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ABSTRACT

We present an approach to hierarchically encode the topalbg
functions over triangulated surfaces. The topology of afiom
is described by its Morse-Smale complex, a well known stméct
in computational topology. Following concepts of Morsedtye
a Morse-Smale complex (and therefore a function’s topglagy
be simplified by successively canceling pairs of criticahpm We
demonstrate how cancellations can be effectively encoolguia-
duce a highly adaptive topology-based multi-resolutigresenta-
tion of a given function. Contrary to the approach of [4] weiadv
encoding the complete complex in a traditional mesh hiésarn-
stead, the information is split into a new structure we catkacel-
lation forestand a traditional dependency graph. The combination
of this new structure with a traditional mesh hierarchy fsdo be
significantly more flexible than the one previously repoifd In
particular, we can create hierarchies that are guarantebé of
logarithmic height.

1. INTRODUCTION

Topology-based methods used for visualization and arsabfsici-
entific data are becoming increasingly popular. Their mdivaa-
tage lies in the capability to provide a concise descriptibthe
overall structure of a scientific data set. Subtle featuees eas-
ily be missed when using “traditional” visualization medisdike
volume rendering or contouring, unless “correct” trangfi@ictions
and isovalues are chosen. On the other hand, the presentzzgé a
number of small features creates a “noisy visualizatiamyvhich
larger features can be overlooked. By visualizing topoldiggctly,
one can guarantee that no feature is missed. Furthermazegaon
use sound mathematical principles to simplify a topoldgétaic-
ture. The topology of functions is also often used for featue-
tection and segmentation (e.g., in surface segmentatisadoan
curvature).

However, for topology-based data analysis one needs fégxibl
hierarchical models able to adaptively remove noise oufeatnot
relevant for a particular segmentation. In practice, thmepsi-
cation/refinement should be fast (possibly interactive) highly
adaptive in order to be useful for a large variety of situadioRe-
quiring interactivity inadvertently leads to the use ofrhiehical
encodings rather than simplification schemes. Hierarthicalels
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often reduce the adaptivity of a representation to gain ifiléyato
preform incremental changes for varying queries.

We address the need for adaptive topology-based data explo-
ration by improving significantly the topological hierayathescribed
in [4]. By storing the hierarchy in two different but connedtdata
structures, we show how one can remove many of the dependen-
cies in the original hierarchy, making the structure simpheore
compact, and more adaptive than the original one.

1.1 Related Work

The topological structure of a scalar field can be descrilaetighly

by its contour tree [21, 5, 22], which describes the relatibe-
tween the connected components of its level sets. Thistataic
provides a user with a compact representation of the togdlblg
and can be used to accelerate the computation of isosuffatles
However, the contour tree provides only limited informatabout
the embedding of the level sets and therefore remains soatewh
abstract. Morse theory [20, 19], on the other hand, provideth-
ods to analyze the complete topology of a function over a man-
ifold as well as its embedding. Early approaches for therbiva
ate case are discussed in [6, 18, 23]. More recently, the édors
Smale complex was introduced by Edelsbrunner et al. [10s9] a
a description of the topology of scalar-valued functionsrawo-
and three-dimensional manifolds. Applications of thisottyevary
from implicit geometry modeling [27] to shape descriptidib].
Related concepts are also used in flow visualization. Helamgh
Hesselink [14] showed how to find and classify critical psiirt
flow fields and proposed a structure similar to the Morse-8mal
complex for vector fields. Later, methods to analyze and kiynp
this complex were proposed by de Leeuw and van Liere [8] and
Tricoche et al. [29, 30].

