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Abstract—Realistic behavior of deformable objects is essential
for many applications in computer graphics, engineering, or
medicine. Typical techniques are either based on mass-spring-
damper models, boundary element methods, finite difference
methods, or finite element methods. These methods either lack
accuracy or are computationally very expensive. If accuracy
is required FEM computations use adaptive refinement, where
regions with high gradients are refined locally. The bottleneck
of this approach is still the gap between CAD and CAE
representations.

We present an approach to utilize solid subdivision for finite
element simulations using an adaptive tetrahedral subdivision
scheme based on

√
3 subdivision for triangular meshes. The

advantage of this approach is the use of the subdivision rep-
resentation the modeling, the visualization and the simulation of
the solid model.

I. INTRODUCTION

Ordinary and partial differential equations arise in many
computer graphics areas. Especially, physical simulation of
deformable objects is essential for applications like computer
animation, surgical training or mechanical engineering. While
for surgical training real-time behavior is most critical, for
computer animation and mechanical engineering realistic and
physically accurate behavior are preferred.

In this paper, a method is presented using adaptive tetrahe-
dral subdivision for finite element analysis. Until now, solid
subdivision has only been applied to smooth deformations
of objects. However, utilizing a solid subdivision has many
advantages:
(i) only one representation for modeling, visualization and

simulation;
(ii) implicit creation of well shaped, high quality meshes;

(iii) level of detail and adaptivity;
(iv) special features;
(v) efficiency and stability;

(vi) simple rules and data structures;
(vii) arbitrary topology.

Our adaptive tetrahedral subdivision scheme is designed
for efficient computations of finite element analysis. As our
subdivision scheme supports sharp creases and corners, it is

applicable to mechanical engineering. The advantage of our
method against other refinement methods is that the boundary
is a smooth subdivision surface. Hence, refining elements does
not require communication between the CAE- and the CAD-
system, because positions of new nodes are implicitly known.

II. RELATED WORK

The four most common techniques for the simulation of de-
formable objects are mass-spring-damper (MSD) models [16],
boundary element methods (BEM), finite difference methods
(FDM), and finite element method (FEM). As MSD models
are rather simple models, they are most likely to achieve real-
time performance [15], [9]. The BEM have the best trade
of between computational costs and physical accuracy [10],
[8]. However, if accurate results are required, FDM and FEM
have been used successfully for engineering applications[3].
To speed up the FEM computations adaptive refinements are
used. Standard refinement methods like longest-edge bisection
[13] have the drawback, that the boundary does not have a
smooth limit surface.

While subdivision surfaces are popular in computer graphics
and geometric modeling since their development in 1978[5],
subdivision solids have gained less attention. One of the first
algorithms was the generalization of Catmull-Clark surfaces to
hexahedral solids [12]. As the topological refinement operation
of this algorithm made it hard to analyze the smoothness of
the resulting limit solid, Bajaj et al. [1] modified the operation
to compute deformations that are provably smooth everywhere
except at the vertices of the base mesh. Later, Chang et al. [6],
[7] proposed a subdivision scheme for tetrahedral meshes
based on trivariate box splines. The drawback of their approach
are edge-bisections, which insert octahedra into the mesh. The
resulting octahedra are then split along one of their diagonals
into four tetrahedra. This choice of the diagonal can bias the
resulting meshes towards a certain spatial direction. To remedy
this effect Schaefer et al. [14] use a topological refinement that
splits the octahedra symmetrically into eight tetrahedra and
six octahedra. Their geometric smoothing allows for globally
C2-continuous deformations, except along edges of the base
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Figure 1: An example for the tetrahedral subdivision scheme (left – right): base mash, mesh after 1-4 splits, 2-3 flips, boundary
1-3 splits, boundary edge removals and optimization. Blue faces are interior faces, green faces are boundary faces.
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Figure 2: The tetrahedral subdivision scheme. Blue and green shaded boxes represent interior and boundary operations, rsp.

for tetrahedral meshes based on trivariate box splines. The
drawback of their approach are edge-bisections, which in-
sert octahedra into the mesh. The resulting octahedra are
then split along one of their diagonals into four tetrahedra.
This choice of the diagonal can bias the resulting meshes
towards a certain spatial direction. To remedy this effect
Schaefer et al. [SHW04] use a topological refinement that
splits the octahedra symmetrically into eight tetrahedra and
six octahedra. Their geometric smoothing allows for glob-
ally C2-continuous deformations, except along edges of the
base mesh. All these solid subdivision schemes are designed
for 3d deformations and do not support adaptive refinement.

