most
four cells, which merge into at most two cells. Therefore, each

arc can have at most four predecessors and two successors. Ifwe
do not restrict the range of variation in a badge of cancellations it
is clear that each badge contains about 1/4 of the remaining crit-
ical points in the MS complex and the hierarchy is of logarithmic
height. When restricting badges as suggested above this canno
longer be guaranteed. However, we found no difference in adaptiv-
ity when restricting the badges. However, for maximal independent
sets the overall quality of the approximation decreased notably due
cancellations with large variation being predecessors to ones with
small variation.

4.4 Run-Time Traversal
As common geometric hierarchies our topological hierarchycan be
used with a large variety of refinement criteria. For example, one
might refine based on global variation, view-point, and/or function
value. The refinement criterion determines a set of arcs thatmust be
active, which if necessary activate all their predecessors. The cur-
rent simplification is then modify by deactivating (anti-canceling)
arcs that no longer need to be active and activating (canceling) those
that should be active. Cancellations are implemented as defined
in Section 2.2. However, for each cancellation we store which
saddle has been removed as well as the (unique) indices of the
cells involved before and after the cancellation. During ananti-
cancellation, we replace two cells by four and introduce theap-
propriate saddle all of which is based on the information stored
explicitly. However, we also must choose which extremum to in-
troduce into the MS complex. This information is stored implic-
itly in the master forest. An anti-cancellation means the deacti-
vation of an arc which splits one cancellation tree into two.By
definition, each tree is represented in the MS complex by its root,
which is the highest(lowest) maximum(minimum). At each anti-
cancellation we therefore search for the roots in the trees on both
sides of the arc and use their respective roots as vertices. Poten-
tially, this search is linear in the number of nodes of the tree. Since
in practice trees seem to have a very low branching factor, see Fig-
ure 7, and can be split at any arc more elaborate data structures are
unlikely to improve the search time. In any case, the trees are rather
small and searching for roots takes only a small fraction of overall
computation cost.

It is interesting to note that the search for roots symbolizes the
trade off between the higher flexibility of the hierarchy presented
here and the constant time take for each cancellation of the method
proposed in [4]. In the original hierarchy of [4], the extrema were
stored explicitly with each cancellation. In order to maintain a con-
sistent MS complex theRoI of each cancellation must then be in-



Figure 7: Typical extrema trees. Maxima are shown in red,
minima in blue, and arcs in green.

creased to contain all cell incident to eitheru, v, or w. As a result
the dependency graph becomes significantly “higher” and thehier-
archy is far less adaptable, see Section 5.

5. RESULTS
To compare the new hierarchy with the one proposed in [4] we
have applied both strategies to a 1201-by-1201 single-byteinteger
value terrain data set of the Grand Canyon. Figure 10 shows a
rendering (a) and the initial MS complex (b) of the Grand Canyon
data set with 11620 critical points. We assess quality via a fly-
over, comparing the adaptivity of the original hierarchy with the
one using the cancellation forest. A view-frustum is defined, where
the topology is refined to the highest resolution. Outside the given
view-frustum only dependent topology is used. Figure 11 shows
two frames of the fly-over for two distinct stages of the fly-over
path. An animation showing the complete fly-over can be foundat
http://www.pascucci.org
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Figure 8: Number of critical points used during a fly-over
(Grand Canyon data set).

Figure 8 shows the number of critical points in the adaptive MS
complex during the fly-over for both methods used for hierarchy
construction. The hierarchy using the cancellation forestis clearly
superior to the original encoding. One explanation for the large
difference in quality is the presence of high-valency extrema in the
MS complex. Often, data sets (especially terrains) are biased to
contain significantly more maxima than minima (or the reverse),
which consequently results in some extrema of the MS complex
with high-valency values. Using the original large region of inter-
ference, the hierarchy around a high-valency extremum degener-
ates into a linear sequence.

The adaptive refinement and display of topology is useful in
many areas. Figure 9 shows the oil pressure of an undergroundoil

reservoir. (Oil is extracted by pressing water into the reservoir at
some sites and pumping oil at others. As more water is forced into
the reservoir it becomes increasingly saturated with water, and at
some point oil production ceases to be effective.) The figureshows
an isosurface of water saturation, pseudo-colored by oil pressure.
The linear color map used in Figure 9(c) provides little structural
information. However, the seven oil extraction sites are clearly vis-
ible as local minima in the simplified MS complex.

Figure 12(a) shows a rendering of the Yakima data set using
1201×1201 single-byte integer values, (b), and (c) show the cor-
responding MS complex with 17691 critical points and the same
complex refined to preserve only features below a function value
of 0.14 (with function values scaled to[0,1]) using 8063 critical
points. The density of the MS complex shows how the region
around the canyons remains highly refined.

Figure 13 shows the Mixing Fluid data set. The surface is an iso-
surface representing the boundary between two mixing fluidsex-
tracted from one time-step of a turbulent mixing simulation. The
data has been generated by the Miranda code a higher order hydro-
dynamics code for computing fluid instabilities and turbulent mix-
ing at the Lawrence Livermore National Laboratory [7]. In particu-
lar, scientists are interested in ”bubbles” formed during the mixing
process and their automatic segmentation. Using thez-coordinate
as Morse function on the surface bubbles are described by thede-
scending manifolds of maxima as shown in Figure 13. Neverthe-
less, the segmentation of Figure 13(a) is not optimal as somebub-
bles have multiple maxima and there exist many superfluous max-
ima cause by noise in the data set. Using a uniform simplification
of the MS complex one can remove most of these artifacts and cre-
ate a much cleaner segmentation, as shown in Figure 13(b). Fig-
ure 13(c) and (d) show a non-uniform refinement of the same data
which concentrates only on data within the grey focus sphere. As
in the Grand Canyon fly-over, the hierarchy using the cancellation
forest proves to be far more adaptive than the original one of[4].

6. CONCLUSIONS
We have improved our original results discussed in [4] significantly
in several different ways, moving towards the practical application
of topology for data visualization and analysis. Using the cancella-
tion forest, the hierarchy is smaller, more adaptable, and supports
the use of larger, more complicated MS complexes. Furthermore,
cancellation trees are easy to implement and to maintain during re-
finement. Overall, we have presented simple and highly flexible
methods for the topological data analysis. We are currentlywork-
ing on extending all algorithms to volumetric and time-dependent
data and are collaborating with different scientists applying and/or
adapting the concepts to different problems.
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Figure 10: (a) Rendering of Grand Canyon data set; (b) original MS complex of (a) using 11620 critical points (minima shown in
blue, maxima in red, and saddles in green.)

Figure 11: To frames of the fly-over of the Grand Canyon data set. (Left) Using the original hierarchy; (right) using the cancellation
forest.
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Figure 12: (a) Rendering of the Yakima data set; (b) originalMS complex of (a) (17691 critical points); (c) adaptively refined MS
complex, where only features below function value of 0.14 are preserved (8063 critical points).

(a) (b)

(c) (d)

Figure 13: Color-mapped rendering of the Mixing Fluids dataset including critical points and descending arcs. (a) Highest resolution
with 252 maxima; (b) simplified data with 140 maxima showing one maximum for each ”bubble.” The bottom row shows the same
data set locally refined to only preserve critical points within the focus sphere shown in grey. (c) Using the hierarchy of[4] with 155
maxima; (b) using the cancellation forest with 80 maxima.



Figure 9: Pseudo-colored rendering and simplified MS complex
of oil-pressure data set.