A large amount of research has been devoted to the construc-
tion of multi-resolution representations for meshes. Exgrartial
overview of the related work is beyond the scope of this paper
Conceptually, the hierarchy for the reduced Morse-Smatepbex
is related to concepts from [25, 13, 26, 16, 17], as it is e@at
by successive vertex removal. For more references and asdisc
sion on a general theory of multi-resolution modeling werehe
reader to [12]. Nevertheless, the complete Morse-Smalglem
incorporates many topological constraints, and its stnec{and
multi-resolution encoding) is quite different from thosetadi-
tional meshes. The first multi-resolution encoding of a Mers
Smale complex we are aware of was proposed by Pfaltz [24Ewhi
has been improved and extended by Edelsbrunner et al. [1D] an
Bremer et al. [3, 4]. The more recent hierarchical structuane
based on the concept pérsistencg11], which relates the differ-
ence in function value of critical point pairs to the impaorte of a
topological feature.

We first review necessary concepts from Morse theory and the
construction of a Morse-Smale complex (Section 2). In $ec3,
we describe the cancellation forest, and we discuss thétiresu



hierarchy in Section 4. We conclude with results and polisdsi
for future research (Section 5).

2. MORSE-SMALE COMPLEX

We base our algorithms on intuitions derived from the stufly o
smooth functions. We review key aspects from Morse theody [2
19] for smooth functions and discuss how these can be uséein t
piecewise linear case.

2.1 Morse Theory

Throughout this papel denotes a smooth 2-manifold. Given a
smooth functionf : Ml — R, a pointa € M is calledcritical when
itsgradientsy f(a) = (6f/dx, 0 /dy) vanishes; itis callecegular
otherwise. For two-manifolds, (non-degenerate) critmzihts are
maxima ( decreases in all directions), minimé ihcreases in all
directions), or saddled (switches between decreasing and increas-
ing four times around the point). Using a local coordinatarfe at
a, we compute thélessian Hof f, which is the matrix of second
partial derivatives. IfH is non-singular we can construct a local
coordinate system such thithas the formf (x,y) = f(a) £ X% +£y?
in a neighborhood of a. The number of minus signs isititex
of aand distinguishes the different types of critical pointsnima
have index 0, saddles have index 1, and maxima have index 2.
At any regular point, the gradient (vector) is non-zero, ahen
we follow the gradient we trace out amtegral line which starts
at a critical point and ends at a critical point, while tedatiy not
containing either of them. Sindeis smooth, two integral lines are
either disjoint or the same. Tliescending manifold () of a crit-
ical pointais the set of points that flow towarad More formally, it
is the union o and all integral lines that end at The collection of
descending manifolds is a complex in the sense that the boynd
of a cell is the union of lower-dimensional cells. Symmetliig,
we define theascending manifold @) of a as the union of and
all integral lines that start & When neglecting certain degener-
ate cases, see [10], we can overlay these two complexes taid ob
what we call theMorse-Smale complexr MS complexof f. Its
verticesare the vertices are the minima, maxima, and saddlés of

Its edgesare integral lines between saddles and extrema that bound

four-sidedfaces An example is shown in Figure 1.

© minimum
® maximum
& saddle

Figure 1: Morse-Smale complex: descending one-manifolds
shown as dotted and ascending one-manifolds as solid lines.

Using the insight gained from smooth Morse theory when ap-
plied to piecewise linear functions, we follow the concegés
scribed in [3]. We identify and classify critical points lealson
their local neighborhood, see [2, 10]. If all neighboringtiees of
a pointv have function values below that of we call it a maxi-
mum; if all are abovey, then we call it a minimum etc., see Fig-
ure 2. In general, there can exist saddles with multipligityater
than one that we split into simple ones, as shown on the fat itig
Figure 2.

2.2 Cancellations
To simplify an MS complex we remove connected pairs of crit-
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minimum regular point saddle maximum splitting of two—fold saddle
Figure 2: Classification of a vertexv based on relative height
of its neighbors, where light vertices/edges mark higheralue

neighbors and solid vertices/edges lower-value neighbors

minimum-saddle pair. Since all saddles have valence foavegh
four incident edges) each maximum(minimum)-saddle pagquely
defines another maximum(minimum) connected to the same sad-
dle. We refer to such a triple agpass

Following [10] and [4] we useancellationof passes to simplify
an MS complex, see Figure. 3.