3. Adaptive, feature preserving tetrahedral subdivision

The subdivision scheme for tetrahedral meshes we use for
the FEM simulation generalizes the idea of

√
3 subdivi-

sion [Kob00] for triangular meshes, as it uses generalized
split and flip operations [BHU09]. While

√
3 subdivision is

based on triangular 1-3 splits and edge flips, tetrahedral sub-
division is based on tetrahedral 1-4 splits (Figure 3(a)) and
multi-face removals (Figure 3(b)). Multi-face removals for
two adjacent tetrahedra are called 2-3 flips. The subdivision
process is a combination of 1-4 splits and 2-3 flips in the in-
terior, the

√
3 scheme and edge removals on the boundary

and optimization steps as shown in Figure 2. The same se-
quence of operations is illustrated in Figure 1 for a simple
base mesh of two tetrahedra. For details see [BHU09].

In contrast to earlier solid subdivision schemes, this
scheme allows for

• adaptive refinement by restricting the 2-3 flips and the
boundary edge removals to the locally refined regions,

• control of the shape of the tetrahedra by adjusting the op-
timization steps, and

• preservation of sharp features by adjusting the two
smoothing operations.

The latter can also be used to replace the original
√

3
smoothing by an interpolatory smoothing. These properties
make this subdivision scheme suitable for FEM simulations.

(a) 1-4 split.
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(b) Multi-face/edge removal for tetrahedra.

Figure 3: Topological operations for the tetrahedral meshes.

4. Finite element method

Most research that has applied FEM in animation and sim-
ulation has used linear finite elements [BN96]. To solve a
continuum mechanical problem, the first step is to discretize
the domain into a set of finite elements. However, the key to
efficient and accurate solutions to these problems is not the
quantity but also the quality of the elements. Thus, it is im-
portant to refine only in areas with large gradients, to keep
the total number of elements small. This refinement requires
adaptive meshing techniques, which must be combined with
an appropriate error estimator, while at the same time the
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Fig. 1. An example for the tetrahedral subdivision scheme (left – right): base mesh, mesh after 1-4 splits, 2-3 flips, boundary 1-3 splits, boundary edge
removals and optimization. Blue faces are interior faces, green faces are boundary faces.
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for tetrahedral meshes based on trivariate box splines. The
drawback of their approach are edge-bisections, which in-
sert octahedra into the mesh. The resulting octahedra are
then split along one of their diagonals into four tetrahedra.
This choice of the diagonal can bias the resulting meshes
towards a certain spatial direction. To remedy this effect
Schaefer et al. [SHW04] use a topological refinement that
splits the octahedra symmetrically into eight tetrahedra and
six octahedra. Their geometric smoothing allows for glob-
ally C2-continuous deformations, except along edges of the
base mesh. All these solid subdivision schemes are designed
for 3d deformations and do not support adaptive refinement.

3. Adaptive, feature preserving tetrahedral subdivision

The subdivision scheme for tetrahedral meshes we use for
the FEM simulation generalizes the idea of

√
3 subdivi-

sion [Kob00] for triangular meshes, as it uses generalized
split and flip operations [BHU09]. While
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based on triangular 1-3 splits and edge flips, tetrahedral sub-
division is based on tetrahedral 1-4 splits (Figure 3(a)) and
multi-face removals (Figure 3(b)). Multi-face removals for
two adjacent tetrahedra are called 2-3 flips. The subdivision
process is a combination of 1-4 splits and 2-3 flips in the in-
terior, the
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3 scheme and edge removals on the boundary

and optimization steps as shown in Figure 2. The same se-
quence of operations is illustrated in Figure 1 for a simple
base mesh of two tetrahedra. For details see [BHU09].

In contrast to earlier solid subdivision schemes, this
scheme allows for

• adaptive refinement by restricting the 2-3 flips and the
boundary edge removals to the locally refined regions,

• control of the shape of the tetrahedra by adjusting the op-
timization steps, and

• preservation of sharp features by adjusting the two
smoothing operations.