Figure 3: MS complex before (a) and after (b) the cancellatio
of the pair (u,v).

Definition 1. Let (u,v,w) be a pass of the MS compléi such
that|f(u) — f(v)| < |f(w)— f(v)|. ThecancellationC,y concate-
nates the edges — v —w to edges ending at and removes the
remaining edges incident to(merging the adjacent faces).

The importance of a pass is measured by the difference ir func
tion value (or height) between its first two vertices

Definition 2. Let (u,v,w) be a pass, then the difference in func-
tion valuep = |f(u) — f(v)| is called thevariation of (u,v,w).

2.3 Construction

The MS complex is constructed by successively computirefiges,
starting from the saddles, see [3]. We compute two lineses st

est ascent and two lines of steepest descent connectingsadeh
dle to two maxima and two minima. Two ascending (descending)
edges can merge; while ascending edges must remain sefjpanate
descending edges. Once two edges have been merged they never
split. Following these rules, we are guaranteed to producena
degenerate MS complex. A more detailed analysis can be found
in [4]. Having computed all edges, we partition the surfau® i
regions by growing each region from saddles without evessing

an edge.

3. SIMPLIFICATION

To create an efficient and flexible hierarchical encodingros
complex one must be able to store and manipulated sequehces o
cancellations. In this section we introduce a structure alea
cancellation foresthat encodes a sequence of cancellations and
provides a simple way to implement a bottom-up simplificatd

ical points. The two possible cases are a maximum-saddle or aan MS complex.



3.1 Cancellation Forests

First we define a cancellation forest and discuss some ofdfs-p
erties

Definition 3. Given an MS complexQ and a sequenck of can-
cellations of passe$up, Vo, Wp), ..., (Un,Vn,Wn) the cancellation
forrest corresponding td is defined as a set of trees with thés
andw;’s as nodes and an arc for eaghbetween its two incident # q
extrema of the same index ag(in Q). Eachcancellation treecon- I
tains exactly one node which is not removedTowhich is called
its root, see Figure 4. o—4

Figure 5: Bottom-up sipmlification using a cancellation for
est. (Upper-left) Original MS complex with the edges corre-
sponding to arcs highlighted. (Upper-right) MS complex afer
removing all edges that will be removed during cancellatios.
(Lower-left) Resulting simplified complex created by concte-
nating edges. (Bottom-right) The resulting MS complex draw

© © with “smoothed” edges to highlight the structure.
®—e © & ® ©
@ (b) 4. HIERARCHY

Figure 4: Constructing a cancellation forest: An MS com- Bottom-up simplification as described above by definitionzais

plex with cancellations (indicated by arrows) is shown on tk starts from the original MS complex and reconstructs eauipisi

top, the corresponding cancellation forest on the bottom (@ots fied complex from scratch. This is impractical for large céemps
marked in grey). and likely to be slow even for medium sized ones. Instead, one

should aim for an iterative construction in which each sifrga-

Cancellation trees have several useful properties: tion is adapted from the one before. In this section we desttie

data structure we use to store an MS complex hierarchidadhy,
1. A cancellation tree consists of either only minima or only this structure is create, and how it is used at run-time.

maxima;
4.1 Data Structure

2. Sinceu; # w; a tree cannot have a cycle;
The data structure to hierarchical encode an MS complex con-

3. Each arc in a tree uniquely identifies a cancellation aralt . . . X .
. g sists of two interconnected parts: One particular cangetidorest
natively a saddle and two incident edges of the MS complex.
and a dependency graph of arcs of the forest.

3.2 Bottom-up Simplification Rather than trying got encode all possible cancellatioadtsr of
Given the cancellation fore§tF of a sequence of cancellatiofis an MS complexM we focus on only one forest which is created
= . q . o based on different metrics depending on the applicatianbséow.
it is straight forward to construct the corresponding sifigd MS . .

, ; L T This master foresis stored as a doubly connected tree meaning
complexM’. The algorithm is illustrated in Figure 5. The con-

: each node contains a list of parents and a list of childrenveyer,
nection between arcs of the forest and edges of the MS complexthe master forest can be adapted by activating and deaeg\acs
provides a natural way to draw a forest embedded into its M$-co p y 9

plex. Once all cancellations fare performed all edges M’ have which creates a set slub-forests As discussed in Section 3, each

either not been changed or have been concatenated with ealges sug_gzgesi:]reggis;msI%E;g%”g:;ggﬁgi?mg anotbauires
responding to arcs of the forest. In the original MS complethe ging P ! ! 4

to deactivate some arcs of the master forest and to actittaéeso
second type of edges were connected to extrema that areofeafs . . ; .
. . This corresponds to performing some anti-cancellatiopagtiva-
CF. lItis easy to see that edges Mf result from concatenating

- i tions) and cancellations (activations)Nh The second part of the
the original edge with those edges encountered on the way fro data structure is to store arcs (representing canceligtiohthe
the leafs ofCF to its roots. Therefore, a bottom-up simplification P 9

: . . master forest in @ependency graphThe dependency graph en-
algorithm for an MS compleM can be implemented as follows: codes a partial order among arcs in which eachaanas a set of

1. Construct a cancellation forest by choosing a sequence of Predecessors that must be active betocan be active and a set of
appropriate cancellations; successors that can only be active i active. As usual, we store

2. For each leaf in the forest compute a sequence of edges (ofthe partial order between arcs as a directed graph.

M) that connects the leaf to its root; and 4.2 Construction

3. For each edgeof M either First, we describe how the data structure is build given aifipse-
a) do nothing, if its extremum has not been canceled; or  quence of cancellationE. Second, we discuss different objectives
b) concatenate with the sequence of edges that connects in how to choosd and explain the algorithm used for all examples
its original extremum with the root of its tree. in this paper.
The construction mostly follows standard concepts, seegxo
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Figure 6: Hierarchy construction: The successively simpfied MS comleﬂg shown on top with cancellatiéis idicated)barrows
and regions of interferences shaded. On the bottom the restithg cancellation forest is shown on the left and the dependey graph

of arcs on the right.

ample, [12]. Theaegion of interferenceRol, of cancellatiorCyy is
defined as all cells incident 0 Then for every cancellatioGy v,
of T we:

1. Create a new amg in the master forest;

2. For aIICuj,\,i whoseRol intersects the cells incident g
makea; a predecessor @ anda; a sucessor odj; and

3. Cancelu;,Vv;) as discussed in Section 2.2

Finally, we use path compression [28] to reduce the numbearasf
in the dependency graph. In practice, most of the path cosajme
is done implicitly during step 2. by removing trivial shauts in
the dependency graph. An example is shown in Figure 6.

To choose a particulaF one must analyze the effects of differ-

ent sequences. The set of cancellations (independent ofdee)

arc can have at most four predecessors and two successars. If
do not restrict the range of variation in a badge of candeliatit

is clear that each badge contains abo# of the remaining crit-
ical points in the MS complex and the hierarchy is of logamiit
height. When restricting badges as suggested above thiaa@an
longer be guaranteed. However, we found no difference iptada
ity when restricting the badges. However, for maximal iretegent
sets the overall quality of the approximation decreasedbtpidue
cancellations with large variation being predecessorsasavith
small variation.

4.4 Run-Time Traversal

As common geometric hierarchies our topological hieradybe
used with a large variety of refinement criteria. For exampte

defines the master forest. Only extrema connected by an arc ca might refine based on global variation, view-point, andiordtion

be canceled. The order among the cancellations deterntiaetet

pendency graph. Because, arcs can only be activated ifefl th

predecessors are activated, the order among cancell&itmslly

value. The refinement criterion determines a set of arcsrhat be
active, which if necessary activate all their predecessbne cur-
rent simplification is then modify by deactivating (antincaling)

(within the Rols) preserved for all possible cancellations. There arcs that no longer need to be active and activating (campetiose

exist two main objectives: Passes with small variation &hbe
canceled first. This ensures that the master forest allogvanibst
unimportant passes to be canceled. Second, the order sireatd

a “shallow” dependency graph meaning short distances fnoyn a

leaf (node with no predecessor) to its root(s). It is wellwnahat
a shallow dependency graph translates into a large numbuf-of
ferent configuration. This translates into a large numbgoskible
simplifications encoded in the hierarchy.