The latter can also be used to replace the original
√

3
smoothing by an interpolatory smoothing. These properties
make this subdivision scheme suitable for FEM simulations.
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Most research that has applied FEM in animation and sim-
ulation has used linear finite elements [BN96]. To solve a
continuum mechanical problem, the first step is to discretize
the domain into a set of finite elements. However, the key to
efficient and accurate solutions to these problems is not the
quantity but also the quality of the elements. Thus, it is im-
portant to refine only in areas with large gradients, to keep
the total number of elements small. This refinement requires
adaptive meshing techniques, which must be combined with
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Fig. 2. The tetrahedral subdivision scheme. Blue and green shaded boxes represent interior and boundary operations, green shaded boxes represent boundary
operations.

mesh. All these solid subdivision schemes are designed for 3d
deformations and do not support adaptive refinement.

III. ADAPTIVE, FEATURE PRESERVING TETRAHEDRAL
SUBDIVISION

The subdivision scheme for tetrahedral meshes we use for
the FEM simulation generalizes the idea of

√
3 subdivision

[11] for triangular meshes, as it uses generalized split and flip
operations [4]. While

√
3 subdivision is based on triangular

1-3 splits and edge flips, tetrahedral subdivision is based on
tetrahedral 1-4 splits (Figure 3(a)) and edge removals (Figure
4(b)). Edge removals for two adjacent tetrahedra are called 2-3
flips (Figure 4). The subdivision process is a combination of 1-
4 splits and 2-3 flips in the interior, the

√
3 scheme and edge

removals on the boundary and optimization steps as shown
in Figure 2. For these boundary steps, tetrahedral 1-3 splits
(Figure 3(b)) are required. For preservation of sharp features
1-3 edge splits (Figure 3(c)) are required. The same sequence
of operations is illustrated in Figure 1 for a simple base mesh
of two tetrahedra. For details see [4].

In contrast to earlier solid subdivision schemes, this scheme
allows for

• adaptive refinement by restricting the 2-3 flips and the
boundary edge removals to the locally refined regions,

• control of the shape of the tetrahedra by adjusting the
optimization steps, and

• preservation of sharp features by adjusting the two
smoothing operations.

The latter can also be used to replace the original
√

3 smooth-
ing by an interpolatory smoothing. These properties make this
subdivision scheme suitable for FEM simulations.

(a) (b) (c)

Fig. 3. Split operations for tetrahedral subdivision: a) 1-4 split, b) 1-3 split,
c) 1-3 edge split.

IV. FINITE ELEMENT METHOD

Most research that has applied FEM in animation and
simulation has used linear finite elements [3]. To solve a
continuum mechanical problem, the first step is to discretize
the domain into a set of finite elements. However, the key
to efficient and accurate solutions to these problems is not
the quantity but also the quality of the elements. Thus, it is
important to refine only in areas with large gradients, to keep
the total number of elements small. This refinement requires
adaptive meshing techniques, which must be combined with
an appropriate error estimator, while at the same time the
quality of the elements must be controlled. For this we use
the tetrahedral subdivision scheme with optimization steps that
maximize the minimal dihedral angles.

A. Linear elasticity

In linear elasticity a linear elastic solid model Ω consists of
a set of nodes x = [x, y, z]T . These nodes are tetrahedalized
to form the linear tetrahedral elements for the FE analysis.
When forces are applied, Ω is deformed into a new shape.
The corresponding displacement of x is defined as u(x) =
[u, v, w]T moving x to x + u.
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Fig. 4. Flip operation for tetrahedral subdivision.

The boundary of the domain Ω consists of the boundary
Γ1 with fixed displacements u(x) = u0(x), the boundary Γ2

where forces are applied, and the boundary Γ3 without con-
straints. These components satisfy Γ =

⋃
i Γi and

⋂
i Γi = ∅.

The strain energy of a linear elastic body Ω is

Estrain =
1

2

∫
Ω

εTσ dx,

with the stress vector σ and the strain vector ε =
[εx εy εz γxy γxz γyz]

T defined as

εx =
∂u

∂x
, εy =

∂u

∂y
, εz =

∂u

∂z
,

γxy =
∂u

∂y
+
∂v

∂x
, γxz =

∂u

∂z
+
∂w

∂x
, γyz =

∂v

∂z
+
∂w

∂y
.

This can be rewritten as ε = Bu, where B is called stress-
displacement matrix.

BT =

∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y

.
Now, Hook’s law σ = Cε relates the stress vector σ to ε via
the material matrix C. For homogeneous, isotropic material C
is defined by the Lamé constants λ and µ

C =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

.