The first objective can be optimized by always choosing time ca

cellation with minimal global variation. However, it is gible,

that should be active. Cancellations are implemented aredkfi

in Section 2.2. However, for each cancellation we store lhic
saddle has been removed as well as the (unique) indices of the
cells involved before and after the cancellation. Duringaati-
cancellation, we replace two cells by four and introduce ahe
propriate saddle all of which is based on the informatiomesto
explicitly. However, we also must choose which extremurmto i
troduce into the MS complex. This information is stored iimypl

itly in the master forest. An anti-cancellation means thactie
vation of an arc which splits one cancellation tree into tvgy

that theRols of each successive pair of cancellation overlap in definition, each tree is represented in the MS complex byoibs, r

which case the dependency graph degenerates into a linemljth
a linear number of possible configurations. The second tigeis
optimized by choosing maximal sets of independent canamila

which is the highest(lowest) maximum(minimum). At eachi-ant
cancellation we therefore search for the roots in the treelsabh
sides of the arc and use their respective roots as verticetenP

(non-intersectiomRols). Nevertheless, cancellations with small vari- tially, this search is linear in the number of nodes of the.ti®@ince

ation can become dependent on ones with large variationhwbic

in practice trees seem to have a very low branching facterFgg

undesirable in most applications. We choose a compromige, b ure 7, and can be split at any arc more elaborate data stescive

creating large “badges” of independent cancellation canttd by
successively adding cancellations with minimal variateanong
the set of still independent cancellations. Furthermomrestrict

the maximal variation in each badge to be no more than twiae th

of the previous badge.

4.3 Analysis

Before a cancellation the region of interference consitd most
four cells, which merge into at most two cells. Thereforeshea

unlikely to improve the search time. In any case, the treesaher
small and searching for roots takes only a small fractionvefall
computation cost.

It is interesting to note that the search for roots symbelithe
trade off between the higher flexibility of the hierarchy sgeted
here and the constant time take for each cancellation of #tbad
proposed in [4]. In the original hierarchy of [4], the extr@mvere
stored explicitly with each cancellation. In order to mainta con-
sistent MS complex th&ol of each cancellation must then be in-



Figure 7: Typical extrema trees. Maxima are shown in red,
minima in blue, and arcs in green.

creased to contain all cell incident to either, orw. As a result
the dependency graph becomes significantly “higher” andhigre
archy is far less adaptable, see Section 5.

5. RESULTS

To compare the new hierarchy with the one proposed in [4] we
have applied both strategies to a 1201-by-1201 singleibygger

reservoir. (Oil is extracted by pressing water into the mesie at
some sites and pumping oil at others. As more water is forued i
the reservoir it becomes increasingly saturated with wated at
some point oil production ceases to be effective.) The fighmvs
an isosurface of water saturation, pseudo-colored by essure.
The linear color map used in Figure 9(c) provides little stinval
information. However, the seven oil extraction sites aeady vis-
ible as local minima in the simplified MS complex.

Figure 12(a) shows a rendering of the Yakima data set using
1201x 1201 single-byte integer values, (b), and (c) show the cor-
responding MS complex with 17691 critical points and the sam
complex refined to preserve only features below a functidneva
of 0.14 (with function values scaled {6,1]) using 8063 critical
points. The density of the MS complex shows how the region
around the canyons remains highly refined.