Rewriting the strain energy and adding work done by internal
and external forces f and g, respectively, yields the total
energy function

E(u) =
1

2

∫
Ω

uTBTCB u dx−
∫

Ω

fTu dx−
∫

Γ1

gT da.

More details can be found in [3], [17].

B. Error indicator

To improve the accuracy of the FE solution the linear
tetrahedral elements are refined. However, a refinement of the
whole model is neither desirable nor necessary. It suffices to
refine the model only in areas with a large approximation error.
Hence, we require an a-posteriori error e that measures the
difference between the exact solution u and an approximate
solution û, i.e. e = u−û, see [2]. The error estimation we are
using measures the approximation error for each tetrahedron
by integrating the jump of the normal derivative of its faces.

V. RESULTS

All our results were computed on a 2GHz Intel Core2 Duo
with 4GB RAM using Getfem++.

To demonstrate the effectiveness of our method we show
the simulation results for the engineering part shown in Figure
5 (top row) consisting of 2, 799 tetrahedra. To the top faces
(yellow) of the tripod a vertical load is applied, i.e. this region
is Γ2 where the Neumann boundary conditions are applied.
The bottom of the legs of the tripod is fixed, i.e. this region
is Γ1 with the Dirichlet boundary condition.

Figure 5 (second row) shows the deformed model. For
the visualization of the normalized approximation error of
the tetrahedra the color hue of the HSV model is linearly
interpolated from 0◦ (low error) to 120◦ (high error). The
simulation took 491ms while the average normalized error
is 0.08. The histogram shows the error distribution for the
tetrahedra.

For the next step the mesh regions with the largest error
are selected and refined. These refined regions are highlighted
in red in Figure 5 (third row). As some of these regions
are isolated, we did one step of region growing to decrease
the number of disconnected, refined regions. The adaptively
refined mesh consists of 4, 540 tetrahedra. Figure 5 (fourth
row) shows the deformation of this new tetrahedral mesh. The
simulation took 596ms while the average normalized error is
0.03.

Figures 5 (fifth and sixth row) show a second step of adap-
tive subdivision and simulation. After the adaptive subdivision
the mesh consists of 6, 080 tetrahedra. The simulation took
606ms while the average normalized error is 0.01.

Without adaptive refinement the mesh consists of 23, 480
tetrahedra after one subdivision step. This yields a simulation
time of 7, 574ms with average normalized error 0.008 for the
globally refined mesh.

The decrease of the average normalized error and the
histograms getting narrower demonstrates that our method is
effective. The efficiency of the proposed methods is demon-
strated by comparing the computation times for the adaptively
and the globally refined meshes.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach for combining
solid subdivision and FE analysis. The major advantage of this



approach is that only one representation is used for modeling,
visualization and simulation of solid models, by means of an
adaptive tetrahedral subdivision tailored for FE applications.
For the future we plan to combine this subdivision scheme
with more complex FE models, e.g. non-linear deformations,
and use the subdivision refineable functions for the FE simu-
lation.
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Figure 4: Two rounds of adaptive subdivision and FE sim-
ulation (top – bottom): tetrahedral base mesh (2,799 tetra-
hedra), simulation result with visualization of the normal-
ized approximation error (green=low – red=high) and the
histogram of the error distribution, adaptively refined mesh
(4,540 tetrahedra) showing the refined regions in red, sim-
ulation results for the once refined mesh, twice adaptively
refined mesh (6,080 tetrahedra), simulation results for the
twice refined mesh.
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Figure 4: Two rounds of adaptive subdivision and FE sim-
ulation (top – bottom): tetrahedral base mesh (2,799 tetra-
hedra), simulation result with visualization of the normal-
ized approximation error (green=low – red=high) and the
histogram of the error distribution, adaptively refined mesh
(4,540 tetrahedra) showing the refined regions in red, sim-
ulation results for the once refined mesh, twice adaptively
refined mesh (6,080 tetrahedra), simulation results for the
twice refined mesh.
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Fig. 5. Two rounds of adaptive subdivision and FE simulation (top –
bottom): tetrahedral base mesh (2, 799 tetrahedra), simulation result with
visualization of the normalized approximation error (green=low – red=high)
and the histogram of the error distribution, adaptively refined mesh (4, 540
tetrahedra) showing the refined regions in red, simulation results for the once
refined mesh, twice adaptively refined mesh (6, 080 tetrahedra), simulation
results for the twice refined mesh.