Figure 13 shows the Mixing Fluid data set. The surface isan is
surface representing the boundary between two mixing fleids
tracted from one time-step of a turbulent mixing simulatidrne
data has been generated by the Miranda code a higher order hyd
dynamics code for computing fluid instabilities and turlptileix-
ing at the Lawrence Livermore National Laboratory [7]. Imtjmu-
lar, scientists are interested in "bubbles” formed durimg mixing
process and their automatic segmentation. Using-t@ordinate
as Morse function on the surface bubbles are described byethe
scending manifolds of maxima as shown in Figure 13. Neverthe
less, the segmentation of Figure 13(a) is not optimal as dmrhe

value terrain data set of the Grand Canyon. Figure 10 shows ables have multiple maxima and there exist many superfluous ma

rendering (a) and the initial MS complex (b) of the Grand Gamy
data set with 11620 critical points. We assess quality vig/a fl
over, comparing the adaptivity of the original hierarchyttwihe
one using the cancellation forest. A view-frustum is defjiveldere
the topology is refined to the highest resolution. Outsidediien
view-frustum only dependent topology is used. Figure 1iwsho
two frames of the fly-over for two distinct stages of the flyeov
path. An animation showing the complete fly-over can be faand
http://www.pascucci.org
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— original hierarchy [4]
— improved hierarchy
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Figure 8: Number of critical points used during a fly-over

(Grand Canyon data set).

Figure 8 shows the number of critical points in the adaptiv& M
complex during the fly-over for both methods used for hidrarc
construction. The hierarchy using the cancellation foiestearly
superior to the original encoding. One explanation for tgé
difference in quality is the presence of high-valency extxeén the
MS complex. Often, data sets (especially terrains) areetids
contain significantly more maxima than minima (or the reggrs
which consequently results in some extrema of the MS complex
with high-valency values. Using the original large regidniner-
ference, the hierarchy around a high-valency extremum raege
ates into a linear sequence.

The adaptive refinement and display of topology is useful in
many areas. Figure 9 shows the oil pressure of an undergmilind

ima cause by noise in the data set. Using a uniform simplificat
of the MS complex one can remove most of these artifacts and cr
ate a much cleaner segmentation, as shown in Figure 13(f). Fi
ure 13(c) and (d) show a non-uniform refinement of the same dat
which concentrates only on data within the grey focus sphase

in the Grand Canyon fly-over, the hierarchy using the caatet
forest proves to be far more adaptive than the original orjé]of

6. CONCLUSIONS

We have improved our original results discussed in [4] Sigantly

in several different ways, moving towards the practicalliapfion

of topology for data visualization and analysis. Using theazlla-
tion forest, the hierarchy is smaller, more adaptable, apgparts
the use of larger, more complicated MS complexes. Furthexmo
cancellation trees are easy to implement and to maintaingloe-
finement. Overall, we have presented simple and highly flexib
methods for the topological data analysis. We are currembigk-
ing on extending all algorithms to volumetric and time-degent
data and are collaborating with different scientists aiogjyand/or
adapting the concepts to different problems.
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Figure 10: (a) Rendering of Grand Canyon data set; (b) origiral MS complex of (a) using 11620 critical points (minima show in
blue, maxima in red, and saddles in green.)

Figure 11: To frames of the fly-over of the Grand Canyon data st (Left) Using the original hierarchy; (right) using the cancellation
forest.



Figure 12: (a) Rendering of the Yakima data set; (b) originalMS complex of (a) (17691 critical points); (c) adaptively réned MS
complex, where only features below function value of 0.14 arpreserved (8063 critical points).

(@ (b)

© (d)

Figure 13: Color-mapped rendering of the Mixing Fluids dataset including critical points and descending arcs. (a) Higlst resolution
with 252 maxima,; (b) simplified data with 140 maxima showing @e maximum for each "bubble.” The bottom row shows the same
data set locally refined to only preserve critical points wihin the focus sphere shown in grey. (c) Using the hierarchy d#] with 155
maxima; (b) using the cancellation forest with 80 maxima.



Figure 9: Pseudo-colored rendering and simplified MS compbe
of oil-pressure data set.



